Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit

Größe: px
Ab Seite anzeigen:

Download "Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit"

Transkript

1 Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung der Theorie der Kettenbrüche hauptsächlich im 17. und 18. Jahrhundert (Konstruktion von mechanischen Planetarien beste rationale Approximation irrationaler Frequenzverhältnisse - Zahnräder!) Chaotische Dynamik Kap2, Seite 17 Chaotische Dynamik Kap2, Seite Hamilton Dynamik 3. Hamiltonsche Systeme Phasenraum ( dimensional) generalisierte Koordinaten und Impulse; Freiheitsgrade Hamilton Funktion Lösung mit Anfangsbedingungen Hamiltonsche Bewegungsgleichungen Hamiltonscher Fluss: Phasenbahn (Phasenbahnen können sich nicht schneiden) Das System `lösen heißt, sich einen quantitativen Überblick über den gesamten Fluss zu verschaffen. (Nicht nur einzelne Bahnen!) Beispiel: Harmonischer Oszillator (eindimensional) Bahn (eindeutig) Chaotische Dynamik Kap3, Seite 1 Chaotische Dynamik Kap3, Seite 2 1

2 Beweis von (2): Schar ähnlicher Ellipsen Liouvillesche Integralinvarianten: (1) ist invariant unter (wie eine inkompressible Flüssigkeit). (2) ist invariant Bewegungsgleichung für : ist invariant Chaotische Dynamik Kap3, Seite 3 Poisson-Klammer Chaotische Dynamik Kap3, Seite 4 Kanonische Transformationen: Kanonische Transformationen führen die kanonischen Bewegungsgleichungen in kanonische Gleichungen über: Mit falls die Transformation nicht explizit von der Zeit abhängt. Erzeugende einer solchen Transformation ist z.b. mit ist Lösung der Hamilton-Jacobi-Gleichung (partielle Dgl für ). Chaotische Dynamik Kap3, Seite Integrable Systeme und Invariante Tori (nicht explizit zeitabhängig) mit heißt Erhaltungsgröße. (H selbst ist immer Erhaltungsgröße, wenn H nicht explizit zeitabhängig.) Def.: Ein hamiltonsches System mit N Freiheitsgraden heißt integrabel, falls N unabhängige Erhaltungsgrößen existieren mit (`in Involution ). Beispiel: Punktmasse in dreidim. rotationssymm. Potential. Energie und Drehimpuls sind erhalten. Man wählt Chaotische Dynamik Kap3, Seite 6 2

3 Satz: Durch die N Bedingungen wird die Phasenbahn eingeschränkt auf eine N-dimensionale Untermannigfaltigkeit des 2N-dimensionalen Phasenraums. ist ein N-dimensionaler Torus. Beweis: Man definiert die Felder auf. Sie sind unabhängig (wie die ) und parallel zu : Wirkungs-Winkel-Variable: Kanonische Transformation auf Variable, bei denen die neuen Impulse konstant sind. Eine Möglichkeit ist die Wahl oder auch irgendwelche anderen Funktionen der Erhaltungsgrößen. Besonders geeignet sind die so genannten Wirkungs- und Winkel-Variablen mit den Wirkungen als neue (zeitlich konstante) Impulse und den Winkeln als neue Koordinaten. Also lässt sich auf verschiedenen Arten glatt kämmen. ist ein N-dim. Torus (`hairy ball theorem ) Chaotische Dynamik Kap3, Seite 7 Chaotische Dynamik Kap3, Seite 8 Auf dem -Torus existieren irreduzible Wege. Wirkungsvariable Bahn ist quasiperiodisch; periodisch wenn alle Frequenzen kommensurabel sind, d.h. oder. Periode: Winkelvariable (zyklisch) mit Bahn: ein -dim. Gittervektor (Fourier-Entwicklung da periodisch in den Winkeln) Chaotische Dynamik Kap3, Seite 9 quasiperiodisch periodisch Die quasiperiodische Bewegung is der Regelfall. Die periodischen Tori sind abzählbar und liegen im Phasenraum dicht. Es gibt Systeme bei denen alle Bahnen periodisch sind, z.b. Kepler-Problem (selten!) Chaotische Dynamik Kap3, Seite 10 3

4 Zwei Freiheitsgrade (x,y): Poincaré-Schnitt: Schnittfläche im Phasenraum, z.b. bei. Fordert man zusätzlich noch Schnittebene die Bahn fest: Bahn periodisch wenn, dann legt jeder Punkt der Poincaré-Schnitt: jetzt n-ter Schnittpunkt der Schnittebene mit Diskrete Abbildung (Poincaré-Abbildung) Für periodische Bahnen ergibt sich eine endliche Anzahl von Punkten (Fixpunkte eines Vielfachen der Poincaré-Abbildung). Für quasiperiodische Bahnen füllen die Iterierten eine Kurve (Schnittmenge des Torus mit der Schnittebene des Poincaré-Schnittes). Die Poincaré-Abbildung ist flächentreu (vgl. Liouvillesche Integralinvariante (2)). Chaotische Dynamik Kap3, Seite 11 Chaotische Dynamik Kap3, Seite 12 Integrable Systeme sind sehr selten(!) aber deshalb nicht uninteressant (es gibt Bücher darüber). Ergodische Systeme: Fast jede Bahn kommt jedem (energetisch erlaubten) Punkt im Phasenraum beliebig nahe. Ergodische Systeme sind selten! Beispiele später. Typische Systeme??? 3.3 Das KAM-Theorem Störungstheorie integrabler Systeme. Sei die Hamiltonfunktione eines integrablen Systems mit Wirkungs- und Winkelvariablen. kanon. Transformation auf neue W-W-Variablen Erzeugende : Ansatz: Identität in erster Ordnung in : vernachlässigen Frequenz des ungestörten Systems Chaotische Dynamik Kap3, Seite 13 Chaotische Dynamik Kap3, Seite 14 4

5 bekannt Einsetzen und Vergleich der Fourier-Koeffizienten neue Hamiltonfunktion die Erzeugende jedoch... Chaotische Dynamik Kap3, Seite 15 Reihe divergiert für, also auf den periodischen Tori. Diese Tori liegen dicht! `Problem der kleinen Nenner (laut Poincaré das fundamentale Problem der klassischen Mechanik). Durchbruch 1954: Theorem von Kolmogorov; bewiesen 1962 von Moser (1962) und Arnold (1963). (Zum Beweis entwickelte man eine superkonvergente Störungstheorie mit einer Folge sukzessiver Approximationen, die sich nicht alle auf den selben Torus bezogen.) Satz (KAM-Theorem - hier für zwei Feiheitsgrade): Die Hamiltonfunktion H sei hinreichend oft differenzierbar (bei Moser 333 mal). Alle Tori mit hinreichend irrationalem Frequenzverhältnis für alle bleiben bei der Störung erhalten. Es gilt. Chaotische Dynamik Kap3, Seite Beispiel: Billard-Systeme Der Rest ist beschränkt: reibungsfreie Bewegung einer Punktmasse auf einer Ebene innerhalb einer harten Randkurve (konvex) elastische Reflexion am Rand konvergent und wird in der Regel zerstört. meist ist der letzte überlebende Torus für wachsende Störung der mit dem irrationalsten Frequenzverhältnis, also `vorletzte Tori sind die mit noblem Frequenzverhältnis. Koordinaten für die Bahn: Bogenlänge des Auftreffpunktes (normiert, sodass Umfang der Randkurve gleich eins) Winkel zwischen Bahn und Tangente Bahn = diskrete Folge von Punkten Chaotische Dynamik Kap3, Seite 17 Chaotische Dynamik Kap3, Seite 18 5

6 Numerik: starte eine Bahn bei bestimme den nächsten Schnittpunkt der Bahn (gerade Linie) mit der Randkurve (eindeutig da konvex) zeichne die Bahn bzw. den Punkt Phasenraum Theorie: Billard-Abbildung im Bahngerade: Winkel zwischen Bahngerade und x-achse nächster Auftreffpunkt : (numerisch) Winkel zwischen Radialstrahl und Tangente Billard-Abbildung Chaotische Dynamik Kap3, Seite 19 Chaotische Dynamik Kap3, Seite 20 Die linearisierte Billard-Abbildung: Jacobi-Matrix etwas Rechnerei mit usw.... mit dem Krümmungsradius der Bahnlänge zwischen den Punkten und erhält man nach `elementaren Umformungen mit Bemerkungen: (1) Die Abbildung ist flächentreu: Chaotische Dynamik Kap3, Seite 21 Chaotische Dynamik Kap3, Seite 22 6

7 (4) n-periodische Bahn = Fixpunkt von (2) Die Matrix ist symplektisch, d.h.: ist Linearisierung von um den Fixpunkt. (5) 2-periodische Bahnen: 0 1 0, z.b. Klar, da 2x2-Matrix mit Determinate gleich +1. (3) Iterierte Bahn: Chaotische Dynamik Kap3, Seite 23 Chaotische Dynamik Kap3, Seite 24 Phasenraumfluss Exkurs: Lineare Abbildungen (2x2) Eigenwerte: flächentreu hyperbolischer Fixpunkt Für hyperbolischer Fixpunkt mit Inversion instabil Fall I: Eigenvektoren: Stabilitätsexponent Bem.: hat dann einen hyperbolischen Fixpunkt ohne Inversion. Fall II: Stabilitätswinkel Chaotische Dynamik Kap3, Seite 25 Chaotische Dynamik Kap3, Seite 26 7

8 Eigenvektoren: Fall III: Lineare Transformation des Koordiantensystems parabolischer Fixpunkt neutral stabil Drehung um Winkel Eigenschaften linearer symplektischer 2x2-Abbildungen L: elliptischer Fixpunkt Die iterierten Punkte liegen auf einer Ellipse (stabil) bzw. Hyperbel (instabil). stabil Chaotische Dynamik Kap3, Seite 27 Chaotische Dynamik Kap3, Seite 28 8

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G":

Poisson-Klammern. Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: Poisson-Klammer von F und G: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p, q,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen:

Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Poisson-Klammern Betrachte zwei physikalische Grössen, die von den Koordinaten, Impulsen und der Zeit abhängen: Def: "Poisson-Klammer von F und G": Einfachste Beispiele: im Hamilton-Formalismus sind p,

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Eckhard flebhan Theoretische Physik: Mechanik ELSEVIER SPEKTRUM AKADEMISCHER VERLAG Spektrum L AKADEMISCHER VI k_/l AKADEMISCHER VEHLAG Inhaltsverzeichnis Anmerkungen zur Theoretischen Physik 1 1 Vorbemerkungen

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko

Klassische Mechanik. WILEY-VCH Verlag GmbH & Co. KGaA. Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Herbert Goldstein, Charles P. Poole, Jr., und John L Safko Klassische Mechanik Dritte, vollständig überarbeitete und erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort

Mehr

Einführung in die Störungstheorie

Einführung in die Störungstheorie Einführung in die Störungstheorie Steffen Vanselow und Lukas Weymann June 6, 23 Vorbereitung. Integrabilität Betrachten System mit n Freiheitsgraden und k n Erhaltungsgrössen. Die Freiheitsgrade werden

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Beweis: Die Menge ist invariant unter der Abbildung L, denn mit und folgt. Nichtlineare Abbildungen: Fixpunkt: Man überzeugt sich leicht, dass gilt

Beweis: Die Menge ist invariant unter der Abbildung L, denn mit und folgt. Nichtlineare Abbildungen: Fixpunkt: Man überzeugt sich leicht, dass gilt Beweis: Die Menge ist invariant unter der Abbildung L, denn mit und folgt Nichtlineare Abbildungen: Fixpunkt: Man überzeugt sich leicht, dass gilt auch Fixpunkte der n-fach iterierten Abbildung: Linearisierung

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH

Klassische Mechanik. Friedhelm Kuypers. Mit 103 Beispielen und 167 Aufgaben mit Lösungen. 7., erweiterte und verbesserte Auflage WILEY- VCH Friedhelm Kuypers Klassische Mechanik Mit 103 Beispielen und 167 Aufgaben mit Lösungen 7., erweiterte und verbesserte Auflage WILEY- VCH WI LEY-VCH Verlag GmbH & Co. KGaA IX Inhaltsverzeichnis A Die Newtonsche

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

4. 3 Quantenmechanik & Phasenraum

4. 3 Quantenmechanik & Phasenraum 4.2.7 Superposition unabhängiger Spektren Wichtig ist hier die Gap-Verteilung Z(S), ein Maß für die Wahrscheinlichkeit, ein Intervall der Länge S leer zu finden. Es gilt: für P(S) Poisson ist die komplementäre

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

Klassische Mechanik. Friedhelm Kuypers. Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage

Klassische Mechanik. Friedhelm Kuypers. Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus 9., erweiterte Auflage Friedhelm Kuypers Klassische Mechanik Mit über 300 Beispielen und Aufgaben mit Lösungen sowie DVD und Software Mechanicus" 9., erweiterte Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA XVII sverzeichnis

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 11 1 Hamiltonsche Mechanik, kanonische Transformationen und Hamilton-Jacobi-Theorie Wie die Lagrangesche Mechanik

Mehr

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik

Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Zeitentwicklung von Observablen und Zuständen in der klassischen Mechanik Martin Vojta 05.01.2012 1 Hamiltonsche Mechanik Die Hamiltonsche Mechanik befasst sich mit der Bewegung im Phasenraum. Dabei kann

Mehr

Herleitung der LG 2. Art

Herleitung der LG 2. Art Herleitung der LG 2. Art Ausgangspunkt: 3N Koordinaten mit R Zwangsbedingungen: Anzahl Freiheitsgrade LG 1. Art (N2 mit Zwangskräften): Ziel: Wähle verallgemeinerte Koordinaten, so, dass die Zwangsbedingungen

Mehr

Kanonische Transformationen

Kanonische Transformationen Kanonische Transformationen Erinnerung: Hamiltonsches Extremalprinzip: Die Wirkung ist bei vorgegebenen Randbedingungen stationär für die physikalischen Trajektorien: für Dieses Extremalprinzip gilt auch

Mehr

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a

Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation

Mehr

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme

Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Differentialformen in Natur und Technik. Geometrie Hamiltonscher Systeme Florian Krämer 27.1.2009 Anwendungen in der Physik Phasen- und Zustandsraum Hamiltonsche Systeme Integralinvarianten Anwendungen

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Blockseminar Ergodentheorie und Dynamische Systeme

Blockseminar Ergodentheorie und Dynamische Systeme Blockseminar Ergodentheorie und Dynamische Systeme Partielle Hyperbolizität und 8.09.-12.09.08 1 Partielle Hyperbolizität 2 von Anosov-Diffeomorphismen Klassifikation dynamischer Systeme Wie verhält sich

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Geodätische Woche 2014 Session 6 Theoretische Geodäsie

Geodätische Woche 2014 Session 6 Theoretische Geodäsie Enrico Mai (IfE/LUH) & Robin Geyer (ZIH/TUD) Numerische Integration mittels Lie Reihen unter Verwendung von Parallelem Rechnen Geodätische Woche 2014 Session 6 Theoretische Geodäsie Berlin, 07.10.2014

Mehr

Chaos & Quantenchaos SS 2009

Chaos & Quantenchaos SS 2009 Chaos & Quantenchaos SS 2009 H. J. Korsch FB Physik Technische Universität Kaiserslautern Einleitung Mathematisches Vorspiel : Hamiltonsche Systeme alternativ Dissipative Systeme Wege ins Chaos Quantenchaos

Mehr

Theoretische Physik 1

Theoretische Physik 1 Springer-Lehrbuch Theoretische Physik 1 Mechanik Bearbeitet von Florian Scheck Neuausgabe 2007. Taschenbuch. xx, 538 S. Paperback ISBN 978 3 540 71377 7 Format (B x L): 19,1 x 23,5 cm Gewicht: 1031 g Weitere

Mehr

Literatur zum Quantenchaos:

Literatur zum Quantenchaos: von Interesse für Untersuchungen zum Quantenchaos sind: Zeit Energie (Fourier-Transformation) Dynamik Eigenschaften von Energiespektren Eigenschaften der Eigenzustände gibt es chaotische Eigenfunktionen?

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Klassische Mechanik. Übersicht

Klassische Mechanik. Übersicht Klassische Mechanik WS 02/03 C. Wetterich Übersicht 0) Einführung I Newtonsche Mechanik 1) Die Newtonschen Gesetze a) Kinetik, Beschreibung durch Massenpunkte b) Kraft (i)kraftgesetze (ii)differentialgleichungen

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser

Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Hartes Chaos am Beispiel des anisotropen Keplerproblems

Hartes Chaos am Beispiel des anisotropen Keplerproblems Hartes Chaos am Beispiel des anisotropen Keplerproblems M. C. Gutzwiller Mechanik Seminar WiSe 17/18 Robert Klassert Institut für Theoretische Physik, Universität Heidelberg Hartes Chaos am Beispiel des

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel).

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel). 3.7 Chaos Wir untersuchen weiter autonome Systeme der Form dy i dt = f i(y,y 2,..y N ), y i (0) = a i, i =...N () (f i hängt nicht explizit von der Zeit ab). Eindeutigkeit der Lösung: aus y(t) folgt genau

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es

Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es Satz von Darboux Sei ω eine symplektische Struktur auf U 2n. Satz 12. In einer Umgebung eines beliebigen Punktes x gibt es Koordinaten (x 1,..., x n, p 1,..., p n ), sodass ω = n i=1 dp i dx i. Ferner

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Linearisierung einer Funktion Tangente, Normale

Linearisierung einer Funktion Tangente, Normale Linearisierung einer Funktion Tangente, Normale 1 E Linearisierung einer Funktion Abb. 1 1: Die Gerade T ist die Tangente der Funktion y = f (x) im Punkt P Eine im Punkt x = a differenzierbare Funktion

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

Einführung in die Grundlagen der Theoretischen Physik

Einführung in die Grundlagen der Theoretischen Physik Günther Ludwig Einführung in die Grundlagen der Theoretischen Physik Band 1: Raum, Zeit, Mechanik 2., durchgesehene und erweiterte Auflage Vieweg Inhalt Zur Einführung 1 /. Was theoretische Physik nicht

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Bewegung auf Paraboloid 2

Bewegung auf Paraboloid 2 Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Gleichgewicht in nichtlinearen Systemen

Gleichgewicht in nichtlinearen Systemen Gleichgewicht in nichtlinearen Systemen 15.Juni.2015 Inhaltsverzeichnis 1 Einleitung 1 2 Einleitende Beispiele 1 3 Nichtlineare Quellen und Senken 4 4 Nichtlineare Sättel 6 5 Stabilität und Gradientensysteme

Mehr

Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt.

Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt. 49 Quadriken 49.1 Motivation Quadriken (vgl. Def. 48.2) stellen eine wichtige Klasse geometrischer Objekte dar, mit Anwendungen in Computergrafik, Bildverarbeitung, Visualisierung, Physik u. a. Ziel: Wir

Mehr

Symplektische Geometrie

Symplektische Geometrie Symplektische Geometrie Def. Eine symplektische Form auf U R 2n ist eine geschlossene, nichtausgeartete 2-Differentialform. }{{}}{{} d.h. dω = 0 wird gleich definiert Wir bezeichnen sie normalerweise mit

Mehr

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238

9. Woche: Elliptische Kurven - Gruppenarithmetik. 9. Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 9 Woche: Elliptische Kurven - Gruppenarithmetik 9 Woche: Elliptische Kurven - Gruppenarithmetik 187/ 238 Elliptische Kurven Ḋefinition Elliptische Kurve Eine elliptische Kurve E über dem Körper K ist eine

Mehr

Ferienkurs Theoretische Mechanik Lösungen Hamilton

Ferienkurs Theoretische Mechanik Lösungen Hamilton Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Zur Dynamik von klassischen Heisenberg-Systemen:

Zur Dynamik von klassischen Heisenberg-Systemen: Zur Dynamik von klassischen Heisenberg-Systemen: Klassen integrabler Systeme und symplektische Integratoren für nicht integrable Systeme Diplomarbeit Robin Steinigeweg Fachbereich Physik Universität Osnabrück

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Theoretische Physik I

Theoretische Physik I Peter Reineker, Michael Schulz und Beatrix M. Schulz Theoretische Physik I Mechanik mit Aufgaben in Maple WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Inhaltsverzeichnis Vorwort XV 1 Einleitung 1 1.1

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

1. und 2. Fundamentalform

1. und 2. Fundamentalform 1. und 2. Fundamentalform regulärer Flächen Proseminar Differentialgeometrie Von Daniel Schliebner Herausgabe: 05. Dezember 2007 Daniel Schliebner 1. und 2. Fundamentalform regulärer Flächen Seite 1 6.1

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

Finite Elemente I 2. 1 Variationstheorie

Finite Elemente I 2. 1 Variationstheorie Finite Elemente I 2 1 Variationstheorie 1 Variationstheorie TU Bergakademie Freiberg, SoS 2007 Finite Elemente I 3 1.1 Bilinearformen Definition 1.1 Sei V ein reeller normierter Vektorraum. Eine Bilinearform

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Klassifikation ebener affiner Abbildungen

Klassifikation ebener affiner Abbildungen Klassifikation ebener affiner Abbildungen Die Analyse und Klassifikation der affinen Abbildungen der Ebene ist ein hervorragendes Beispiel für das, was Freudenthal lokales Ordnen nennt. Die affinen Abbildungen

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Theoretische Physik. Inhalt der Vorlesung von P. H. Richter zum Masterkurs Fortgeschrittene Theoretische Physik. Bremen, Wintersemester 2009/10

Theoretische Physik. Inhalt der Vorlesung von P. H. Richter zum Masterkurs Fortgeschrittene Theoretische Physik. Bremen, Wintersemester 2009/10 Theoretische Physik Inhalt der Vorlesung von P. H. Richter zum Masterkurs Fortgeschrittene Theoretische Physik Inhaltsverzeichnis Bremen, Wintersemester 2009/10 1 Mechanik 4 1.1 Das dreidimensionale Federpendel................

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Mathematik für die ersten Semester

Mathematik für die ersten Semester Mathematik für die ersten Semester von Prof. Dr. Wolfgang Mückenheim 2., verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis I Grundlagen 1 1 Logik 3 2 Mengen 7 3 Relationen 15 3.1 Abbildungen

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3

Inhaltsverzeichnis. Teil I Grundlagen. Teil II Symmetrie-Werkzeuge. 1 Einleitung 3 Inhaltsverzeichnis Teil I Grundlagen 1 Einleitung 3 1.1 Was wir nicht herleiten können... 3 1.2 Überblick über das Buch... 5 1.3 Elementarteilchen und fundamentale Wechselwirkungen 8 2 Die Spezielle Relativitätstheorie

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Numerische Mathematik

Numerische Mathematik ».- Numerische Mathematik Von Dr. sc. math. Hans Rudolf Schwarz o. Professor an der Universität Zürich Mit einem Beitrag von Dr. sc. math. Jörg Waldvogel Titularprofessor an der Eidg. Technischen Hochschule

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Hamilton-Mechanik. Kapitel 2

Hamilton-Mechanik. Kapitel 2 Hamilton-Mechanik 2 2.1 Legendre-Transformation...106 2.1.1 Aufgaben...109 2.2 Kanonische Gleichungen...110 2.2.1 Hamilton-Funktion...110 2.2.2 Einfache Beispiele...114 2.2.3 Aufgaben...120 2.3 Wirkungsprinzipien...123

Mehr

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen

6 Julia-Mengen. 114 Kapitel 2 Konforme Abbildungen 114 Kapitel 2 Konforme Abbildungen 6 Julia-Mengen Sei G C ein Gebiet. Eine holomorphe Abbildung f : G G kann eine holomorphe oder eine meromorphe Funktion auf G sein. Definition. Zwei holomorphe Abbildungen

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr