Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

Größe: px
Ab Seite anzeigen:

Download "Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert"

Transkript

1 Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

2 Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor 3. Stabilität der Fixpunkte 1-D, -D und viele 4. Hopf Bifurcation Superkritische Subkritische 5. Geschlossene Orbits 6. Quasiperiodizität

3 Was sind Poincaré-Schnitte? Betrachten die Differentialgleichung x t = f x t eines n-dim. Systems mit rotierendem Verlauf Sei S eine (n 1)-dim. Hyperfläche (Poincaré-Schnitt) die transversal zur Trajektorie steht und durch diese geschnitten wird. Dann ist P dies Poincaré-Abbildung die einen Schnittpunkt x k auf P x k = x k+1 abbildet. Liegt ein Fixpunkt, damit eine geschlossene Trajektorie vor so gilt: P x E = x E Reduzierung der Analyse um eine Dimension Weniger kompliziert

4 Was sind Poincaré-Schnitte?

5 Was sind Poincaré-Schnitte?

6 Anwendung: Poincaré-Schnitte Beispiel 1: Ermittlung der Fixpunkte auf Poincaré-Schnitt Suchen also geschlossenen Orbit im Phasenraum. Gegeben: r = r(1 r ), θ = 1 dr dt = r 1 r dr r 1 r P r 0 =r 1 r 0 dr r 1 r = 0 π = dt dt = π P(r) = 1 + e 4π r 0 1 1

7 Anwendung: Poincaré-Schnitte Funktion: P(r) = 1 + e 4π r Schnitt mit der Geraden P r = r gibt FP (hier Limitcycle bei r = 1 und Fixpunkt bei r = 0).

8 Anwendung: Poincaré-Schnitte Warum nicht einfach? : r = r 1 r = 0 r=0 r = 1 Keine Aussage möglich über: Zwischenwerte, damit über Schnelligkeit Stabilität der Fixpunkte (stabil, instabil, halbstabil)

9 Mathematica-Beispiel (Attraktoren)

10 Stabilität der Fixpunkte 1-D Stabilität von Fixpunkten: x = x E x E = P(x E ) mit FP x E Führen Störung ξ ein: x = x E +ξ x i+1 = x E + ξ i+1 P x E + P (x E )ξ i + 1 P (xe )ξ i P (xe )ξ i 3 + Wir benutzen das x E = P(x E ) und führen Koeffizienten C,D,E ein: ξ i+1 Cξ i +Dξ i +Eξ i 3 +

11 Stabilität der Fixpunkte 1-D Für sehr kleine Störungen gilt: ξ i+1 Cξ i ξ i C i ξ 0 Einfluss von C > 0: Bei 0 < C < 1 abnehmende Störung Fixpunkt stabil Bei C = 1 keine Aussage über Stabilität möglich Bei C > 1 zunehmende Störung Fixpunkt instabil

12 Stabilität 1-D Poincaré-Schnitte Für sehr kleine Störungen gilt: ξ i+1 Cξ i ξ i C i ξ 0 Einfluss von C < 0: Bei 1 < C < 0 abnehmende Störung Fixpunkt stabil Bei C = 1 keine Aussage möglich Bei C < 1 wachsende Störung Fixpunkt instabil

13 Stabilität 1-D Poincaré-Schnitte Bemerkung: Bisher wurden periodische Orbits mit n=k vernachlässigt n = 1: x i+1 = P(x i ) = x i n = k: x i+1 = P(x i ) x i+ = P P x i x i+k = P k x i = x i = P x i Bei Taylorapproximation muss Kettenregel beachtet werden: P P x y = P(x) z = P(P x ) [P(P x )] x = P x (x)p x (P(x))!

14 Stabilität -D Poincaré-Schnitte Betrachtung des Problems : x i+1 = F x i, y i y i+1 = G x i, y i Seien x E = F x E, y E und y E = G(x E, y E ) Fixpunkte, sodass : x i = x E + ξ i y i = y E + η i Damit : x i+1 = x E + ξ i+1 = F(x E + ξ i, y E + η i ) y i+1 = y E + η i+1 = G(x E + ξ i, y E + η i )

15 Stabilität -D Poincaré-Schnitte Taylorn liefert: ξ i+1 F x ξ i + F y η i + 1 F xxξ i + F xy ξ i η i + F yy η i + η i+1 G x ξ i + G y η i + 1 G xxξ i + G xy ξ i η i + G yy η i + Kleine Störungen ξ i und η i : ξ i+1 = a ξ i + b η i η i+1 = c ξ i + d η i ξ i+1 = J ξ i J = F x F y G x G y = a b c d λ 1 und λ sind Eigenwerte von der Jacobi-Matrix J.

16 Stabilität -D Poincaré-Schnitte λ 1 und λ reell : u i+1 = λ 1 u i In Eigenbasis der Jacobi-Matrix v i+1 = λ v i Fallunterscheidungen: λ 1, < 1: Fixpunkt ist stabil für kleine Störungen λ 1 und λ oder beide > 1: halbstabiler/instabiler Fixpunkt λ 1 oder λ = 1: keine Aussage durch lin.approx. Möglich Wir können Stabilität in den Eigenbasen der Jacobi-Matrix wie in einer Dimension einzeln betrachten.

17 Stabilität -D Poincaré-Schnitte Beispiel für λ 1 = 0,9 und λ =-1,1 : Papierflieger!

18 Stabilität -D Poincaré-Schnitte komplex konjugierte Eigenwerte: z.b. λ 1, = α ± iβ Eigenwertgleichungen der Störung (lin.approx.): u i+1 = αu i βv i v i+1 = βv i + αu i : : Für i = k folgt in Polarkoordinaten: r k = ρ k r 0 (1) θ k = θ 0 + kφ Gleichung () für Stabilität nicht wichtig, da Phase.

19 Stabilität -D Poincaré-Schnitte Wichtige Gleichung: r k = ρ k r 0 Fallunterscheidung: ρ < 1: Fixpunkt stabil ρ = 1: keine Aussage möglich

20 Stabilität -D Poincaré-Schnitte Wichtige Gleichung: r k = ρ k r 0 Fallunterscheidung: ρ > 1: Fixpunkt instabil Was passiert bei komplexen Eigenwerten?

21 Stabilität in vielen Dimensionen Seien nun x(t) = x t = x E + ξ(t) und x E = x E Vektoren : x t = P x t x E = lim x t = P(x E ) t Führen kleine Störung ξ(t) = ξ(t) mit ξ 1 ein und entwickeln am Punkt x E : x E + P x E + ξ(t) P x E + dp dx ξ(t) + x E P x E + ξ(t) = x E dp dx x E ξ(t) +

22 Stabilität in vielen Dimensionen P x E + ξ(t) dp dx x E ξ(t) + Mit x t = d dt xe + ξ(t) = ξ(t) und x t = P x E + ξ(t) : ξ t = dp dx x E ξ(t) Wir haben also eine lineare DGL 1.Ordnung mit Lösung: ξ t dp = e dxx E t ξ(0)

23 Stabilität in vielen Dimensionen Wir zerlegen ξ 0 = i c i v i in Eigensystem von dp dxx E mit EW α i : ξ t dp = e dxx E t ξ 0 dp = i c i e dxx E t v i = i c i e α i t v i Nehmen wir an kompl. EW α i = Re α i + i Im(α i ) : ξ t = i c i e Re(α i) t e i Im(α i) t v i < 1 relevant Phase (nicht relevant) Wir brauchen nur Realteil betrachten!

24 Hopf Bifurcation Abhängig von Parameter μ Verschiedene Arten Subkritisch Superkritisch Poincaré-Andronov-Hopf Bifurcation

25 Hopf Bifurcation Wann tritt eine Bifurcation auf? Betrachte Eigenwerte (EW) der Jakobimatrix EW schneiden imaginäre Achse: Einzelnd Gleichzeitig Erhalten dort die Bifurcation Superkritisch Subkritisch

26 Hopf Bifurcation: Superkritisch Gedämpfter Oszillator mit Dämpfung abhängig von μ a. Bekannt b. Interessanter Fall

27 Hopf Bifurcation: Superkritisch Betrachte das System μ hat Einfluss auf Stabilität ω : Winkelgeschwindigkeit 3 r r - r br b : Zusätzliche Winkelgeschwindigkeit für große Amplituden

28 Hopf Bifurcation: Superkritisch Wie sieht die Theorie dazu aus? Betrachte die EW der Jacobimatrix Jakobimatrix: ), ( ), ( ]) [ ( ]) [ ( )sin ( )cos ( sin cos 3 y x y x y y x x x y y x b x y x br r r r r r x J i 1,

29 Hopf Bifurcation: Subkritisch In realen Systemen der gefährlichere Fall Sprung bei Bifurcation zu Entfernten Attraktor Fixpunkt Limit circle Unendlich Bsp: Fixpunkt wird unstabil und bildet entfernten limit circle

30 Hopf Bifurcation: Subkritisch 3 r r r br r 5 Plot im Phasenraum für Verschiedene μ: Verschmelzung und Zerstörung von stabilem und instabilen limit circle für μ<0.5. Große Oszillationen können verloren gehen

31 Hopf Bifurcation Kriterium Können uns fragen was für eine Art Bifurcation vorliegt. Antwort: Analytisch kompliziert Einfacher mit Computer Superkritisch: Fixpunkt wird unstabil stabiler limit circle Subkritisch: Alle anderen Fälle

32 Hopf Bifurcation Kriterium Wo liegt die Bifurcation? Jakobimatrix Bifurcation at μ=0 x x y y xy x y y A 1 i 1 3 Superkritisch oder Subkritisch? Betrachte Animation Subkritisch

33 Geschlossene Orbits Betrachte vereinfachte Josephen Junction Φ Phasendifferenz in der Josephen Junction α Bremsstrom y I angelegter Strom Schreibe Gleichung um: Plotte y im Phasenraum I y ( y I sin y I sin y sin) 1

34 Geschlossene Orbits Betrachte Trajektorie in einer Periode Betrachte Zylinder in D Box enthällt alle Informationen Poincaré-Map Höhendifferenz nach einer Periode Suche nun geschlossenen Orbit

35 Geschlossene Orbits y* P( y*) Benutze Zwischenwertsatz mit Funktionen P( y P( y 1 ) ) y y 1 Wichtig für P: P ist monoton Orbits dürfen sich nicht schneiden

36 Geschlossene Orbits Aus Zwischenwertsatz folgt dann: Es muss so ein y* geben. geschlossener Orbit Untersuche nun die Einzigkartigkeit Frage: Kann es mehrere geben?

37 Geschlossene Orbits Definiere zwei geschlossene Orbits Betrachte nun die Energie Widerspruch zur Definition ) ( ) ( L y U y 0 0 cos 1 d d de E y E ) ( d y d y I d y L U

38 Quasiperiode Orbits Untersuche ungekoppeltes System Trage Winkel gegeneinander auf Es treten Fälle auf Rationale Steigung Irrationale Steigung p q Betrachte Box mit periodischen Wänden Plot für p=3, q=

39 Plot auf dem Torus Quasiperiode Orbits

40 Quasiperiodicity Now procced to irrational slope trajectories never close each trajectory is dense Discovered new long-term-behaviour Only on appear on torus

41 Quellen Hauptquellen/Bücher: Strogatz, S. H. - Nonlinear Dynamics And Chaos J. M. T. Thompson, H. B. Stewart - Nonlinear Dynamics and Chaos Paper von Alexander Roth: Internetlinks: ntrekker.html Alle nicht selbst erzeugten Bilder entstammen aus: Strogatz, S. H. - Nonlinear Dynamics And Chaos J. M. T. Thompson, H. B. Stewart - Nonlinear Dynamics and Chaos

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Synchronisation in Natur und Technik

Synchronisation in Natur und Technik Am Beispiel des Kuramoto-Modells Jan Baumbach Christoph Schöler Christian Barthel 2 Inhalt 1. Einleitung 2. Kuramoto-Modell 3. Simulation und Ergebnisse 3 Die Motivation Das Phänomen Synchronisation tritt

Mehr

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände

Bifurkationstheorie. 1. Verzweigungen stationärer Zustände Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent Floquet heorie (III Vortrag zum Seminar zu gewöhnlichen Differentialgleichungen, 25..2 Andreas Schmitz Nachdem Gabriela Ansteeg uns in die heorie eingeführt hat und Sebastian Monschang weitere Vorarbeit

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Parameterdef. an nichtl. Zweipolkennl.

Parameterdef. an nichtl. Zweipolkennl. Parameterdef. an nichtl. Zweipolkennl. nichtlin. Zweipole Typen von Approximationsfunktionen KENNLINIENAPPROXIMATION Rektifikationsmethode y 5α 4α FUNKTION β < β > y = αx β β = 3α 2α α β < β =.5.5 2 2.5

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Planare Systeme II Einleitung Dieser Vortrag beschäftigt sich mit unterschiedlichen, allgemeinen Lösungen von Differentialgleichungssystemen und ihrer graphischen

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Zentrumsmannigfaltigkeiten. Eva Maria Bartram

Zentrumsmannigfaltigkeiten. Eva Maria Bartram Zentrumsmannigfaltigkeiten Eva Maria Bartram 09. Mai 2006 Gliederung 1. Einleitung 1.1 Hartmans Theorem 1.2 Stabile Mannigfaltigkeiten-Theorem für einen Fixpunkt 2. Zentrumsmannigfaltigkeits-Theorem für

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

5. Funktional-Gleichung der Zetafunktion

5. Funktional-Gleichung der Zetafunktion 5. Funktional-Gleichung der Zetafunktion 5.. Satz (Poissonsche Summenformel. Sei f : R C eine stetig differenzierbare Funktion mit und sei f(x O( x und f (x O( x für x ˆf(t : f(xe πixt dx. die Fourier-Transformierte

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos Wintersemester 2018/19 22.01.2019 M. Zaks hintergrund Kontext: Wettervorhersage. Entstehung von Luftbewegungen infolge der thermischen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Biologische Oszillatoren und Schalter - Teil 1

Biologische Oszillatoren und Schalter - Teil 1 Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Hartes Chaos am Beispiel des anisotropen Keplerproblems

Hartes Chaos am Beispiel des anisotropen Keplerproblems Hartes Chaos am Beispiel des anisotropen Keplerproblems M. C. Gutzwiller Mechanik Seminar WiSe 17/18 Robert Klassert Institut für Theoretische Physik, Universität Heidelberg Hartes Chaos am Beispiel des

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Stabile periodische Bewegungen (Grenzzyklen)

Stabile periodische Bewegungen (Grenzzyklen) Stabile periodische Bewegungen (Grenzzyklen) 1. Nichtlineare Systeme mit zwei Gleichungen Prinzipiell neu: Alle Systeme mit mindestens 2 unabhängigen DGL können als Lösungen geschlossene Kurven im Phasenraum

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Name, Vorname: Studiengang: Matrikelnummer: 2 4 5 6 Z Punkte Note Klausur zum Grundkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 22. Februar 2007, 8.00 -.00 Uhr Zugelassene

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

10.5 Differentialgeometrie ebener Kurven Tangente, Normale

10.5 Differentialgeometrie ebener Kurven Tangente, Normale 1.5 1.5 Differentialgeometrie ebener Kurven 1.5.1 Tangente, Normale Gegeben: Kurve C C := C := { (x { (x y) } y = f(x), a x b y ) x = ϕ(t) y = ψ(t), t 1 t t } oder C heißt glatte Kurve, wenn f stetig differenzierbar

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen

400 Schwingungen. 410 Pendel 420 Untersuchung von oszillierenden Systemen 4 Schwingungen 41 Pendel 4 Untersuchung von oszillierenden Systemen um was geht es? Schwingungen = Oszillationen Beschreibung von schwingenden Systemen Methoden zur Analyse, Modellierung und Simulation

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Markov-Paritionen und geometrische Modelle von Attraktoren

Markov-Paritionen und geometrische Modelle von Attraktoren Markov-Paritionen und geometrische Modelle von Attraktoren Jan Christoph Kinne 15. Februar 2003 1 Was sind Markov-Partitionen? Hat man ein diskretes dynamisches System f : M M gegeben, so will man M in

Mehr

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung

Mehr

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema

Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema Thema 12 Differentialrechnung, Partielle Ableitungen, Differenzierbarkeit, Taylor-Formel, Lokale Extrema In diesem Kapitel befassen wir uns mit der Ableitung von Funktionen f : R m R n. Allein die Schreibweise

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

Determinante und Inverse

Determinante und Inverse Vorzeigeaufgaben: Determinante und Inverse Bestimmen Sie für welche a R die folgende Matrix invertierbar ist und berechnen Sie deren Inverse: A = a cos(x) sin(x) a sin(x) cos(x) Bestimmen Sie ob folgende

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 13.1.016 Zwischenwertsatz und klassische Funktionen In diesem Abschnitt haben wir es mit Funktionen zu tun, die auf einem Intervall definiert sind. Eine Menge I R ist genau dann ein

Mehr

Diskrete Populationsmodelle für Einzelspezies - Teil 2

Diskrete Populationsmodelle für Einzelspezies - Teil 2 Diskrete Populationsmodelle für Einzelspezies - Teil 2 Laura Gemmel 30.10.2012 Literatur, die verwendet wurde: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Inhaltsverzeichnis

Mehr

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing Dr. E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien Dr. E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, (13.58) Test 1 Gruppe A (Mo, 8.4.14) (mit Lösung ) Unterlagen: eigenes

Mehr

Klassifikation planarer Systeme

Klassifikation planarer Systeme Klassifikation planarer Systeme Dieser Vortrag thematisiert die Klassifikation planarer Systeme. Man klassifiziert planare Systeme um einen besseren Überblick über die verschiedenen Verhaltensweisen von

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014

Institut für Analysis und Scientific Computing E. Weinmüller SS 2014 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller SS 14 P R A K T I S C H E M A T H E M A T I K I I F Ü R T P H, 13.58) Test 1 Gruppe C Mo, 8.4.14) mit Lösung ) Unterlagen: eigenes VO-Skriptum.

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 34 Die Diagonalisierbarkeit von Isometrien im Komplexen Satz 34.1. Es sei V ein endlichdimensionaler C-Vektorraum

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1

1. Klausur. für Studierende der Fachrichtungen phys. 2u du u(1 + u 2 ) = 2. = 1, c = 1. x= 1 Fachbereich Mathematik Universität Stuttgart Prof. Dr. C. Rohde Höhere Mathematik I III Diplomvorprüfung 3. 3. 8. Klausur für Studierende der Fachrichtungen phys Bitte unbedingt beachten: In dieser Klausur

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr