Invertieren von Potenzreihen
|
|
|
- Detlef Schuler
- vor 7 Jahren
- Abrufe
Transkript
1 Invertieren von Potenzreihen Sei E(x) die Erzeugende Funktion der Reihe, 0, 0, 0,.... E(x) ist neutrales Element der Multiplikation von Potenzreihen. Definition Inverses einer Potenzreihe Sei A(x), B(x) formale Potenzreihen. A(x) ist invers zu B(x) falls A(x)B(x) = E(x). Satz Existenz von Inversen Sei K ein Körper. Sei A(x) die Erzeugende Funktion von (a n ) n 0 mit a n K. Das Inverse von A(x) existiert gdw a 0 0. Beweis: : Sei B(x) invers zu A(x). Dann gilt [x 0 ]A(x)B(x) = a 0 b 0 =, d.h. a 0 0. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 322 / 348
2 Geometrische Reihe Beweis: Fortsetzung : Wir zeigen die Existenz von b n per Induktion über n. IA für n = 0: b 0 = a 0 existiert wegen a 0 0. IS n n: Wir benötigen n k=0 a kb n k = 0. Damit gilt b n = a 0 n k= a kb n k. Anwendung: Suchen geschlossene Form der geometrischen Reihe,,,... Dazu bestimmen wir das Inverse B(x) von G(x) = n 0 x n. Es gilt b 0 = g 0 =. Ferner ist b n = n k= b n k = n k=0 b k. Dies liefert b = ( ) und b 2 = b 3 =... = 0. Damit folgt ( x)g(x) =. Wir erhalten die bekannte geschlossene Form G(x) = x. Warnung: Wir vernachlässigen hier den sog. Konvergenzradius. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 323 / 348
3 Weitere geschlossene Formen Geschlossene Formen: Endliche geometrische Reihe m n=0 x n = G(x) x m G(x) = x x m x = x m x. Reihe, 2, 3, 4,... B(x) = n nx n = d dx n 0 x n = d dx G(x), d.h. B(x) =. ( x) 2 Verschiedene Herleitungen der geschlossenen Form von, 0,, 0,... Mittels Erzeugende Funktion B(x) = n 0 x 2n. Wir substitutieren x x 2 in der geometrischen Reihe. Dies liefert B(x) =. x 2 2 Kumulative Summe der Folge,,, liefert, 0,, 0,...,,,,... besitzt die Erzeugende Funktion G( x) = +x. D.h. B(x) = G(x)G( x) = +x x = x 2 3 Addition von,,,,... mit,,,,... liefert 2, 0, 2, 0,...,,,,... besitzt die Erzeugende Funktion G( x) = D.h. B(x) = 2 ( +x + x ) = x 2. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 324 / 348 +x.
4 Polyas Geldwechsel Definition Polyas Geldwechselproblem Gegeben: Betrag n Cent, Münzen, 5, 0 Cent Gesucht: #(Möglichkeiten), n mit den Münzen zu zahlen Lösungsansatz: Sei a n die Anzahl Möglichkeiten, n mit -Cent Münzen zu zahlen. Wir erhalten die Folge (a n ) n 0 =,,,,... Erzeugende Funktion von (a n ) n 0 ist A(x) = n 0 x n = x. Sei b n die Anzahl Möglichkeiten, n mit 5-Cent Münzen zu zahlen. Dann gilt (b n ) n 0 =, 0, 0, 0, 0,, 0, 0, 0, 0,, 0,.... Die Erzeugende Funktion ist B(x) = n 0 x n =. x 5 Analog definieren wir C(x) = für 0-Cent Münzen. x 0 DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 325 / 348
5 Divide and Conquer Lösung Divide and Conquer für Polyas Geldwechselproblem: Betrachten zunächst nur Zahlungen mit - und 5-Cent Münzen. Für k = 0,..., n zahlen wir k mit Cent und (n k) mit 5 Cent. Dies liefert n k=0 a kb n k, d.h. die Faltung von (a n ) n 0 und (b n ) n 0. Die Faltung können wir mittels Produkt A(x) B(x) berechnen. [x n ]A(x)B(x) liefert die Anzahl der Möglichkeiten, den Betrag n mit -Cent und 5-Cent Münzen zu zahlen. Nehmen wir noch 0-Cent hinzu, so erhalten wir A(x)B(x)C(x) = x x 5 x 0. [x n ]A(x)B(x)C(x) ist die Lösung von Polyas Geldwechselproblem. Ziel: Geschlossene Form für [x n ]A(x)B(x)C(x) als Funktion von n. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 326 / 348
6 Beispiel für eine geschlossene Form Satz Lineare Rekursion Sei a n = a n + für n, a 0 =. Dann gilt a n = n + für alle n 0. Beweis: Wir stellen die Erzeugenden Funktion A(x) geschlossen dar als A(x) = n 0 a nx n = a 0 + n a nx n = a 0 + n (a n + )x n = + x n a n x n + n x n = x n 0 a nx n + n 0 x n = x A(x) + x. Auflösen nach A(x) liefert A(x) = ( x) 2. Wir kennen bereits die Reihenentwicklung ( x) 2 = n nx n. Einsetzen: n 0 a nx n = ( x) 2 = n nx n = n 0 (n + )x n. Koeffizientenvergleich liefert geschlossene Form a n = n +. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 327 / 348
7 Strategie für geschlossene Form Strategie zum Finden einer geschlossenen Form Aufstellen der Erzeugenden Funktion A(x) = n 0 a nx n. 2 Einsetzen von Anfangswerten und Rekursionsgleichung. 3 Darstellung aller a n durch A(x). 4 Auflösen nach A(x) liefert eine geschlossene Form f (x). 5 Entwicklung von f (x) = n 0 f nx n als formale Potenzreihe. Wir verwenden hier als Hilfsmittel die Partialbruchzerlegung. 6 Koeffizientenvergleich liefert geschlossene Form a n = f n. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 328 / 348
8 Ableiten von G(x) Lemma Partialbruchlemma Für alle a R, k N gilt ( ax) k = n 0 ( n+k ) k a n x n. Beweis: Ableiten der geometrischen Reihe liefert n nx n = ( x) 2. Erneutes Ableiten führt zu n 2 n(n )x n 2 = 2 ( x) 3. k-maliges Ableiten ergibt n k n... (n k + )x n k k! = Daraus folgt ( n+k ) n 0 k x n =. ( x) k+ Wir erhalten = ( n+k ) ( ax) k n 0 k a n x n. ( x) k+. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 329 / 348
9 Partialbruchzerlegung Satz Partialbruchzerlegung Seien f, g R[x] mit f = ( a x) k... ( a r x) kr und grad(g) < grad(f ). Dann existieren g i (x), i [r] mit grad(g i ) < k i und g(x) f (x) = g (x) ( a x) k gr (x) ( a r x) k r. Beweis: Wir suchen g i der Form g(x) = r i= g i(x) j [r]\{i} ( a jx) k j. grad(g i ) < k i, d.h. jedes g i besitzt höchstens k i Koeffizienten. Insgesamt gibt es r i= k i = grad(f ) viele Koeffizienten der g i. Durch Ausmultiplizieren und Koeffizientenvergleich erhalten wir grad(f ) viele Gleichungen für unsere grad(f ) viele Unbekannte. DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 330 / 348
10 Bsp. Partialbruchzerlegung Beispiel: Partialbruchzerlegung g(x) = x, f (x) = x 2. Dies liefert den Ansatz x x 2 = a x+ + b x. Multiplikation mit f (x) führt zu x = a(x ) + b(x + ) = (a + b)x a + b. Koeffizientenvergleich ergibt a + b = a + b = 0. Damit erhalten wir a = b = 2 ( ) (, d.h. x+ + x = 2 x x 2 = 2 ( x) + x ) = 2 (G( x) + G(x)). DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 33 / 348
11 Reflektiertes Polynom Definition Reflektiertes Polynom Sei f (x) = f 0 + f x f n x n R[x]. Dann heißt f R (x) = f n + f n x +... f 0 x n das reflektierte Polynom von f. Es gilt f R (x) = x n f ( x ). Daraus folgt f R ( x ) = x n f (x). Lemma Reflexionslemma Sei f R[x] mit f R (x) = (x a )... (x a n ). Dann gilt f (x) = ( a x)... ( a n x). Beweis: Es gilt f (x) = x n f R ( x ) = x( x a )... x( x a n) = ( a x)... ( a n x). DiMa I - Vorlesung Potenzreihen, Partialbruchzerlegung, geschlossene Form 332 / 348
Identitätssatz für Potenzreihen
Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Diskrete Mathematik 1
Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof Dr Alexander May M Ritzenhofen, M Mansour Al Sawadi, A Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik WS 008/09 Blatt 4 /
2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.
Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum
Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen
Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung
Kapitel 7. Rekursionsgleichungen. Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen
Kapitel 7 Rekursionsgleichungen p. /38 Kapitel 7 Rekursionsgleichungen Allgemeines Iterationsmethode Klassen von Rekursionsgleichungen Erzeugende Funktionen Kapitel 7 Rekursionsgleichungen p. 2/38 Allgemeines
5 Potenzreihenansatz und spezielle Funktionen
5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Partialbruchzerlegung für Biologen
Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche
1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)
WURZEL Werkstatt Mathematik Polynome Grundlagen
Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die
Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome
Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal
Geometrie von Flächen und Algebraischen Kurven Der Satz von Pascal Laura Hinsch November 005 Inhaltsverzeichnis 1 Einleitung 1 Algebraische Kurven 1 3 Singularitäten 3 4 Der Satz von Pascal 5 i 1 Einleitung
Analysis I. 4. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Kapitel III. Aufbau des Zahlensystems
Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.
Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.
Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
Übungen zur Linearen Algebra 1
Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume
Formelanhang Mathematik II
Formelanhang Mathematik II Mechatronik 2. Sem. Prof. Dr. K. Blankenbach Wichtige Formeln: - Euler: e j = cos() + j sin() ; e -j = cos() - j sin() - Sinus mit Phase: Übersicht Differentialgleichungen (DGL)
Satz von Taylor Taylorreihen
Satz von Taylor Taylorreihen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Tangente als Näherung Weil sich anschaulich die Tangente anschmiegt, ist die Tangentenfunktion
1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale
Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen
4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9
Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v
Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht
Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz
Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Abschnitt: Algorithmendesign und Laufzeitanalyse
Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher
Prof. Dr. Rolf Linn
Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen
Wiederholung Vorlesungen 1 bis 8
Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005
Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005 Inhaltsverzeichnis Abelsche Gruppe 3 Kommutativer Ring 5 Körper 6 Endliche Körper 7 Endliche
Aufstellen von Funktionstermen
Aufstellen von Funktionstermen Bisher haben wir uns mit der Untersuchung von Funktionstermen beschäftigt, um Eigenschaften des Graphen zu ermitteln. Nun wollen wir die Betrachtungsweise ändern. Wir gehen
Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.
rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),
Potenzreihen. Potenzreihen sind Funktionenreihen mit einer besonderen Gestalt.
Potenzreihen Potenzreihen sind Funtionenreihen mit einer besonderen Gestalt. Definition. Ist (a ) eine Folge reeller (bzw. omplexer) Zahlen und x 0 R (bzw. z 0 C), dann heißt die Reihe a (x x 0 ) (bzw.
Lösungen zu Aufgabenblatt 7P
Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 205 9. Mai 205 Lösungen zu Aufgabenblatt 7P Aufgabe (Stetigkeit) (a) Für welche a, b R sind die folgenden Funktionen stetig in x 0
2 Reihen Einleitung Wichtige Sätze Arithmetische Reihen Geometrische Reihen Harmonische Reihe...
Folgen und Reihen Vorbereitungskurs Raach 013 Birgit Vera Schmidt 10. Mai 013 1 Folgen 1.1 Einleitung und Definition...................................... 1. Wichtige Folgen............................................
Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich
Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,
konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in
C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen
Bernoulli-Zahlen, Zetafunktion und Summen von Potenzen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 30. September 0 Die Bernoulli-Zahlen gehören zu den wichtigsten Konstanten der Mathematik. Wir
8. Übungsblatt Aufgaben mit Lösungen
8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.
3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Kapitel 6. Exponentialfunktion
Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.
Rekursive und primitiv rekursive Funktionen. Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen
Rekursive und primitiv rekursive Funktionen Ein maschinenunabhängiges formales Berechnungsmodell auf den natürlichen Zahlen IDEE: Definiere eine Klasse von (partiell) berechenbaren Funktionen über N induktiv
Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen
Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach
Reelle Zahlen, Gleichungen und Ungleichungen
9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier
Diskrete Strukturen und Logik WiSe 006/07 in Trier Henning Fernau Universität Trier [email protected] 1 Was wir alles können Rückblick, Einblick, Ausblick,... Diskrete Strukturen und Logik
GF(2 2 ) Beispiel eines Erweiterungskörpers (1)
GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr
1 Geometrie - Lösungen von linearen Gleichungen
Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Natürliche Zahlen Der grundlegende Zahlenbereich ist die Menge der natürlichen Zahlen N = {1, 2, 3,...}. In vielen Fällen ist es sinnvoll die Zahl 0 mit einzubeziehen: N 0 = N [
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
Natürliche Zahlen, Summen und Summenformeln
Vorlesung Natürliche Zahlen, Summen und Summenformeln.1 Die natürlichen Zahlen Die natürlichen Zahlen sind diejenigen Zahlen mit denen wir zählen 0,1,,3,... Es gibt unendlich viele und wir schreiben kurz
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
Diskrete Strukturen. Restklassenringe WS 2013/2014. Vorlesung vom 24. Jänner 2014
Diskrete Strukturen WS 2013/2014 Vorlesung vom 24. Jänner 2014 Thomas Vetterlein Institut für Wissensbasierte Mathematische Systeme Johannes-Kepler-Universität Linz 10.1 Die Modulo-n-Relation Definition
Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael
Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und
Partitionen II. 1 Geometrische Repräsentation von Partitionen
Partitionen II Vortrag zum Seminar zur Höheren Funktionentheorie, 09.07.2008 Oliver Delpy In diesem Vortrag geht es um Partitionen, also um Aufteilung von natürlichen Zahlen in Summen. Er setzt den Vortrag
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften
Die Exponentialfunktion. exp(x)
Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1
In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y
Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion
Drehung um einen Punkt um Winkel α.
Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Algebraische Kurven. Holger Grzeschik
Algebraische Kurven Holger Grzeschik 29.04.2004 Inhaltsübersicht 1.Einführung in die Theorie algebraischer Kurven 2.Mathematische Wiederholung Gruppen, Ringe, Körper 3.Allgemeine affine Kurven 4.Singuläre
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Konvergenz im quadratischen Mittel - Hilberträume
CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften
Lösung zur Klausur zu Krypographie Sommersemester 2005
Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Kapitel 5 KONVERGENZ
Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Affine Geometrie (Einfachere, konstruktive Version)
Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit
Das Zweikinderproblem
Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A
Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg
Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Elliptische Kurven Einführendes Bsp.
Elliptische Kurven Einführendes Bsp. Eine Menge von Kugeln wird als eine quadratische Pyramide angeordnet. Mit 1 Kugel oben, 4 weiteren darunter, dann 9 weiteren darunter usw. Wenn diese quadratische Kugelpyramide
Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)
Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag
Kleiner Satz von Fermat
Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt
