Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt.

Größe: px
Ab Seite anzeigen:

Download "Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt."

Transkript

1 49 Quadriken 49.1 Motivation Quadriken (vgl. Def. 48.2) stellen eine wichtige Klasse geometrischer Objekte dar, mit Anwendungen in Computergrafik, Bildverarbeitung, Visualisierung, Physik u. a. Ziel: Wir wollen eine gegebene Quadrik auf eine einfache Form transformieren, aus der sich ihre geometrische Gestalt unmittelbar ablesen lässt Grundlegende Verfahrensweise Gegeben sei eine Quadrik q() = T A + b T + c = 0, wobei A IR n n symmetrisch,, b IR n, c IR. Schritt 1: Elimination der gemischten quadratischen Terme Das Koordinatensystem wird so gedreht, dass A in eine Diagonalmatri übergeht. 2 y 2 y 1 1 Berechne dazu die Eigenwerte λ 1,..., λ n von A und eine Orthonormalbasis {v 1,..., v n } aus Eigenvektoren mit det(v 1... v n ) = +1. (Falls det(v 1... v n ) = 1, ersetzt man v 1 durch v 1.) Mit Q = (v 1... v n ) SO(n) gilt dann Λ = diag(λ 1,..., λ n ) = Q T AQ, 165

2 und aus T A + b T + c = 0 folgt T QΛQ T + b T QQ }{{ T + c = 0. } =I Mit y := Q T, b := Q T b ergibt sich daher bzw. ausgeschrieben y T Λy + b T y + c = 0 λ 1 y λ n y 2 n + b 1 y b n y n + c = 0 (gemischte quadratische Terme sind entfallen). Schritt 2: Elimination linearer Terme (soweit möglich) Durch Translation des Koordinatensystems kann erreicht werden, dass λ k y 2 k und bk y k jeweils für dasselbe k nicht zugleich vorkommen. y 2 y 1 z2 z 1 Es sei dazu ohne Einschränkung der Allgemeingültigkeit λ i 0 für i = 1,..., r sowie λ r+1 =... = λ n = 0. Für i = 1,..., r wird der lineare Term b i y i durch die quadratische Ergänzung eliminiert: Damit erhält man z i := y i + b i 2λ i (i = 1,..., r) z i := y i (i = r + 1,..., n). λ 1 z λ rz 2 r + b r+1 z r b n z 2 n + c = 0 mit c = c r i=1 b2 i 4λ i und r = rang A. 166

3 Schritt 3: Elimination der Konstanten (falls möglich) Ist (mindestens) einer der Koeffizienten b r+1,..., b n ungleich 0 (ohne Einschränkung der Allgemeingültigkeit sei dies b n ), so kann c eliminiert werden durch z n z n c bn. Dies ist eine weitere Translation des Koordinatensystems, z. B. wie in der folgenden Abbildung. Resultat: Normalformen der Quadrik Darstellung in einem Koordinatensystem, in dem möglichst viele Koeffizienten verschwinden. Für r := rang A = n: λ 1 z λ nz 2 n + d = 0 Für r < n: entweder oder λ 1 z λ r z 2 r + e r+1 z r e n z n = 0 λ 1 z λ r z 2 r + d =

4 49.3 Beispiel Die Quadrik q() = = 0 soll auf Normalform gebracht werden. Es ist q() = T A + b T + c = 0 mit A = ( ) , b = 1 ( ) , c = 4. Schritt 1: Hauptachsentransformation von A Eigenwerte: λ 1 = 9, λ 2 = 4 mit Q = 1 ( ) 1 2 (beachte det Q = 1) Mit Λ = Q T AQ = ( ) 9 0 und 0 4 b = Q T b = 9y y2 2 36y 1 + 8y = 0. ( ) 36 ergibt sich für y = Q T 8 Schritt 2: Elimination der linearen Terme Es ist 9(y 2 1 4y 1 + 4) + 4(y y 2 + 1) = , also mit z 1 := y 1 2, z 2 := y z z2 2 = 36 z z2 2 9 = 1. Diese Gleichung beschreibt eine Ellipse mit den Halbachsen 2 und

5 y 1 z 1 2 z 2 1 y Normalformen der Quadriken im IR 2 (Kegelschnitte) In dieser Übersicht bezeichnen wir die Koordinaten z 1, z 2 mit, y. (i) rang A = 2 (alle Eigenwerte 0) a) 2 1 = 0: Ellipse 2 b2 y b a a b 169

6 b) 2 a y2 1 = 0: Hyperbel 2 b2 y a a c) = 0: leere Menge 2 b2 d) 2 + a 2 y 2 = 0, a 0: Punkt (0, 0) e) 2 a 2 y 2 = 0, a 0: Geradenpaar y = ± 1 a y (ii) rang A = 1 (ein Eigenwert gleich 0) a) 2 2py = 0: Parabel y p> 0 y p< 0 170

7 b) 2 a 2 = 0, a 0: ein Paar paralleler Geraden = ±a y a a c) 2 + a 2 = 0, a 0: leere Menge d) 2 = 0: Doppelgerade = 0 (y-achse) (iii) rang A = 0 (beide Eigenwerte gleich 0): b 1 + b 2 y + c = 0 Gerade 49.5 Normalformen der Quadriken im IR 3 In dieser Übersicht bezeichnen wir die Koordinaten z 1, z 2, z 3 mit, y, z. (i) rang A = 3 (alle Eigenwerte 0) a) 2 2 b + z2 1 = 0: Ellipsoid 2 c2 b) 2 2 b + z2 + 1 = 0: leere Menge 2 c2 171

8 c) 2 2 b z2 1 = 0: einschaliges Hyperboloid 2 c2 (Schnitte parallel zur -y-ebene: Ellipsen; Schnitte parallel zur -zund y-z-ebene: Hyperbeln) d) 2 2 b z2 + 1 = 0: zweischaliges Hyperboloid 2 c2 (Schnitte parallel zur -y-ebene: Ellipsen; Schnitte parallel zur -zund y-z-ebene: Hyperbeln) e) 2 2 b + z2 = 0: Punkt (0, 0, 0) 2 c2 172

9 f) 2 2 b z2 = 0: elliptischer Kegel 2 c2 (ii) rang A = 2 (ein Eigenwert gleich 0) a) 2 2pz = 0: elliptisches Paraboloid 2 b2 b) 2 (Schnitte parallel zur -y-ebene: Ellipsen; Schnitte parallel zur -zund y-z-ebene: Parabeln) a y2 2pz = 0: hyperbolisches Paraboloid 2 b2 (sattelartig; Schnitte parallel zur -y-ebene: Hyperbeln; Schnitte parallel zur -z- und y-z-ebene: Parabeln) 173

10 c) 2 d) = 0: leere Menge 2 b2 1 = 0: elliptischer Zylinder 2 b2 (sattelartig; Schnitte parallel zur -y-ebene: Ellipsen; Schnitte parallel zur -z- und y-z-ebene: Geradenpaare) e) 2 a y2 1 = 0: hyperbolischer Zylinder 2 b2 (Schnitte parallel zur -y-ebene: Hyperbeln; Schnitte parallel zur -zund y-z-ebene: Geradenpaare) f) 2 g) 2 = 0: Gerade (z-achse) 2 b2 a y2 = 0: Ebenenpaar mit z-achse als Schnittgerade 2 b2 174

11 (iii) rang A = 1 (zwei Eigenwerte gleich 0) a) 2 2py = 0: parabolischer Zylinder b) 2 a 2 = 0: paralleles Ebenenpaar c) 2 + a 2 = 0: leere Menge d) 2 = 0: Ebene (y-z-ebene) (iv) rang A = 0 b 1 + b 2 y + b 3 z + c = 0: allgemeine Ebenengleichung 175

12 rang A =3 rang A =2 rang A =1 Überblick über Quadriken im IR 3 Ellipsoid einschaliges Hyperboloid zweischaliges Hyperboloid elliptischer Kegel elliptisches Paraboloid hyperbolisches Paraboloid elliptischer Zylinder hyperbolischer Zylinder parabolischer Zylinder 176

6.3 Hauptachsentransformation

6.3 Hauptachsentransformation Im Wintersemester 6/7 wurde in der Vorlesung Höhere Mathematik für Ingenieurstudiengänge der folgende Algorithmus zur Hauptachsentransformation besprochen: 63 Hauptachsentransformation Die Matrizen, die

Mehr

Euklidische Normalformen der dreidimensionalen Quadriken

Euklidische Normalformen der dreidimensionalen Quadriken Euklidische Normalformen der dreidimensionalen Quadriken Es existieren 17 verschiedene Typen räumlicher Quadriken mit folgenden Normalformen: Euklidische Normalform der dreidimensionalen Quadriken 1-1

Mehr

12. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

12. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demirel M. Fetzer, B. Krinn M. Wied. Gruppenübung zur Vorlesung Höhere Mathematik Wintersemester / Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 4. Hauptachsentransformation

Mehr

Flächen zweiter Ordnung

Flächen zweiter Ordnung 1 Flächen zweiter Ordnung Definition: Eine Fläche zweiter Ordnung ist die Gesamtheit aller Punkte, deren Ortsvektoren x der Gleichung x T A x + p T x + f = 0 genügen, wobei x 1 x = x x 3, A = Ausführliche

Mehr

11 Eigenwerte und Eigenvektoren

11 Eigenwerte und Eigenvektoren 11 Eigenwerte und Eigenvektoren Wir wissen bereits, dass man jede lineare Abbildung ϕ : K n K n durch eine n n-matri A beschreiben kann, d.h. es ist ϕ() = A für alle K n. Die Matri A hängt dabei von der

Mehr

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1 Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die

Mehr

5.4 Hauptachsentransformation

5.4 Hauptachsentransformation . Hauptachsentransformation Sie dient u.a. einer möglichst einfachen Darstellung von Kegelschnitten und entsprechenden Gebilden höherer Dimension mittels einer geeigneten Drehung des Koordinatensystems.

Mehr

Worksheet zur Hauptachsentransformation

Worksheet zur Hauptachsentransformation Worksheet zur Hauptachsentransformation with(linearalgebra): with(plots): Die Gleichungen fuer Kreise, Ellipsen und Hyperbeln sind (mehr oder weniger) bekannt: der Einheitskreis besteht aus den Punkten

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

4 Kegelschnitte und Quadriken

4 Kegelschnitte und Quadriken 6. Mai 2013 4 Kegelschnitte und Quadriken 4.1 Kegelschnitte Vorbemerkung: Kegelschnitte sind ein klassisches Thema seit der antiken griechischen Mathematik. So schrieb (angeblich) Apollonios von Perge

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i

Ein Produkt ist Null, wenn einer der Faktoren gleich Null ist. Die beiden Eigenwerte sind demnach. λ 1 = 0, λ 2 = 2i. 1 i TU Dresden Fakultät Mathematik Institut für Numerische Mathematik Lösung zur Aufgabe (b des Übungsblattes Ermitteln Sie on der folgenden Matrix alle (komplexen Eigenwerte und zu jedem Eigenwert einen zugehörigen

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen

Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - Lösungen Lina II - Aufgaben zur Vorbereitung für die Klausur (Teil 1) - en Kommentare an HannesKlarner@FU-Berlinde FU Berlin SS 1 Dia- und Trigonalisierbarkeit Aufgabe (1) Gegeben seien A = i i C 3 3 und B = 1

Mehr

Die allgemeine quadratische Gleichung mit zwei Unbekannten. DET (λ 1 ) 3. p = 1. Strategie und grundlegende Definitionen

Die allgemeine quadratische Gleichung mit zwei Unbekannten. DET (λ 1 ) 3. p = 1. Strategie und grundlegende Definitionen Die allgemeine quadratische Gleichung mit zwei Unbekannten 1. Strategie und grundlegende Definitionen 2. Die elliptischen Fälle 1, 2 und 3 3. Der parabolische Fall 4 4. Die entarteten Fälle 5 und 6 5.

Mehr

Inhaltsübersicht. P U n k t G -. Seite

Inhaltsübersicht. P U n k t G -. Seite Inhaltsübersicht. P U n k t G -. Die Lage eines Punktes 1 Übungen 2 Anwendungen (Hydranten, Panamakanal, Rohrleitung)... 3 Entfernung zweier Punkte. 4 Übungen 5 Berechnung geradlinig begrenzter Flächen

Mehr

Musterlösung zur Serie 10

Musterlösung zur Serie 10 D-MATH, D-PHYS, D-CHAB Lineare Algebra II FS 1 Prof. Giovanni Felder, Thomas Willwacher Musterlösung zur Serie 1 1. a) Zur Erinnerung: Eine Äquivalenzrelation auf einer Menge M ist eine Relation, die die

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0).

5 Quadriken. K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f = 0} wobei a, b, c, d, e, f reelle Zahlen sind mit (a, b, c) (0, 0, 0). 5 Quadriken Kegelschnitte Ein Kegelschnitt ist eine Teilmenge K R 2, welche durch eine quadratische Gleichung in zwei Unbestimmten beschrieben werden kann: x K = { R 2 ax 2 + bxy + cy 2 + dx + ey + f =

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA

ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA * ANALYTISCHE GEOMETRIE EINE EINFÜHRUNG IN GEOMETRIE UND LINEARE ALGEBRA DR. GUNTER PICKERT PROFESSOR AN DER UNIVERSITÄT GIESSEN MIT 77 ABBILDUNGEN 7., DURCHGESEHENE UND ERWEITERTE AUFLAGE LEIPZIG 1976

Mehr

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA

EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA EINFÜHRUNG IN DIE ANALYTISCHE GEOMETRIE UND LINEARE ALGEBRA VON SIEGFRIED BREHMER UND HORST BELKNER MIT 146 A B B I L D U N G E N VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1966 INHALTSVERZEICHNIS

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Die allgemeine quadratische Gleichung mit zwei Unbekannten

Die allgemeine quadratische Gleichung mit zwei Unbekannten Die allgemeine quadratische Gleichung mit zwei Unbekannten Viele alte und einige neue Ergebnisse zu einem klassischen Thema 1. Bemerkungen zum Begriff des Kegelschnitts 2. Die Definitionen 3. Die Resultate

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

ANALYTISCHE GEOMETRIE Analytische Geometrie Die analytische Geometrie bzw. die affine Geometrie eines Vektorraumes ist eine Anwendung der Linea

ANALYTISCHE GEOMETRIE Analytische Geometrie Die analytische Geometrie bzw. die affine Geometrie eines Vektorraumes ist eine Anwendung der Linea ANALYTISCHE GEOMETRIE OTTO MUTZBAUER Date: 22. Januar 2008. 1 ANALYTISCHE GEOMETRIE 133 9. Analytische Geometrie Die analytische Geometrie bzw. die affine Geometrie eines Vektorraumes ist eine Anwendung

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Aufgaben zu Kapitel 21

Aufgaben zu Kapitel 21 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Welche der nachstehend genannten Abbildungen sind quadratische Formen, welche quadratische Funktionen: a f(x = x 7x + x + x x x b f(x

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Zusammenfassung: Geometrie.

Zusammenfassung: Geometrie. Zusammenfassung: Geometrie. Gabriele Nebe und Sebastian Thomas Lineare Algebra II, WS 2009/10 nach dem Skript von Prof. W. Plesken Affine Geometrie Definition. Ein affiner Raum ist eine Menge A, auf der

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Über Regelflächen zweiten Grades. Von. (Als Manuskript eingegangen ans 14. Oktober 1922.)

Über Regelflächen zweiten Grades. Von. (Als Manuskript eingegangen ans 14. Oktober 1922.) Über Regelflächen zweiten Grades. Von A. KIEFER (Zürich). (Als Manuskript eingegangen ans 14. Oktober 1922.) I. Welches ist der Ort des Durchschnittspunktes derjenigen Erzeugenden eines Hyperboloids, welche

Mehr

7 Hyperflächen 2. Ordnung

7 Hyperflächen 2. Ordnung 7 HYPERFLÄCHEN. ORDNUNG 1 1. Juni 003 7 Hyperflächen. Ordnung Vorspann: Selbstadjungierte Endomorphismen Beobachtung. Wir betrachten die Vektorräume R n und R m, beide versehen mit dem kanonische Skalarprodukt,

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen

Mehr

4.4 Symmetrische Bilinearformen

4.4 Symmetrische Bilinearformen 4.4. SYMMETRISCHE BILINEARFORMEN 195 4.4 Symmetrische Bilinearformen Alle betrachteten Vektorräume seien euklidisch. Wir betrachten Bilinearformen Φ: V V R, von denen wir nur voraussetzen, daß sie symmetrisch

Mehr

21 A ne und euklidische Geometrie

21 A ne und euklidische Geometrie 253 2 A ne und euklidische Geometrie In diesem Kapitel werden wir die Grundbegri e der a Geometrie kennen lernen. nen und der euklidischen 2. Was ist Geometrie? Eine mögliche Antwort auf diese Frage hat

Mehr

Abb.1. Falls die Spitze des Kegels (bzw. Doppelkegels) nicht in der jeweiligen Schnittebene liegt, können die folgende Kurven entstehen:

Abb.1. Falls die Spitze des Kegels (bzw. Doppelkegels) nicht in der jeweiligen Schnittebene liegt, können die folgende Kurven entstehen: Kegelschnitte Ein Kegelschnitt ist eine ebene Kurve, die entsteht, wenn man die Oberfläche eines Kreiskegels bzw. Doppelkreiskegels mit einer Ebene schneidet (vgl.abb.1). Der Doppelkreiskegel seinerseits

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Quadriken Polarität Transformationen Klassifikation von Quadriken Geraden in Regelquadriken Die kubische Wendelinie (twisted

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Orthogonale Matrizen. Kapitel 40

Orthogonale Matrizen. Kapitel 40 Kapitel 40 Orthogonale Matrizen Bemerkung 40 Motivation Im euklidischen Raum R n haben wir gesehen, dass Orthonormalbasen zu besonders einfachen und schönen Beschreibungen führen Nun soll das Konzept der

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

11 Partielle Differentialgleichungen 2. Ordnung

11 Partielle Differentialgleichungen 2. Ordnung 11 Partielle Differentialgleichungen 2. Ordnung Wir betrachten eine quasilineare Differentialgleichung 2. Ordnung in einem Gebiet 71 (11.1) Lu := a ik u xi x k + b j u xj + c u = f, x B R n, u C 2 (B).

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer

Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Aufgabenpool zur Quereinstiegsvorbereitung Q1

Aufgabenpool zur Quereinstiegsvorbereitung Q1 Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Kurven. Mathematik-Repetitorium

Kurven. Mathematik-Repetitorium Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 1

FK WMS: Wirtschaftsmathematik 2, Einheit 1 FK WMS: Wirtschaftsmathematik 2, Einheit 1 Markus Sinnl 1 Sprechstunde: MO, 13-14 Uhr [04/343] markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl 06.10.2014 1/18 1 basierend auf Folien

Mehr

13. Vorlesung. Lineare Algebra und Koordinatenwechsel.

13. Vorlesung. Lineare Algebra und Koordinatenwechsel. 3. Vorlesung. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen Mathematik für Physiker II, SS Freitag 4.6 $Id: quadrat.tex,v.8 /6/4 4:44:39 hk Exp hk $ 6 Symmetrische und hermitesche Matrizen 6. Prä-Hilberträume Wir sind gerade mit der Diskussion der sogenannten Ausgleichsgerade

Mehr

3. Normalform linearer PDG zweiter Ordnung

3. Normalform linearer PDG zweiter Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 3. Normalform linearer PDG zweiter Ordnung Wir beschreiben in diesem Abschnitt Verfahren zur Transformation linearer oder auch halblinearer PDG zweiter

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v w = := x 1 x +y 1 y. y

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Höhere Mathematik für Ingenieure Band II

Höhere Mathematik für Ingenieure Band II Teubner-Ingenieurmathematik Höhere Mathematik für Ingenieure Band II Lineare Algebra Bearbeitet von Klemens Burg, Herbert Haf, Friedrich Wille, Andreas Meister 1. Auflage 2012. Taschenbuch. xvii, 417 S.

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 7. Lineare Algebra Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit. Wertemenge: \W =IR WS 8/9 5 7 Elementarmathematik (LH) und Fehlerfreiheit. Funktionen.. Die quadratische Funktion... Die quadratische Grundfunktion Wir betrachten die Gleichung = als Funktionsgleichung und bezeichnen die

Mehr

Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt

Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum Abenteuer-Universum zusammengestellt Einige Beispiele zu Drehmatrizen Dr. W. Tenten fürs Forum "Abenteuer-Universum" zusammengestellt Nov. 008 Die Hauptachsentransformation einer Quadrik in zwei Variablen liefert als Ergebnis eine Normalform

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3

P AP 1 = D. A k = P 1 D k P. = D k. mit P 0 3 Matrixpotenzen In Anwendungen müssen oft hohe Potenzen einer quadratischen Matrix berechnet werden Ist die Matrix diagonalisierbar, dann kann diese Berechnung wie folgt vereinfacht werden Sei A eine diagonalisierbare

Mehr

Dieses Kapitel vermittelt:

Dieses Kapitel vermittelt: 2 Funktionen Lernziele Dieses Kapitel vermittelt: wie die Abhängigkeit quantitativer Größen mit Funktionen beschrieben wird die erforderlichen Grundkenntnisse elementarer Funktionen grundlegende Eigenschaften

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31

Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /4 /3 /9 /7 /2 /2 /31 Scheinklausur Höhere Mathematik 0 0 0 Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 Summe Punkte / / /4 / /9 /7 / / / Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 90 Minuten

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Kapitel 3 Quadratische Formen und symmetrische Matrizen

Kapitel 3 Quadratische Formen und symmetrische Matrizen Kapitel 3 Quadratische Formen und symmetrische Matrizen 3.1 Skalarprodukte und Normen Das übliche Skalarprodukt für Vektoren aus dem R ist folgendermassen erklärt: ( ) ( ) x1 x v,w =, := x 1 x +y 1 y.

Mehr

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie

Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Regina Gellrich Carsten Gellrich Matrizen und Determinanten, Lineare Gleichungssysteme, Vektorrechnung, Analytische Geometrie Mit zahlreichen Abbildungen, Aufgaben mit Lösungen und durchgerechneten Beispielen

Mehr

258 VIII. AFFINE UND PROJEKTIVE GEOMETRIE

258 VIII. AFFINE UND PROJEKTIVE GEOMETRIE VIII. Affine und projektive Geometrie Wir beginnen dieses Kapitel mit einem Abschnitt, in dem wir grundlegende Konepte der affinen Geometrie besprechen: affine Abbildungen, affine Teilräume, affine Hüllen,

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie Lineare Algebra und analytische Geometrie von Günther Eisenreich Mit 107 Abbildungen und 2 Tabellen 3., erweiterte und berichtigte Auflage Akademie Verlag Inhaltsverzeichnis A. Allgemeine Vorbemerkungen

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Algebraische Kurven - Vorlesung 7. Kegelschnitte und Quadriken

Algebraische Kurven - Vorlesung 7. Kegelschnitte und Quadriken Algebraische Kurven - Vorlesung 7 Kegelschnitte und Quadriken Der Standardkegel im dreidimensionalen affinen Raum ist gegeben durch die homogene Gleichung Z 2 = X 2 + Y 2 Das kann man sich so vorstellen,

Mehr

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2.

Mathematische Probleme, SS 2013 Montag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ x 2 + y 2 = tan 2 (β)z 2. $Id: quadratisch.tex,v 1.8 2013/08/12 09:49:46 hk Exp $ 4 Kegelschnitte Wir hatten am Ende der letzten Sitzung begonnen die sogenannten Kegelschnitte zu besprechen. Gegeben sei ein Kegel K mit halben Öffnungswinkel

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten x des Punktes x K n sind Kn+ (Ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist; in dieser Vorlesung

Mehr

DARSTELLENDE GEOMETRIE I

DARSTELLENDE GEOMETRIE I DARSTELLENDE GEOMETRIE I VON DR. RUDOLF BEREIS Professor und Direktor des Instituts für Geometrie an der Technischen Universität Dresden Mit 361 Abbildungen AKADEMIE-VERLAG BERLIN 1964 h. INHALT Hinweise

Mehr

Jordan-Form. Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform. = Q 1 AQ 0 J k J =

Jordan-Form. Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform. = Q 1 AQ 0 J k J = Jordan-Form Eine komplexe quadratische Matrix A lässt sich durch eine Ähnlichkeitstranformation auf die Blockdiagonalform J 1 0 J =... = Q 1 AQ 0 J k transformieren. Jordan-Form 1-1 Jordan-Form Eine komplexe

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0

lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 1 7. Der Graph einer quadratischen Funktion lineare Funktion: Graph: Gerade mit der Steigung a und dem y-achsenabschnitt b. quadratische Funktion: Graph: Parabel, sofern a 0 Es wird im Folgenden untersucht,

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

4.4 Eigenwerte und Eigenvektoren

4.4 Eigenwerte und Eigenvektoren 4.4-1 4.4 Eigenwerte und Eigenvektoren 4.4.1 Die Eulersche Gleichung Der Drehimpulsvektor kann folgendermaßen geschrieben werden, (1) worin die e i o Einheitsvektoren in Richtung der Hauptachsen sind,

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr