Rekurrente Neuronale Netze. Rudolf Kruse Neuronale Netze 227

Größe: px
Ab Seite anzeigen:

Download "Rekurrente Neuronale Netze. Rudolf Kruse Neuronale Netze 227"

Transkript

1 Rekurrente Neuronale Netze Rudolf Kruse Neuronale Netze 227

2 Rekurrente Netze: Abkühlungsgesetz Ein Körper der Temperaturϑ wird in eine Umgebung der Temperaturϑ A eingebracht. Die Abkühlung/Aufheizung des Körpers kann beschrieben werden durch das Newtonsche Abkühlungsgesetz: Exakte analytische Lösung: dϑ dt = ϑ = k(ϑ ϑ A ). ϑ(t) =ϑ A + (ϑ ϑ A )e k(t t ) Ungefähre Lösung mit Hilfe des Euler-Cauchyschen Polygonzuges: ϑ 1 =ϑ(t 1 ) =ϑ(t ) + ϑ(t ) =ϑ k(ϑ ϑ A ). ϑ 2 =ϑ(t 2 ) =ϑ(t 1 ) + ϑ(t 1 ) =ϑ 1 k(ϑ 1 ϑ A ). Allgemeine rekursive Gleichung: ϑ i =ϑ(t i ) =ϑ(t i 1 ) + ϑ(t i 1 ) =ϑ i 1 k(ϑ i 1 ϑ A ) Rudolf Kruse Neuronale Netze 228

3 Rekurrente Netze: Abkühlungsgesetz Euler Cauchy-Polygonzüge für verschiedene Schrittweiten: ϑ ϑ = 4 ϑ = 2 ϑ = 1 ϑ ϑ ϑ A t ϑ A t ϑ A t Die dünne Kurve ist die genaue analytische Lösung. Rekurrentes neuronales Netz: ϑ(t ) k kϑ A ϑ(t) Rudolf Kruse Neuronale Netze 229

4 Rekurrente Netze: Abkühlungsgesetz Formale Herleitung der rekursiven Gleichung: Ersetze Differentialquotient durch Differenzenquotient dϑ(t) dt ϑ(t) = ϑ(t + ) ϑ(t) mit hinreichend kleinem. Dann ist ϑ(t + ) ϑ(t) = ϑ(t) k(ϑ(t) ϑ A ), und daher ϑ(t + ) ϑ(t) = ϑ(t) kϑ(t) +kϑ A ϑ i ϑ i 1 kϑ i 1 +kϑ A. Rudolf Kruse Neuronale Netze 23

5 Rekurrente Netze: Masse an einer Feder x m Zugrundeliegende physikalische Gesetze: Hooke sches Gesetz: F = c l = cx (c ist eine federabhängige Konstante) Zweites Newton sches Gesetz: F = ma = mẍ (Kraft bewirkt eine Beschleunigung) Resultierende Differentialgleichung: mẍ = cx oder ẍ = c m x. Rudolf Kruse Neuronale Netze 231

6 Rekurrente Netze: Masse an einer Feder Allgemeine analytische Lösung der Differentialgleichung: mit den Parametern x(t) =a sin(ωt) +b cos(ωt) ω = c m, a =x(t ) sin(ωt ) +v(t ) cos(ωt ), b =x(t ) cos(ωt ) v(t ) sin(ωt ). Mit gegebenen Initialwertenx(t ) =x undv(t ) = und der zusätzlichen Annahmet = bekommen wir den einfachen Ausdruck x(t) =x cos Rudolf Kruse Neuronale Netze 232 c m t.

7 Rekurrente Netze: Masse an einer Feder Wandle Differentialgleichung in zwei gekoppelte Gleichungen um: ẋ =v and v = c m x. Approximiere Differentialquotient durch Differenzenquotient: x =x(t + ) x(t) =v and v =v(t + ) v(t) = c m x Resultierende rekursive Gleichungen: x(t i ) = x(t i 1 ) + x(t i 1 ) = x(t i 1 ) + v(t i 1 ) und v(t i ) = v(t i 1 ) + v(t i 1 ) = v(t i 1 ) c m x(t i 1). Rudolf Kruse Neuronale Netze 233

8 Rekurrente Netze: Masse an einer Feder x(t ) u 1 x(t) c m v(t ) u 2 v(t) Neuronu 1 : f (u 1) net (v,w u 1 u 2 ) =w u1 u 2 v = c v und m f (u 1) act (act u 1, net u1,θ u1 ) = act u1 + net u1 θ u1, Neuronu 2 : f (u 2) net (x,w u 2 u 1 ) =w u2 u 1 x = x und f (u 2) act (act u 2, net u2,θ u2 ) = act u2 + net u2 θ u2. Rudolf Kruse Neuronale Netze 234

9 Rekurrente Netze: Masse an einer Feder Einige Berechnungsschritte des neuronalen Netzes: t v x x t Die resultierende Kurve ist nah an der analytischen Lösung. Die Annäherung wird mit kleinerer Schrittweite besser. Rudolf Kruse Neuronale Netze 235

10 Rekurrente Netze: Differentialgleichungen Allgemeine Darstellung expliziter Differentialgleichungen n-ten Grades: Einführung von n 1 Zwischengrößen Gleichungssystem x (n) =f(t,x,ẋ,ẍ,...,x (n 1) ) y 1 =ẋ, y 2 =ẍ,... y n 1 =x (n 1) ẋ = y 1, ẏ 1 = y 2,. ẏ n 2 = y n 1, ẏ n 1 = f(t,x,y 1,y 2,...,y n 1 ) von n gekoppelten Differentialgleichungen ersten Grades. Rudolf Kruse Neuronale Netze 236

11 Rekurrente Netze: Differential Equations Ersetze Differentialquotient durch Differenzenquotient, um die folgenden rekursiven Gleichungen zu erhalten: x(t i ) = x(t i 1 ) + y 1 (t i 1 ), y 1 (t i ) = y 1 (t i 1 ) + y 2 (t i 1 ),. y n 2 (t i ) = y n 2 (t i 1 ) + y n 3 (t i 1 ), y n 1 (t i ) = y n 1 (t i 1 ) +f(t i 1,x(t i 1 ),y 1 (t i 1 ),...,y n 1 (t i 1 )) Jede dieser Gleichungen beschreibt die Aktualisierung eines Neurons. Das letzte Neuron benötigt eine spezielle Aktivierungsfunktion. Rudolf Kruse Neuronale Netze 237

12 Rekurrente Netze: Differentialgleichungen x ẋ ẍ. x (n 1). θ x(t) t Rudolf Kruse Neuronale Netze 238

13 Rekurrente Netze: Schräger Wurf y v cosϕ y ϕ v sinϕ x Schräger Wurf eines Körpers. x Zwei Differentialgleichungen (eine für jede Koordinatenrichtung): wobeig= 9.81 ms 2. ẍ = und ÿ = g, Anfangsbedingungenx(t ) =x,y(t ) =y,ẋ(t ) =v cosϕ undẏ(t ) =v sinϕ. Rudolf Kruse Neuronale Netze 239

14 Rekurrente Netze: Schräger Wurf Führe Zwischenbedingungen ein: v x =ẋ und v y =ẏ um das System der folgenden Differentialgleichungen zu erhalten: ẋ =v x, v x =, ẏ =v y, v y = g, aus dem wir das System rekursiver Anpassungsformeln erhalten x(t i ) =x(t i 1 ) + v x (t i 1 ), v x (t i ) =v x (t i 1 ), y(t i ) =y(t i 1 ) + v y (t i 1 ), v y (t i ) =v y (t i 1 ) g. Rudolf Kruse Neuronale Netze 24

15 Rekurrente Netze: Schräger Wurf Bessere Beschreibung: Benutze Vektoren als Eingaben und Ausgaben r = ge y, wobeie y = (, 1). Anfangsbedingungen sindr(t ) =r = (x,y ) undṙ(t ) =v = (v cosϕ,v sinϕ). Führe eine vektorielle Zwischengröße v = ṙ ein, um zu erhalten. ṙ =v, v = ge y Das führt zu den rekursiven Anpassungsregeln r(t i ) = r(t i 1 ) + v(t i 1 ), v(t i ) = v(t i 1 ) ge y Rudolf Kruse Neuronale Netze 241

16 Rekurrente Netze: Schräger Wurf Die Vorteile vektorieller Netze werden offensichtlich, wenn Reibung mit in Betracht gezogen wird: a = βv = βṙ β ist eine Konstante, die von Größe und Form des Körpers abhängt. Dies führt zur Differentialgleichung Führe die Zwischengrößev=ṙ ein, um r = βṙ ge y. ṙ =v, v = βv ge y, zu erhalten, woraus wir die folgenden rekursiven Anpassungsformeln bekommen: r(t i ) = r(t i 1 ) + v(t i 1 ), v(t i ) = v(t i 1 ) βv(t i 1 ) ge y. Rudolf Kruse Neuronale Netze 242

17 Rekurrente Netze: Schräger Wurf Sich ergebendes rekurrentes neuronales Netz: y r r(t) x v ge y β Es gibt keine seltsamen Kopplungen wie in einem nicht-vektoriellen Netz. Man beachte die Abweichung von der Parabel, die durch die Reibung bewirkt wird. Rudolf Kruse Neuronale Netze 243

18 Rekurrente Netze: Umlaufbahnen der Planeten r = γm r r 3 ṙ =v v = γm r r 3 Rekursive Anpassungsregeln: r(t i ) = r(t i 1 ) + v(t i 1 ) v(t i ) = v(t i 1 ) γm r(t i 1) r(t i 1 ) 3 y r γm v x(t) v(t) x Rudolf Kruse Neuronale Netze 244

19 Rekurrente Netze: Backpropagation über die Zeit Idee: Entfalte das Netzwerk zwischen Trainingsmustern, d.h. lege ein Neuron für jeden Zeitpunkt an. Beispiel: Newton sches Abkühlungsgesetz 1 k 1 k 1 k 1 k ϑ(t ) θ θ θ θ ϑ(t) Entfalten in vier Schritten. Es istθ= kϑ A. Training: Standard-Backpropagation im entfalteten Netzwerk. Alle Anpassungen beziehen sich auf dasselbe Gewicht. Anpassungen werden ausgeführt, wenn das erste Neuron erreicht wird. Rudolf Kruse Neuronale Netze 245

Neuronale Netze. Prof. Dr. Rudolf Kruse

Neuronale Netze. Prof. Dr. Rudolf Kruse Neuronale Netze Prof. Dr. Rudolf Kruse Computational Intelligence Institut für Intelligente Kooperierende Systeme Fakultät für Informatik rudolf.kruse@ovgu.de Rudolf Kruse Neuronale Netze 1 Rekurrente

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s

Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Fakultät für Physik Friedrich Wulschner Technische Universität München Vorlesung Montag Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Inhaltsverzeichnis 1 Newtons 3 Axiome 2 2 Lösungsverfahren

Mehr

Computersimulationen in der Astronomie

Computersimulationen in der Astronomie Computersimulationen in der Astronomie Fabian Heimann Universität Göttingen, Fabian.Heimann@stud.uni-goettingen.de Astronomisches Sommerlager 2013 Inhaltsverzeichnis 1 Differentialgleichungen 3 1.1 Beispiele.....................................

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Aufgabe 5: otierendes Bezugssystem : das nertialsystem, : das rotierende System. d r = d r +

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 8 1 d Alembertsches Prinzip und Lagrangegleichungen 1. Art Teil II 2 Das d Alembertsche Prinzip für N-Teilchensysteme

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 11

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 11 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 11 Aufgabe 43: Seilrolle mit Feder (a) Aus der Zeichnung auf dem Blatt liest man unmittelbar ab,

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zweiteilchenproblem im Lagrange-Formalismus Betrachten Sie ein System aus zwei

Mehr

31. Kurven in Ebene und Raum

31. Kurven in Ebene und Raum 31. Kurven in Ebene und Raum Für ebene Kurven (also Kurven im R gibt es mehrere Darstellungsmöglichkeiten: implizite Darstellung : F (x, y = explizite Darstellung : y = f(x oder x = g(y Parameterdarstellung

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor

Kapitel 2. Kinematik des Massenpunktes. 2.1 Einleitung. 2.2 Massenpunkt. 2.3 Ortsvektor Kapitel 2 Kinematik des Massenpunktes 2.1 Einleitung In diesem Kapitel behandeln wir die Bewegung von einem oder mehreren Körpern im Raum. Wir unterscheiden dabei zwischen Kinematik und Dynamik. Die Kinematik

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Differentialgleichungen I

Differentialgleichungen I Universität Hamburg Fachbereich Mathematik Differentialgleichungen I Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2012/13 Literatur. R. Ansorge, H.J. Oberle, K. Rothe, Th. Sonar: Mathematik

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Differentiation nach einem Parameter Kettenregel

Differentiation nach einem Parameter Kettenregel Differentiation nach einem Parameter Kettenregel 1-E Eine verkettete Funktion von zwei Variablen Abb. 1-1: Die Darstellung einer verketteten Funktion z = f (x, y) f x, y = x 2 2 y, x t = t 2, y t = t 2

Mehr

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau)

Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Vorbemerkung Die nachfolgenden Darstellungen dienen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120 Radiale-Basisfunktionen-Netze Rudolf Kruse Neuronale Netze 2 Radiale-Basisfunktionen-Netze Eigenschaften von Radiale-Basisfunktionen-Netzen (RBF-Netzen) RBF-Netze sind streng geschichtete, vorwärtsbetriebene

Mehr

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung,

Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, Phasenebene Die Lösungen einer autonomen Differentialgleichung zweiter Ordnung, können als Kurven u = f (u, u ), t (u(t), v(t)), v = u, in der sogenannten Phasenebene visualisiert werden. Dabei verläuft

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Beispiele zu Teil 3: Differentialgleichungen

Beispiele zu Teil 3: Differentialgleichungen Beispiele zu Teil 3: Differentialgleichungen 1. Geben Sie die Ordnung der nachstehenden DGL an und geben Sie an ob die DGL in ihrer impliziten oder in ihrer expliziten Form vorliegt. x 2 tx 2 0 xx t 0

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth

Hybride Systeme. Wolfgang Kleier. 27. Juni Universität Bayreuth Hybride Systeme Wolfgang Kleier Universität Bayreuth 27. Juni 2008 Inhalt 1 Einleitung Was ist ein hybrides System? Hybrider Automat 2 Beispiele Wasserstandskontrollsystem Hüpfender Ball Gehemmtes Pendel

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen:

Aufgabe zur Corioliskraft 1. Hier ist es dringend angeraten als erstes eine aussagekräftige Skizze zu machen: Aufgabe zur Corioliskraft 1 Aufgabe: Ein Luftgewehr sei mit dem Lot exakt senkrecht nach oben ausgerichtet. Nach dem Abschuss verlässt die Kugel den Lauf mit 60 ms 1 Wo landet das Geschoss, wenn der Abschuss

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,

Mehr

Numerische Integration des Schwarzschild Problems mit Hilfe von Lie-Reihen

Numerische Integration des Schwarzschild Problems mit Hilfe von Lie-Reihen Institut für Erdmessung Numerische Integration des Schwarzschild Problems mit Hilfe von Lie-Reihen Institut für Erdmessung Leibniz Universität Hannover Liliane Biskupek, Enrico Mai 15.09.2015 Inhalt des

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

J Zehnte Übungseinheit

J Zehnte Übungseinheit J Zehnte Übungseinheit Inhalt der zehnten Übungseinheit: Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung Die Übungsaufgaben der zehnten Einheit werden nicht mehr angekreuzerlt.

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 13/14

KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 13/14 Fachbereich Physik, Freie Universität Berlin KLAUSUR ZUR THEORETISCHEN PHYSIK I (LAK) Wintersemester 13/14 Dienstag, 4.2.14, 10:15 Uhr 1 2 3 4 6 7 6 8 27 Name: Geburtsdatum: Matrikelnummer: Studienfach

Mehr

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017

Numerik gewöhnlicher Differentialgleichungen (MA2304) Modulprüfung F. Bornemann, C. Ludwig 14. August 2017 Numerik gewöhnlicher Differentialgleichungen (MA234) Modulprüfung F. Bornemann, C. Ludwig 4. August 27 Aufgabe ( min) (a) Implementiere in Julia mit den Eingaben a, b, f und n die summatorische Trapez-Regel

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme

Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung d Gewöhnliche Differentialgleichungen Woche 0 Spezielles für zweite Ordnung 0. Phasenebene Wenn wir die autonome Differentialgleichung zweiter Ordnung u (t = f (u(t, u (t (0. studieren wollen, ist ein

Mehr

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Serie 11, Musterlösung

Serie 11, Musterlösung Serie, Musterlösung AN donat.adams@fhnw.ch www.adams-science.com Klasse: Ub Semester: Datum: 30. Mai 07. SIMULINK-Modell Gegeben sei das folgende SIMULINK-Modell: (a) Bestimmen Sie die Differentialgleichung.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

A1: Diplomvorprüfung HM II/III WS 2007/

A1: Diplomvorprüfung HM II/III WS 2007/ A: Diplomvorprüfung HM II/III WS 7/8 6..8 Aufgabe. (+68 Punkte) a) Ist die Reihe k+ k k 5k konvergent oder divergent? Begründen Sie ihre Aussage! b) Führen Sie eine Partialbruchzerlegung für n+ durch und

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 4 Prof. Dr. Jörg Schmalian Blatt Dr. Peter Orth and Dr. Una Karahasanovic Besprechung.7.4

Mehr

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):

c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x): Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden

Mehr

3 Kraft als Vektorfeld

3 Kraft als Vektorfeld 3 Kraft als Vektorfeld 3.1 Der Kraftvektor In2Doder3DwirddieKraftdurcheinenVektorFbeschrieben, derihrerichtung anzeigt. Wie der Ortsvektor r, so läßt sich auch der Kraftvektor F in Komponenten zerlegen,

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

Physik I Übung 13 - Lösungshinweise

Physik I Übung 13 - Lösungshinweise Physik I Übung 13 - Lösungshinweise Stefan Reutter WS 011/1 Moritz Kütt Stand: 7. Februar 01 Franz Fujara Aufgabe 1 Verstimmte Stimmgabel In der Vorlesung wurde ein Versuch mit zwei sehr ähnlichen Stimmgabeln

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

3 Räumliche Punktbewegung

3 Räumliche Punktbewegung 19 3 Räuliche Punktbewegung Unsere 3-diensionalen Rau entsprechend benötigt an drei Koordinaten ur eindeutigen Beschreibung der Lage eines Massenpunkts i Rau. Wählt an ein raufestes Koordinatensste und

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

25. Vorlesung Sommersemester

25. Vorlesung Sommersemester 25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

2. Kinematik. 2.1 Modell Punktmasse

2. Kinematik. 2.1 Modell Punktmasse 2. Kinematik 2.1 Modell Punktmasse 2.22 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung in 3 Dimensionen

Mehr

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40 Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1 B sskizzen B.1 sskizzen der Übungsaufgaben zum Kapitel 1 Aufgabe 1 (Zeitabhängige Beschleunigung) Ein geladenes Teilchen (Ion) bewegt sich im Vakuum kräftefrei mit der Geschwindigkeit v x0 längs der x-achse.

Mehr

Serie 4: Gradient und Linearisierung

Serie 4: Gradient und Linearisierung D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

VDK Allgemeine Chemie I (PC)

VDK Allgemeine Chemie I (PC) VDK Allgeeine Cheie I (PC) Christian Zosel Lösungen für Montag, 2. Juli 2012 1 Vektorrechnung Mit der Forel für Deterinanten von 3x3 Matrizen det A = det a 11 a 12 a 13 a 21 a 22 a 23 (1) a 31 a 32 a 33

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr