Perkolation Zusammenhang mit RG
|
|
|
- Calvin Sommer
- vor 7 Jahren
- Abrufe
Transkript
1 Perkolation Zusammenhang mit RG TU Darmstadt Fachbereich Physik Johannes Reinhard 1
2 Agenda 1.1 Einführung und Motivation 1.2 Grundlagen 2.1 Erzeugende Funktion 2.2 Perkolation in einer Dimension 2.3 Perkolation auf einem Cayley-Baum 3.1 RG hierarchisches Gitter 3.2 RG Dreiecksgitter TU Darmstadt Fachbereich Physik Johannes Reinhard 2
3 Einführung Was ist Perkolation? geometrisches Objekt ~> Gitter Wahrscheinlichkeit : Teilstück des Objekts existiert ~> besetzter Gitterpunkt (Besetzungsperkolation; Verbindungsperkolation) Untersuchung der entstehenden Strukturen ~> Clustergröße, Perkolationsschwelle Anwendungen? TU Darmstadt Fachbereich Physik Johannes Reinhard 3 [1]
4 Motivation Anwendbar auf viele chemische und physikalische Phänomene Eindringen einer Flüssigkeit in ein poröses Medium Ausbreitung eines Feuers Elektrische Leitfähigkeit zusammengesetzer Stoffe Sol-Gel Übergang... [2] TU Darmstadt Fachbereich Physik Johannes Reinhard 4
5 Grundlagen - Begriffe Besetzungswahrscheinlichkeit Clusterzahl Perkolationsschwelle Größenverteilung Skalierung: Anteil Cluster Größe Anordnungen ~> Kritischer Exponent ~> lattice Animals Wichtig: ohne unendlichen Cluster Anteil des unendlichen Clusters Ordnungsparameter Skalierung: ~> Kritischer Exponent TU Darmstadt Fachbereich Physik Johannes Reinhard 5
6 Grundlagen - weitere Größen Wkt. Knoten ist Teil eines -Clusters: Wkt. Knoten eines endlichen Clusters ist Teil eines -Clusters: Mittlere Anzahl Knoten in endlichen Clustern Skalierung: ~> Kritischer Exponent TU Darmstadt Fachbereich Physik Johannes Reinhard 6
7 Grundlagen - weitere Größen Radius eines -Clusters Fraktale Dimension des Clusters Korrelationslänge Skalierung: ~> Kritischer Exponent [1] TU Darmstadt Fachbereich Physik Johannes Reinhard 7
8 Grundlagen - Skalierungshypothese Allgemeines Problem: Exakte Bestimmung von Ansatz: Skalierungshypothese a priori unbekannt nahe und Kritische Exponenten durch ausdrückbar TU Darmstadt Fachbereich Physik Johannes Reinhard 8
9 Erzeugende Funktion Hilfsmittel zur Berechnung Gegeben über Moment der Ordnung von über Differenziation TU Darmstadt Fachbereich Physik Johannes Reinhard 9
10 Perkolation in einer Dimension Clustergrößenverteilung gegeben über Lösung exakt möglich Erzeugende Funktion ~> 0. Moment: Clusterzahl ~> 1. Moment: Ordnungsparameter Vergleich: ~> TU Darmstadt Fachbereich Physik Johannes Reinhard 10
11 Perkolation auf einem Cayley-Baum Jeder Knoten hat nächste Nachbarn Keine Schleifen Selbstähnlich Betrachte Verbindungsperkolation Bestimmung der Perkolationsschwelle Wähle Startpunkt, gehe nach außen Verbindungen existieren Statistische Unabhängigkeit der Schritte kein unendlicher Cluster Weitere Berechnungen möglich TU Darmstadt Fachbereich Physik Johannes Reinhard 11
12 Renormierungsgruppe hierarchisches Gitter Hierarchisches Diamantgitter unendlich viele nächste Nachbarn selbstähnlich exakte RG-Transformation selbst wenig physikalische Bedeutung ~> ähnelt RG-Transformation des quadratischen Bravais-Gitters [4] RG-Schritt invertiert Konstruktion TU Darmstadt Fachbereich Physik Johannes Reinhard 12
13 Renormierungsgruppe hierarchisches Gitter Mögliche Zustände und statistische Gewichte mit Drei Fixpunkte Fixpunkt bei Fixpunkt bei kritischer Fixpunkt TU Darmstadt Fachbereich Physik Johannes Reinhard 13
14 Renormierungsgruppe Dreiecksgitter Betrachte Besetzungsperkolation Mehrheitsprinzip-RG-Transformation Mögliche Zustände und statistische Gewichte Perkolationsschwelle Selbstähnlich exakt [4] TU Darmstadt Fachbereich Physik Johannes Reinhard 14
15 Renormierungsgruppe Dreiecksgitter Kritischer Exponent Theoriewert: gute Übereinstimmung nicht selbstverständlich verbunden nicht verbunden nicht verbunden verbunden TU Darmstadt Fachbereich Physik Johannes Reinhard 15
16 Quellen [1] Drossel, Barbara: Komplexe dynamische Systeme, Manuskript zur Vorlesung, Darmstadt, 2016 [2] eigene Arbeit R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992) R. J. Creswick, Horacio A. Farach, Charles P. Poole: Introduction to renormalization group methods in physics, John Wiley and Sons Ltd, New York (1992) überarbeitet TU Darmstadt Fachbereich Physik Johannes Reinhard 16
Phasenübergänge und kritische Phänomene
Kontrollfragen Phasenübergänge und kritische Phänomene Stephan Mertens 27. Juni 2014 UE R ICKE UNI VERSITÄT MAG G N VO D O TT O EBURG 1 Einführung und Motivation 1. Was versteht man in der Thermodynamik
Perkolation Christina Sander
Perkolation Christina Sander 28.6.2010 Seite 2 Perkolation 28.6.2010 Christina Sander Inhalt Motivation Definitionen Kritischer Wert Boolsches Modell Anhang Seite 3 Perkolation 28.6.2010 Christina Sander
Feigenbaum, Chaos und die RG
Feigenbaum, Chaos und die RG 9. Juli 27 Lara Becker Bildquelle: [7] Nichtlineare Systeme und Chaos nichtlineare Systeme in letzter Zeit wieder reges Forschungsgebiet Ermöglichung der Untersuchung nicht-integrabler
Einführung des Perkolationskonzepts durch Flory und Stockmeyer 1941
5. Perkolation Einführung des Perkolationskonzepts durch Flory und Stockmeyer 1941 Änderung einer Systemeigenschaft in Abhängigkeit von der Konzentration c in multikomponentigen Systemen Polymerisierung
Kenneth J. Falconer. Fraktale Geometrie. Mathematische Grundlagen und Anwendungen. Aus dem Englischen von Jens Meyer. Mit 98 Abbildungen
Kenneth J. Falconer Fraktale Geometrie Mathematische Grundlagen und Anwendungen Aus dem Englischen von Jens Meyer Mit 98 Abbildungen Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhalt Vorwort
Landau-Theorie. Seminar zur Theorie der Teilchen und Felder. Daniel Schröer
Landau-Theorie Seminar zur Theorie der Teilchen und Felder Daniel Schröer 1.Einleitung Um ein Problem der Statistischen Physik zu lösen, wird ein relevantes thermodynamisches Potential, wie beispielsweise
1. Thermodynamik magnetischer Systeme
1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15
Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz
Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle
Perkolation. 1 Motivation. Benjamin Tränkle 28. Juni Wofür Perkolation? Modell. Leitfähigkeit von Stoffen gemischter Zusammensetzung
Perkolation Benjamin Tränkle 28. Juni 2006 1 Motivation Wofür Perkolation? Leitfähigkeit von Stoffen gemischter Zusammensetzung Ferromagnetismus Polymer Gelation, Vulkanisation Seuchenausbreitung Modell
Gerichtete Perkolation
Gerichtete Perkolation Joachim Müller 9. Februar 2005 1 Inhaltsverzeichnis 1 Perkolation 3 2 Domany Kinzel Zellular Automat 6 2.1 Definition.............................. 6 2.2 Modelle...............................
Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen:
1 Gitter Wir fassen in kompakter Form das nötige Grundwissen über Gitter zusammen: Definition 11 (Gitter) Zu linear unabhängigen Vektoren b 1,, b n R d heißt die Menge } L(b 1,, b n ) := Zb i = t i b i
Die Renormierungsgruppe
Die Renormierungsgruppe Jens Langelage 14.12.2005 1 1 Vorbemerkungen 1.1 Problemstellung Die Renormierungsgruppe wurde für Probleme mit (unendlich) vielen Freiheitsgraden entwickelt. Dies ist notwendig,
Clustering 2010/06/11 Sebastian Koch 1
Clustering 2010/06/11 1 Motivation Quelle: http://www.ha-w.de/media/schulung01.jpg 2010/06/11 2 Was ist Clustering Idee: Gruppierung von Objekten so, dass: Innerhalb einer Gruppe sollen die Objekte möglichst
Algebraische Statistik von Ranking-Modellen
Algebraische Statistik von n Masterarbeit Benjamin Debeerst 26. September 2011 Objekten einen Rang geben Situation: Gebe einer endlichen Zahl von Objekten O 1,..., O n auf bijektive Weise einen Rang 1
6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität
6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst
Clusterphysik. Moderne Molekülphysik SS 2013
Clusterphysik Moderne Molekülphysik SS 2013 Michael Martins [email protected] Folien werden im WWW bereitgestellt Vorlesung im Diplom und Masterstudiengang Insgesamt 5 LP 2 SWS Vorlesung, Mittwoch
Statistische Methoden der Datenanalyse
Statistische Methoden der Datenanalyse Professor Markus Schumacher Freiburg / Sommersemester 2009 Motivation Syllabus Informationen zur Vorlesung Literatur Organisation der Übungen und Scheinkriterium
Computergrafik SS 2016 Oliver Vornberger. Vorlesung vom Kapitel 11: Fraktale
Computergrafik SS 2016 Oliver Vornberger Vorlesung vom 03.05.2016 Kapitel 11: Fraktale 1 Selbstähnlichkeit 2 Koch'sche Schneeflocke a+(x-a) cos(60 ) - (y-b) sin(60 ) b+(y-b) cos(60 ) + (x-a) sin(60 ) a,b
Anorganische Chemie III
Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # kubisch Fd3m # Aufbau durch nur 3 Atome -> 0 0 0 (8a) -> 5/8 5/8 5/8 (16d) -> 3/8 3/8 3/8
Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen
Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper
7. Kritische Exponenten, Skalenhypothese
7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut
Einführung in die Chromatographie
Einführung in die Chromatographie Vorlesung WS 2007/2008 VAK 02-03-5-AnC2-1 Johannes Ranke Einführung in die Chromatographie p.1/32 Programm 23. 10. 2007 Trennmethoden im Überblick und Geschichte der Chromatographie
2. Fraktale Geometrie
2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale
II.3. Primitive Elementarzellen und Basisvektoren
II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur
Clusteranalyse. Anwendungsorientierte Einführung. R. Oldenbourg Verlag München Wien. Von Dr. Johann Bacher
Clusteranalyse Anwendungsorientierte Einführung Von Dr. Johann Bacher R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS Vorwort XI 1 Einleitung 1 1.1 Primäre Zielsetzung clusteranalytischer Verfahren
Fraktale Geometrie. F. Springer 6. September 2008
Fraktale Geometrie F. Springer ([email protected]) 6. September 2008 Geometrie kommt vom griechischen γεωµέτρηζ, was Erdmaß oder Landvermessung bedeutet. In der Schule begegnet einem meist
Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality
Von der Schönheit des mathematischen Chaos Eine Einführung in Seltsame Attraktoren mit jreality Inhalt Physikalische Grundlagen Definition Eigenschaften Beispiele Implementierung Demonstration Physikalische
Inhalt. 1 Unvollständige Clusteranalyseverfahren 35
Inhalt i Einleitung 15 1.1 Zielsetzung clusteranalytischer Verfahren 15 1.2 Homogenität als Grundprinzip der Bildung von Clustern 16 1.3 Clusteranalyseverfahren 18 1.4 Grundlage der Clusterbildung 20 1.5
Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie
Lösungen - Serie 4 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe 1: Betrachten Sie Zahlkörper. a) Untersuchen Sie, wie viele ganze Ideale a mit festgelegter Norm N(a) = a es in
Zelluläre Automaten. Zelluläre Automaten sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster
Motivation sind einfache Simulationssysteme zur Untersuchung von komplexen Interaktionsmuster einfache Zellen räumlich angeordnet einfache Interaktionsmuster (Beziehungen zwischen benachbarten Zellen)
Geometrische Deutung linearer Abbildungen
Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv
Physik IV Einführung in die Atomistik und die Struktur der Materie
Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2
Algorithmische Methoden zur Netzwerkanalyse
Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik
Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17
Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,
Zählen perfekter Matchings in planaren Graphen
Zählen perfekter Matchings in planaren Graphen Kathlén Kohn Institut für Mathematik Universität Paderborn 25. Mai 2012 Inhaltsverzeichnis Motivation Einführung in Graphentheorie Zählen perfekter Matchings
Thermodynamik und Statistische Mechanik WS2014/2015
Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: [email protected] Vorlesungsübersicht 1) Einführung: -Makroskopische
Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung
Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 01.12.2017 7. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG
Statistik I für Betriebswirte Vorlesung 3
Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April
Die wichtigste Funktion der Mathematik
Die wichtigste Funktion der Mathematik Mathematisches Seminar: Experimentelle Mathematik Stefan Angersbach Hochschule Darmstadt February 28, 2014 Inhaltsverzeichnis 1 Einleitung 2 Geschichte der ζ-funktion
Fortgeschrittene Experimentalphysik für Lehramtsstudierende
Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil I Festkörperphysik Elizabeth von Hauff Organic Photovoltaics & Electronics Hochhaus 401 [email protected] Teil
Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion. Carina Sobotta
Elliptische Funktionen, elliptische Kurven und Modulformen Die Weierstraß sche -Funktion Carina Sobotta 7. Oktober 004 Einleitung Elliptische Funktionen erhielten ihren Namen, da sie anfangs bei Untersuchungen
Blatt 08: Reihenentwicklung
Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepagesphysikuni-muenchende/~vondelft/lehre/3t0/ Blatt 08: Reihenentwicklung Abgabe:
Advanced Solid State Physics. Kerstin Schmoltner
Advanced Solid State Physics Kerstin Schmoltner Grundlagen Supraleiter Theorie Eigenschaften Meissner-Ochsfeld Effekt HTS-Hochtemperatursupraleiter Spezifische Wärmekapazität Quantenmechanische Betrachtung
Inhalt 1 Vorwort 2 Einleitung 3 Für Schnellstarter
Inhalt 1 Vorwort 1 2 Einleitung 3 21 Anwendungsbeispiele 4 211 Exakte Zeichnungen 4 212 Geometrischer Taschenrechner 5 213 Übungsaufgaben 5 22 Gedanken zum Programmdesign 6 23 Zum technischen Hintergrund
Projektgruppe. Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten
Projektgruppe Jennifer Post Clustering und Fingerprinting zur Erkennung von Ähnlichkeiten 2. Juni 2010 Motivation Immer mehr Internet-Seiten Immer mehr digitale Texte Viele Inhalte ähnlich oder gleich
Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet
Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System
SEMACODE: Semantische Kodierung von Bildern
SEMACODE: Semantische Kodierung von Bildern Situation: hohes Aufkommen digitaler Bilddaten Verknüpfung multimedialer Daten (Text, Bilder, Sprache ) Problem: automatische inhaltliche Charakterisierung von
E 3. Ergänzungen zu Kapitel 3
E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach
achsenparallele Stauchung und Streckung durch Gewichte :
Gewichtete Minkowski-Distanzfunktion achsenparallele Stauchung und Streckung durch Gewichte : Forderung: [email protected] 1 Einheitskreis Translationsinvarianz keine Skalierungsinvarianz keine Rotationsinvarianz
Elementare Mathematik 1 WS 2005/06. Prof. Dr. Klaus Johannson Johann Wolfgang Goethe-Universität Frankfurt
Elementare Mathematik 1 WS 2005/06 Prof. Dr. Klaus Johannson Johann Wolfgang Goethe-Universität Frankfurt Einleitung. Die vorliegende Skripte stellt das Material dar nach dem ich die Vorlesung Elementare
Höhere Mathematik für Ingenieure Band II
Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.
Algorithmen für Chaos und Fraktale
Dietmar Herrmann Algorithmen für Chaos und Fraktale A... :.., ADDISON-WESLEY PUBLISHING COMPANY Bonn Paris Reading, Massachusetts Menlo Park, California New York. Don Mills, Ontario Wokingham, ; England
Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale?
Mathematik erzeugt grafische Kunstwerke und zauberhafte Videos: Was sind Fraktale? Klaus Kusche Frühjahr 2019 Inhalt Unser Ziel Was ist ein Fraktal? Von linearen geometrischen Abbildungen zu iterierten
T.1 Kinetische Gastheorie und Verteilungen
T.1 Kinetische Gastheorie und Verteilungen T 1.1 Physik von Gasen T 1.2 Ideales Gas - Makroskopische Betrachtung T 1.3 Barometrische Höhenformel T 1.4 Mikroskopische Betrachtung: kinetische Gastheorie
Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie
Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches
Quanten - Gravitation
Quanten - Gravitation Quantenmechanik und allgemeine Relativitätstheorie zwei Pfeiler im Gebäude der theoretischen Physik Passen sie zusammen? Oder brauchen wir ganz neue theoretische Konzepte? Quantenmechanik
Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5. Symmetrie. Michael Wand Institut für Informatik.
Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 2 WINTERSEMESTER 2017/18 *#$?!! Kapitel 5 Symmetrie Symmetrie Geometrische Symmetrie Beispiele Symmetrische geometrische Objekte (2D)
Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern
Effiziente Diskretisierungs- und Lösungstechniken für die Lattice-Boltzmann Equation auf unstrukturierten Gittern Thomas Hübner, Stefan Turek ([email protected], [email protected]) LS
Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes
Markov-Prozesse Franziskus Diwo Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes 8.0.20 Gliederung Was ist ein Markov-Prozess? 2 Zustandswahrscheinlichkeiten 3 Z-Transformation 4 Übergangs-,
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 6-6) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike [email protected]
Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen
Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen
2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung
2 Bindung, Struktur und Eigenschaften von Stoffen 2.1 Ionenbindung und Ionenkristall s. 0.6 Modell der Ionenbindung 8 - Bindung zwischen typischen Metallen und Nichtmetallen, EN > 1,7 - stabile Edelgaskonfiguration
Musterbildung. Vom Kleinen zum Großen. 4. Lange Nacht der Mathematik. Thomas Westermann. Formen u. Muster. Differenzialgleichungen.
bildung Vom Kleinen zum Großen Thomas Westermann 4. Lange Nacht der Mathematik HS Karlsruhe 12. Mai 2006 Formen und Formen und Formen und Formen und A R U B L R L UB = UR + UL U B U = RI() t + LI'() t
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 8, 07.12.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Universelle kritische Phänomene unter Mikrogravitation: Test der Renormierungsgruppentheorie
Universelle kritische Phänomene unter Mikrogravitation: Test der Renormierungsgruppentheorie V. Dohm RWTH Aachen Symposium Grundlagenforschung im Weltraum München, 12. - 13. Juni 2008 gefördert vom Deutschen
Nichtlinearität in der klassischen Physik
Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................
Wachstum von Baumstrukturen. Ein Ansatz von Tim Landgraf Christian Schudoma
Wachstum von Baumstrukturen Ein Ansatz von Tim Landgraf Christian Schudoma Bäume in der Natur Pflanzen im Wald Strukturen in Organismen (Gefäßnetze, Bronchien, Nierentubuli, Gehirn, Neuronen und deren
5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)
5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:
Berechnung der Determinante
Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,
Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen
Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz [email protected]
A. Grundlagen der Stochastik
A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment
A. Grundlagen der Stochastik
A. Grundlagen der Stochastik Satz A.1 (Axiome der Wahrscheinlichkeit). Folgende Axiome der Wahrscheinlichkeit können definiert werden: (1) Die Wahrscheinlichkeit P(A) eines Ergebnisses A bei einem Experiment
Invertieren von Potenzreihen
Invertieren von Potenzreihen Sei E(x) die Erzeugende Funktion der Reihe, 0, 0, 0,.... E(x) ist neutrales Element der Multiplikation von Potenzreihen. Definition Inverses einer Potenzreihe Sei A(x), B(x)
Beschreibung von Phasenübergängen und kritischen Phänomenen im Rahmen von Thermodynamik und statistischer Physik
Seminar zur heorie der eilchen und Felder Beschreibung on Phasenübergängen und kritischen Phänomenen im Rahmen on hermodynamik und statistischer Physik Steffen Decking 07.03.013 Inhaltserzeichnis 1. Einleitung
Robert Denk Proseminar Analysis WS 2016/17
1. Inhalt des Proseminars 1 Robert Denk 21.07.2016 Proseminar Analysis WS 2016/17 1. Inhalt des Proseminars Die Grundidee einer Fourierreihe besteht darin, eine Funktion als Überlagerung von Schwingungen,
Geradenarrangements und Dualität von Punkten und Geraden
Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare
