Perkolation Zusammenhang mit RG

Größe: px
Ab Seite anzeigen:

Download "Perkolation Zusammenhang mit RG"

Transkript

1 Perkolation Zusammenhang mit RG TU Darmstadt Fachbereich Physik Johannes Reinhard 1

2 Agenda 1.1 Einführung und Motivation 1.2 Grundlagen 2.1 Erzeugende Funktion 2.2 Perkolation in einer Dimension 2.3 Perkolation auf einem Cayley-Baum 3.1 RG hierarchisches Gitter 3.2 RG Dreiecksgitter TU Darmstadt Fachbereich Physik Johannes Reinhard 2

3 Einführung Was ist Perkolation? geometrisches Objekt ~> Gitter Wahrscheinlichkeit : Teilstück des Objekts existiert ~> besetzter Gitterpunkt (Besetzungsperkolation; Verbindungsperkolation) Untersuchung der entstehenden Strukturen ~> Clustergröße, Perkolationsschwelle Anwendungen? TU Darmstadt Fachbereich Physik Johannes Reinhard 3 [1]

4 Motivation Anwendbar auf viele chemische und physikalische Phänomene Eindringen einer Flüssigkeit in ein poröses Medium Ausbreitung eines Feuers Elektrische Leitfähigkeit zusammengesetzer Stoffe Sol-Gel Übergang... [2] TU Darmstadt Fachbereich Physik Johannes Reinhard 4

5 Grundlagen - Begriffe Besetzungswahrscheinlichkeit Clusterzahl Perkolationsschwelle Größenverteilung Skalierung: Anteil Cluster Größe Anordnungen ~> Kritischer Exponent ~> lattice Animals Wichtig: ohne unendlichen Cluster Anteil des unendlichen Clusters Ordnungsparameter Skalierung: ~> Kritischer Exponent TU Darmstadt Fachbereich Physik Johannes Reinhard 5

6 Grundlagen - weitere Größen Wkt. Knoten ist Teil eines -Clusters: Wkt. Knoten eines endlichen Clusters ist Teil eines -Clusters: Mittlere Anzahl Knoten in endlichen Clustern Skalierung: ~> Kritischer Exponent TU Darmstadt Fachbereich Physik Johannes Reinhard 6

7 Grundlagen - weitere Größen Radius eines -Clusters Fraktale Dimension des Clusters Korrelationslänge Skalierung: ~> Kritischer Exponent [1] TU Darmstadt Fachbereich Physik Johannes Reinhard 7

8 Grundlagen - Skalierungshypothese Allgemeines Problem: Exakte Bestimmung von Ansatz: Skalierungshypothese a priori unbekannt nahe und Kritische Exponenten durch ausdrückbar TU Darmstadt Fachbereich Physik Johannes Reinhard 8

9 Erzeugende Funktion Hilfsmittel zur Berechnung Gegeben über Moment der Ordnung von über Differenziation TU Darmstadt Fachbereich Physik Johannes Reinhard 9

10 Perkolation in einer Dimension Clustergrößenverteilung gegeben über Lösung exakt möglich Erzeugende Funktion ~> 0. Moment: Clusterzahl ~> 1. Moment: Ordnungsparameter Vergleich: ~> TU Darmstadt Fachbereich Physik Johannes Reinhard 10

11 Perkolation auf einem Cayley-Baum Jeder Knoten hat nächste Nachbarn Keine Schleifen Selbstähnlich Betrachte Verbindungsperkolation Bestimmung der Perkolationsschwelle Wähle Startpunkt, gehe nach außen Verbindungen existieren Statistische Unabhängigkeit der Schritte kein unendlicher Cluster Weitere Berechnungen möglich TU Darmstadt Fachbereich Physik Johannes Reinhard 11

12 Renormierungsgruppe hierarchisches Gitter Hierarchisches Diamantgitter unendlich viele nächste Nachbarn selbstähnlich exakte RG-Transformation selbst wenig physikalische Bedeutung ~> ähnelt RG-Transformation des quadratischen Bravais-Gitters [4] RG-Schritt invertiert Konstruktion TU Darmstadt Fachbereich Physik Johannes Reinhard 12

13 Renormierungsgruppe hierarchisches Gitter Mögliche Zustände und statistische Gewichte mit Drei Fixpunkte Fixpunkt bei Fixpunkt bei kritischer Fixpunkt TU Darmstadt Fachbereich Physik Johannes Reinhard 13

14 Renormierungsgruppe Dreiecksgitter Betrachte Besetzungsperkolation Mehrheitsprinzip-RG-Transformation Mögliche Zustände und statistische Gewichte Perkolationsschwelle Selbstähnlich exakt [4] TU Darmstadt Fachbereich Physik Johannes Reinhard 14

15 Renormierungsgruppe Dreiecksgitter Kritischer Exponent Theoriewert: gute Übereinstimmung nicht selbstverständlich verbunden nicht verbunden nicht verbunden verbunden TU Darmstadt Fachbereich Physik Johannes Reinhard 15

16 Quellen [1] Drossel, Barbara: Komplexe dynamische Systeme, Manuskript zur Vorlesung, Darmstadt, 2016 [2] eigene Arbeit R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992) R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992) überarbeitet TU Darmstadt Fachbereich Physik Johannes Reinhard 16

Phasenübergänge und kritische Phänomene

Phasenübergänge und kritische Phänomene Kontrollfragen Phasenübergänge und kritische Phänomene Stephan Mertens 27. Juni 2014 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Was versteht man in der Thermodynamik

Mehr

Perkolation Christina Sander

Perkolation Christina Sander Perkolation Christina Sander 28.6.2010 Seite 2 Perkolation 28.6.2010 Christina Sander Inhalt Motivation Definitionen Kritischer Wert Boolsches Modell Anhang Seite 3 Perkolation 28.6.2010 Christina Sander

Mehr

Feigenbaum, Chaos und die RG

Feigenbaum, Chaos und die RG Feigenbaum, Chaos und die RG 9. Juli 27 Lara Becker Bildquelle: [7] Nichtlineare Systeme und Chaos nichtlineare Systeme in letzter Zeit wieder reges Forschungsgebiet Ermöglichung der Untersuchung nicht-integrabler

Mehr

Einführung des Perkolationskonzepts durch Flory und Stockmeyer 1941

Einführung des Perkolationskonzepts durch Flory und Stockmeyer 1941 5. Perkolation Einführung des Perkolationskonzepts durch Flory und Stockmeyer 1941 Änderung einer Systemeigenschaft in Abhängigkeit von der Konzentration c in multikomponentigen Systemen Polymerisierung

Mehr

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen

Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen Kenneth J. Falconer Fraktale Geometrie Mathematische Grundlagen und Anwendungen Aus dem Englischen von Jens Meyer Mit 98 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhalt Vorwort

Mehr

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer

Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle

Mehr

Perkolation. 1 Motivation. Benjamin Tränkle 28. Juni Wofür Perkolation? Modell. Leitfähigkeit von Stoffen gemischter Zusammensetzung

Perkolation. 1 Motivation. Benjamin Tränkle 28. Juni Wofür Perkolation? Modell. Leitfähigkeit von Stoffen gemischter Zusammensetzung Perkolation Benjamin Tränkle 28. Juni 2006 1 Motivation Wofür Perkolation? Leitfähigkeit von Stoffen gemischter Zusammensetzung Ferromagnetismus Polymer Gelation, Vulkanisation Seuchenausbreitung Modell

Mehr

Gerichtete Perkolation

Gerichtete Perkolation Gerichtete Perkolation Joachim Müller 9. Februar 2005 1 Inhaltsverzeichnis 1 Perkolation 3 2 Domany Kinzel Zellular Automat 6 2.1 Definition.............................. 6 2.2 Modelle...............................

Mehr

Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen:

Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen: 1 Gitter Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen: Definition 11 (Gitter) Zu linear unabhängigen Vektoren b 1,, b n R d heißt die Menge } L(b 1,, b n ) := Zb i = t i b i

Mehr

Die Renormierungsgruppe

Die Renormierungsgruppe Die Renormierungsgruppe Jens Langelage 14.12.2005 1 1 Vorbemerkungen 1.1 Problemstellung Die Renormierungsgruppe wurde für Probleme mit (unendlich) vielen Freiheitsgraden entwickelt. Dies ist notwendig,

Mehr

Clustering 2010/06/11 Sebastian Koch 1

Clustering 2010/06/11 Sebastian Koch 1 Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst

Mehr

Algebraische Statistik von Ranking-Modellen

Algebraische Statistik von Ranking-Modellen Algebraische Statistik von n Masterarbeit Benjamin Debeerst 26. September 2011 Objekten einen Rang geben Situation: Gebe einer endlichen Zahl von Objekten O 1,..., O n auf bijektive Weise einen Rang 1

Mehr

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

Clusterphysik. Moderne Molekülphysik SS 2013

Clusterphysik. Moderne Molekülphysik SS 2013 Clusterphysik Moderne Molekülphysik SS 2013 Michael Martins [email protected] Folien werden im WWW bereitgestellt Vorlesung im Diplom und Masterstudiengang Insgesamt 5 LP 2 SWS Vorlesung, Mittwoch

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Statistische Methoden der Datenanalyse Professor Markus Schumacher Freiburg / Sommersemester 2009 Motivation Syllabus Informationen zur Vorlesung Literatur Organisation der Übungen und Scheinkriterium

Mehr

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale

Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale Computergrafik SS 2016 Oliver Vornberger Vorlesung vom 03.05.2016 Kapitel 11: Fraktale 1 Selbstähnlichkeit 2 Koch'sche Schneeflocke a+(x-a) cos(60 ) - (y-b) sin(60 ) b+(y-b) cos(60 ) + (x-a) sin(60 ) a,b

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # kubisch Fd3m # Aufbau durch nur 3 Atome -> 0 0 0 (8a) -> 5/8 5/8 5/8 (16d) -> 3/8 3/8 3/8

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Einführung in die Chromatographie

Einführung in die Chromatographie Einführung in die Chromatographie Vorlesung WS 2007/2008 VAK 02-03-5-AnC2-1 Johannes Ranke Einführung in die Chromatographie p.1/32 Programm 23. 10. 2007 Trennmethoden im Überblick und Geschichte der Chromatographie

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Clusteranalyse. Anwendungsorientierte Einführung. R. Oldenbourg Verlag München Wien. Von Dr. Johann Bacher

Clusteranalyse. Anwendungsorientierte Einführung. R. Oldenbourg Verlag München Wien. Von Dr. Johann Bacher Clusteranalyse Anwendungsorientierte Einführung Von Dr. Johann Bacher R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS Vorwort XI 1 Einleitung 1 1.1 Primäre Zielsetzung clusteranalytischer Verfahren

Mehr

Fraktale Geometrie. F. Springer 6. September 2008

Fraktale Geometrie. F. Springer 6. September 2008 Fraktale Geometrie F. Springer ([email protected]) 6. September 2008 Geometrie kommt vom griechischen γεωµέτρηζ, was Erdmaß oder Landvermessung bedeutet. In der Schule begegnet einem meist

Mehr

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality Von der Schönheit des mathematischen Chaos Eine Einführung in Seltsame Attraktoren mit jreality Inhalt Physikalische Grundlagen Definition Eigenschaften Beispiele Implementierung Demonstration Physikalische

Mehr

Inhalt. 1 Unvollständige Clusteranalyseverfahren 35

Inhalt. 1 Unvollständige Clusteranalyseverfahren 35 Inhalt i Einleitung 15 1.1 Zielsetzung clusteranalytischer Verfahren 15 1.2 Homogenität als Grundprinzip der Bildung von Clustern 16 1.3 Clusteranalyseverfahren 18 1.4 Grundlage der Clusterbildung 20 1.5

Mehr

Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie

Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Betrachten Sie Zahlkörper. a) Untersuchen Sie, wie viele ganze Ideale a mit festgelegter Norm N(a) = a es in

Mehr

Zelluläre Automaten. Zelluläre Automaten sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster

Zelluläre Automaten. Zelluläre Automaten sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster Motivation sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster einfache Zellen räumlich angeordnet einfache Interaktionsmuster (Beziehungen zwischen benachbarten Zellen)

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

Zählen perfekter Matchings in planaren Graphen

Zählen perfekter Matchings in planaren Graphen Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings

Mehr

Thermodynamik und Statistische Mechanik WS2014/2015

Thermodynamik und Statistische Mechanik WS2014/2015 Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: [email protected] Vorlesungsübersicht 1) Einführung: -Makroskopische

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 01.12.2017 7. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Die wichtigste Funktion der Mathematik

Die wichtigste Funktion der Mathematik Die wichtigste Funktion der Mathematik Mathematisches Seminar: Experimentelle Mathematik Stefan Angersbach Hochschule Darmstadt February 28, 2014 Inhaltsverzeichnis 1 Einleitung 2 Geschichte der ζ-funktion

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende

Fortgeschrittene Experimentalphysik für Lehramtsstudierende Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil I Festkörperphysik Elizabeth von Hauff Organic Photovoltaics & Electronics Hochhaus 401 [email protected] Teil

Mehr

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta

Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen

Mehr

Blatt 08: Reihenentwicklung

Blatt 08: Reihenentwicklung Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepagesphysikuni-muenchende/~vondelft/lehre/3t0/ Blatt 08: Reihenentwicklung Abgabe:

Mehr

Advanced Solid State Physics. Kerstin Schmoltner

Advanced Solid State Physics. Kerstin Schmoltner Advanced Solid State Physics Kerstin Schmoltner Grundlagen Supraleiter Theorie Eigenschaften Meissner-Ochsfeld Effekt HTS-Hochtemperatursupraleiter Spezifische Wärmekapazität Quantenmechanische Betrachtung

Mehr

Inhalt 1 Vorwort 2 Einleitung 3 Für Schnellstarter

Inhalt 1 Vorwort 2 Einleitung 3 Für Schnellstarter Inhalt 1 Vorwort 1 2 Einleitung 3 21 Anwendungsbeispiele 4 211 Exakte Zeichnungen 4 212 Geometrischer Taschenrechner 5 213 Übungsaufgaben 5 22 Gedanken zum Programmdesign 6 23 Zum technischen Hintergrund

Mehr

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten

Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System

Mehr

SEMACODE: Semantische Kodierung von Bildern

SEMACODE: Semantische Kodierung von Bildern SEMACODE: Semantische Kodierung von Bildern Situation: hohes Aufkommen digitaler Bilddaten Verknüpfung multimedialer Daten (Text, Bilder, Sprache ) Problem: automatische inhaltliche Charakterisierung von

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

achsenparallele Stauchung und Streckung durch Gewichte :

achsenparallele Stauchung und Streckung durch Gewichte : Gewichtete Minkowski-Distanzfunktion achsenparallele Stauchung und Streckung durch Gewichte : Forderung: [email protected] 1 Einheitskreis Translationsinvarianz keine Skalierungsinvarianz keine Rotationsinvarianz

Mehr

Elementare Mathematik 1 WS 2005/06. Prof. Dr. Klaus Johannson Johann Wolfgang Goethe-Universität Frankfurt

Elementare Mathematik 1 WS 2005/06. Prof. Dr. Klaus Johannson Johann Wolfgang Goethe-Universität Frankfurt Elementare Mathematik 1 WS 2005/06 Prof. Dr. Klaus Johannson Johann Wolfgang Goethe-Universität Frankfurt Einleitung. Die vorliegende Skripte stellt das Material dar nach dem ich die Vorlesung Elementare

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Algorithmen für Chaos und Fraktale

Algorithmen für Chaos und Fraktale Dietmar Herrmann Algorithmen für Chaos und Fraktale A... :.., ADDISON-WESLEY PUBLISHING COMPANY Bonn Paris Reading, Massachusetts Menlo Park, California New York. Don Mills, Ontario Wokingham, ; England

Mehr

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?

Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten

Mehr

T.1 Kinetische Gastheorie und Verteilungen

T.1 Kinetische Gastheorie und Verteilungen T.1 Kinetische Gastheorie und Verteilungen T 1.1 Physik von Gasen T 1.2 Ideales Gas - Makroskopische Betrachtung T 1.3 Barometrische Höhenformel T 1.4 Mikroskopische Betrachtung: kinetische Gastheorie

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie

Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches

Mehr

Quanten - Gravitation

Quanten - Gravitation Quanten - Gravitation Quantenmechanik und allgemeine Relativitätstheorie zwei Pfeiler im Gebäude der theoretischen Physik Passen sie zusammen? Oder brauchen wir ganz neue theoretische Konzepte? Quantenmechanik

Mehr

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.

Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik. Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)

Mehr

Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern

Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Thomas Hübner, Stefan Turek ([email protected], [email protected]) LS

Mehr

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes Markov-Prozesse Franziskus Diwo Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes 8.0.20 Gliederung Was ist ein Markov-Prozess? 2 Zustandswahrscheinlichkeiten 3 Z-Transformation 4 Übergangs-,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung

2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung 2 Bindung, Struktur und Eigenschaften von Stoffen 2.1 Ionenbindung und Ionenkristall s. 0.6 Modell der Ionenbindung 8 - Bindung zwischen typischen Metallen und Nichtmetallen, EN > 1,7 - stabile Edelgaskonfiguration

Mehr

Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen.

Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen. bildung Vom Kleinen zum Großen Thomas Westermann 4. Lange Nacht der Mathematik HS Karlsruhe 12. Mai 2006 Formen und Formen und Formen und Formen und A R U B L R L UB = UR + UL U B U = RI() t + LI'() t

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Universelle kritische Phänomene unter Mikrogravitation: Test der Renormierungsgruppentheorie

Universelle kritische Phänomene unter Mikrogravitation: Test der Renormierungsgruppentheorie Universelle kritische Phänomene unter Mikrogravitation: Test der Renormierungsgruppentheorie V. Dohm RWTH Aachen Symposium Grundlagenforschung im Weltraum München, 12. - 13. Juni 2008 gefördert vom Deutschen

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Wachstum von Baumstrukturen. Ein Ansatz von Tim Landgraf Christian Schudoma

Wachstum von Baumstrukturen. Ein Ansatz von Tim Landgraf Christian Schudoma Wachstum von Baumstrukturen Ein Ansatz von Tim Landgraf Christian Schudoma Bäume in der Natur Pflanzen im Wald Strukturen in Organismen (Gefäßnetze, Bronchien, Nierentubuli, Gehirn, Neuronen und deren

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz [email protected]

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

A. Grundlagen der Stochastik

A. Grundlagen der Stochastik A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment

Mehr

Invertieren von Potenzreihen

Invertieren von Potenzreihen Invertieren von Potenzreihen Sei E(x) die Erzeugende Funktion der Reihe, 0, 0, 0,.... E(x) ist neutrales Element der Multiplikation von Potenzreihen. Definition Inverses einer Potenzreihe Sei A(x), B(x)

Mehr

Beschreibung von Phasenübergängen und kritischen Phänomenen im Rahmen von Thermodynamik und statistischer Physik

Beschreibung von Phasenübergängen und kritischen Phänomenen im Rahmen von Thermodynamik und statistischer Physik Seminar zur heorie der eilchen und Felder Beschreibung on Phasenübergängen und kritischen Phänomenen im Rahmen on hermodynamik und statistischer Physik Steffen Decking 07.03.013 Inhaltserzeichnis 1. Einleitung

Mehr

Robert Denk Proseminar Analysis WS 2016/17

Robert Denk Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars 1 Robert Denk 21.07.2016 Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars Die Grundidee einer Fourierreihe besteht darin, eine Funktion als Überlagerung von Schwingungen,

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr