Differenzialgleichungen
|
|
|
- Tristan Esser
- vor 8 Jahren
- Abrufe
Transkript
1 Differenzialgleichungen 1.1 Gewöhnliche DGL 1. Ordnung 1.2 Separable DGL 1.3 Lineare DGL 1.4 Bernoulli-DGL 1.5 Riccati-DGL 1.6 Lösen von DGL durch Substitution & Transformation Differenzialgleichungen 1
2 1. Differenzialgleichungen Klassifizierung Gewöhnliche DGL - Partielle DGL n-ter Ordnung 1. Ordnung Explizite Darstellung Differenzialgleichungen 2
3 2. Gewöhnliche DGL 1. Ordnung - Typisierung Separable DGL Lineare DGL Bernoulli DGL Riccati - DGL Differenzialgleichungen 3
4 2. Gewöhnliche DGL 1. Ordnung - Typisierung Beispiele Separable DGL Lineare DGL Bernoulli DGL Riccati - DGL Differenzialgleichungen 4
5 3. Separable Differenzialgleichungen Lösungsrezept in Schritten für: 1. Ermitteln der konstanten Lösung 2. Separation / Trennung der Variablen 3. Angabe der Lösungsgesamtheit Differenzialgleichungen 5
6 3. Separable Differenzialgleichungen 1. Konstante Lösung : Beispiel: Differenzialgleichungen 6
7 3. Separable Differenzialgleichungen 2. Separation : Beispiel: Differenzialgleichungen 7
8 3. Separable Differenzialgleichungen 3. Lösungsgesamtheit : Beispiel: Konstante Lösung + Lösung durch Separation,,,, Differenzialgleichungen 8
9 4. Lineare Differenzialgleichungen Lösungsrezept in Schritten für: 1. Homogene Lösung 2. Partikuläre Lösung 3. Lösungsgesamtheit Differenzialgleichungen 9
10 3. Lineare Differenzialgleichungen 1. Homogene Lösung : Fragestellung zur Lösung: Welche Funktion wird bei Differenziation reproduziert? Differenzialgleichungen 10
11 3. Lineare Differenzialgleichungen Zu lösen: Ansatz: mit Begründung: Differenzialgleichungen 11
12 3. Lineare Differenzialgleichungen 2. Partikuläre Lösung : Ansatz: Differenzialgleichungen 12
13 3. Lineare Differenzialgleichungen 3. Lösungsgesamtheit : Differenzialgleichungen 13
14 3. Lineare Differenzialgleichungen Lösen von linearen Differenzialgleichungen: Beispiel Aufgabenstellung: DGL-Typ? Umformung: => Lineare DGL Homogene Lösung: Differenzialgleichungen 14
15 3. Lineare Differenzialgleichungen Partikuläre Lösung mit : Lösungsgesamtheit: Differenzialgleichungen 15
16 5. Bernoulli - Differenzialgleichungen Lösungsrezept in Schritten für: Konstante Lösung Rückführung auf eine lineare DGL durch Substitution Resubstitution Lösungsgesamtheit Differenzialgleichungen 16
17 5. Bernoulli - Differenzialgleichungen 1. Konstante Lösung : Für findet man immer eine Lösung durch: Anmerkungen: Ist, so liegt eine lineare DGL vor. Keine Lösung für Differenzialgleichungen 17
18 5. Bernoulli - Differenzialgleichungen 2. Rückführung auf lineare DGL durch Substitution : Substitution : Ansatz: Differenzialgleichungen 18
19 5. Bernoulli - Differenzialgleichungen 2. Rückführung auf lineare DGL durch Substitution : Bernoulli DGL In den Ansatz eingesetzt Differenzialgleichungen 19
20 5. Bernoulli - Differenzialgleichungen 2. Rückführung auf lineare DGL durch Substitution : ergibt Lineare DGL mit Differenzialgleichungen 20
21 5. Bernoulli - Differenzialgleichungen 3. Nach dem Lösen der linearen DGL nach Resubstitution mit: 4. Lösungsgesamtheit : Konstante Lösung, falls gegeben + Lösung der auf die lineare Form zurückgeführte DGL Differenzialgleichungen 21
22 6. Riccati - Differenzialgleichungen 1. Partikuläre Lösung 2. Rückführung auf eine Bernoulli - DGL durch Substitution 2.1 Rückführung auf eine Lineare DGL durch Substitution II 2.2 Resubstitution II 3. Resubstitution I 4. Lösungsgesamtheit Differenzialgleichungen 22
23 6. Riccati - Differenzialgleichungen 1. Partikuläre Lösung : Eine Lösung ist bereits bekannt Eine Lösung muss geraten werden!! Überprüfung von durch Einsetzen in: Differenzialgleichungen 23
24 6. Riccati - Differenzialgleichungen 2. Rückführung auf eine Bernoulli - DGL durch Substitution I : Substitution mit: Ansatz: und Einsetzen der aufgelösten Riccati DGL: Differenzialgleichungen 24
25 6. Riccati - Differenzialgleichungen 2. Rückführung auf eine Bernoulli - DGL durch Substitution I : ergibt Bernoulli -DGL mit Differenzialgleichungen 25
26 6. Riccati - Differenzialgleichungen 3. Nach dem Lösen der Bernoulli DGL nach erfolgt die Resubstitution I : 4. Lösungsgesamtheit : Partikuläre Lösung + Lösung der auf die Bernoulli Form und anschließend auf die lineare Form zurückgeführten DGL Differenzialgleichungen 26
27 6. Riccati - Differenzialgleichungen Beispiel: => Riccati DGL 1. Partikuläre Lösung: => Vermutung für partikuläre Lösung: bzw. Differenzialgleichungen 27
28 6. Riccati - Differenzialgleichungen Überprüfung der Vermutung => Einsetzen : Glück gehabt! Differenzialgleichungen 28
29 6. Riccati - Differenzialgleichungen 2. Schritt: Substitution der Riccati DGL mit: Ergebnis: Entspricht Bernoulli DGL!! mit: Differenzialgleichungen 29
30 6. Riccati - Differenzialgleichungen also weiter mit dem Lösungsschema für Bernoulli DGLs: Wegen ist eine Lösung der Bernoulli DGL: Nächster Schritt: Substitution, genau wie bei Bernoulli DGLs: Differenzialgleichungen 30
31 6. Riccati - Differenzialgleichungen Einsetzen liefert: Schema für linearen DGLs Differenzialgleichungen 31
32 6. Riccati - Differenzialgleichungen Nun noch insgesamt 2x Resubstitution: 1. Schritt: Resubstitution mit 2. Schritt: Resubstitution mit Differenzialgleichungen 32
33 6. Riccati - Differenzialgleichungen Letzter Schritt: Angabe der Lösungsgesamtheit der Riccati DGL Differenzialgleichungen 33
34 6. Ausblick allgemeine Transformation & Substitution Zum Abschluss des Kapitels noch eine Anmerkung: Häufig haben DGLs leider nicht genau die Form einer der vorgestellten DGL-Typen Zusätzlich sind noch Transformations- und Substitutionsschritte erforderlich, um eine der bekannten Formen zu erhalten! Dazu noch 2 Beispiele für separable DGLs: Differenzialgleichungen 34
35 6. Ausblick allgemeine Transformation & Substitution Ziel der Umformung: Separable DGL erhalten Beispiel 1: Sog. homogene oder Ähnlichkeits-DGL Substitution mit Beispiel 2: Substitution mit Differenzialgleichungen 35
36 Aufgaben im Tutorium Buch: A 7.1 A 7.2 A 7.8 A 7.9 Differenzialgleichungen 36
Einfache Differentialgleichungen (algebraische Lösung)
Einfache Differentialgleichungen (algebraische Lösung) 0. Definition, Einschränkung Definition: Sei die Funktion mit Gleichung = f() n-mal differenzierbar. Gilt F(,,,,, (n) ) = 0 (für alle ), so erfüllt
Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )
TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare
2. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB
Fachbereich Mathematik Prof. Dr. J. Lang Dipl.-Math. C. Schönberger Dipl.-Math. L. Kamenski WS 007/08 6.Oktober 007. Übungsblatt zur Mathematik III für MB/MPE, LaB/WFM, VI, WI/MB Gruppenübung Aufgabe G4
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
1. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
Homogene lineare Differentialgleichung 1. Ordnung
Homogene lineare Differentialgleichung. Ordnung Sanddünen und Integralkurven E Ma Lubov Vassilevskaa E Ma Lubov Vassilevskaa E3 Ma Lubov Vassilevskaa Lineare DGL. Ordnung Definition: Eine Differenzialgleichung.
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
9.4 Lineare gewöhnliche DGL
9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In
Mathematische Methoden für Informatiker
Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen
Lösungen der Aufgaben zu Kapitel 10
Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist
Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.
Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,
Differentialgleichungen 1. Ordnung. Einführung, Lösung and Anwendungen
Naturwissenschaft Marco Husinsky Differentialgleichungen 1. Ordnung. Einführung, Lösung and Anwendungen Facharbeit (Schule) FACHARBEIT aus dem Fach Mathematik Thema: Differentialgleichungen 1. Ordnung
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Differentialgleichungen
Differentialgleichungen Geschwindigkeit und Beschleunigung Für eine geradlinige Bewegung auf der x-achse: x x t. Momentangeschwindigkeit : v t x t dx dt Momentanbeschleunigung : a t v t x t dv d2 x. dt
Skalare Differentialgleichungen
Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene
6 Gewöhnliche Differentialgleichungen
6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael
Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und
Zusammenfassung : Fourier-Reihen
Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation
Übungsaufgaben zu Mathematik III (ohne Lösungen)
Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen
Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,
MATHEMATISCHE METHODEN DER PHYSIK 1
MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen
Trennung der Variablen, Aufgaben, Teil 1
Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g
Differentialgleichungen mit MATHCAD und MATLAB
Hans Benker Differentialgleichungen mit MATHCAD und MATLAB Mit 33 Abbildungen Sprin ger 1 Einleitung 1 1.1 Differentialgleichungen in Technik, Natur- und Wirtschaftswissenschaften 2 1.2 Lösung von Differentialgleichungen
Mathematische Methoden der Physik I
Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen
6 Eigenlösungen der eindimensionalen Wellengleichung
39 Kontinuierliche Systeme lassen sich als Schwinger mit unendlich vielen Freiheitsgraden interpretieren. Daher ist ein ähnliches ösungsverhalten wie bei linearen diskreten Systemen zu erwarten, d.h. die
Musterlösungen Serie 9
D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden
Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt
Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik
Kapitel 15: Differentialgleichungen
FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 DGL Grundlage Klassifikation Anwendung von lin. Ggln. M. konst.
Gewöhnliche Differentialgleichungen Woche 1
Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich
8. Übungsblatt Aufgaben mit Lösungen
8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche
12. Differentialgleichungen (kurz)
12. Differentialgleichungen (kurz) [Literatur: Teschl05, Bd. 2, S. 171-197] 12.1. Wozu braucht man Differentialgleichungen? Am 28. Juli 2006 stürzte in Köln ein Kran samt Lastwagen um. Was war passiert?
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Inhaltsverzeichnis. 1 Lineare Algebra 12
Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
1 Geometrie - Lösungen von linearen Gleichungen
Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem
Prüfungsvorbereitungskurs Höhere Mathematik 3
Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung
3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.
unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit
Mathematik anschaulich dargestellt
Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
y hom (x) = C e p(x) dx
Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Differenzialgleichungen für Einsteiger
Sybille Handrock-Meyer Differenzialgleichungen für Einsteiger Eine anwendungsbezogene Einführung für Bachelor-Studiengänge Sybille Handrock-Meyer Differenzialgleichungen für Einsteiger Sybille Handrock-Meyer
Differenzialrechnung. Mathematik-Repetitorium
Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
3. Normalform linearer PDG zweiter Ordnung
H.J. Oberle Differentialgleichungen II SoSe 2013 3. Normalform linearer PDG zweiter Ordnung Wir beschreiben in diesem Abschnitt Verfahren zur Transformation linearer oder auch halblinearer PDG zweiter
Differentialgleichung.
Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum
Lösung zur Übung 19 SS 2012
Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die
16. EINIGE LÖSUNGSMETHODEN
134 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch
Rekursive Folgen im Pascalschen Dreieck
Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,
1 Gleichsetzungsverfahren
1 Gleichsetzungsverfahren In diesem Dokument beschäftigen wir uns mit dem Gleichsetzungsverfahren, das wahrscheinlich erste Verfahren zum Lösen von linearen Gleichungssystemen, das man in der Schule lernt.
Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen:
Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Aufgabe I Gegeben sind die Schaubilder und die Funktionsterme zweier Funktionen f und g: 4 2 f ( x) = x x + 8
4. Differentialgleichungen
4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter
Laplacetransformation
Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele
Differentialgleichungen
Differentialgleichungen 1. Abkühlungsgesetz von Newton Newton s Abkühlungsgesetz beschreibt die Wärmezunahme bzw. -abnahme einer Tasse kalten oder heissen Wassers, die zur Zeit t = 0 in einen grossen Raum
Goniometrische Gleichungen
EL / GS - 3.8.5 - e_triggl.mcd Goniometrische Gleichungen Definition: Gleichungen, in denen die Variable als Argument von Winkelfunktionen vorkommen, nennt man "goniometrische Gleichungen". sweg: Mit Hilfe
Kapitel 16. Invertierbare Matrizen
Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,
3.7 Physik auf einem Karussell
3.7-1 3.7 Phsik auf einem Karussell 3.7.1 Geradlinig gleichförmige Bewegung auf einer sich drehenden Plattform Im Abschnitt 1.1 untersuchten wir einen Körper, der sich reibungsfrei mit konstanter Geschwindigkeit
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation
Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter
Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014
Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte
Fixpunkte und Stabilitätsanalyse
Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
W. Oevel. Mathematik für Physiker I. Veranstaltungsnr: Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004
W. Oevel Mathematik für Physiker I Veranstaltungsnr: 172020 Skript zur Vorlesung, Universität Paderborn, Wintersemester 2003/2004 Zeit und Ort: V2 Di 11.15 12.45 D1.303 V2 Mi 11.15 12.45 D1.303 V2 Do 9.15
11.2. Lineare Differentialgleichungen erster Ordnung
112 Lineare Differentialgleichungen erster Ordnung Dynamische Entwicklung von Populationen Entwickelt sich eine bestimmte Größe, zb die einer Population oder eines einzelnen Organismus, nicht nur proportional
Mathematik in der Biologie
Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
Das wissen Sie: 6. Welche Möglichkeiten zur Darstellung periodischer Funktionen (Signalen) kennen Sie?
Das wissen Sie: 1. Wann ist eine Funktion (Signal) gerade, ungerade, harmonisch, periodisch (Kombinationsbeispiele)? 2. Wie lassen sich harmonische Schwingungen mathematisch beschreiben und welche Beziehungen
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Inhaltsverzeichnis VII
Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare
Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen
Stundenplanung Verfahren zum Lösen von linearen Gleichungssystemen Das graphische Lösen von linearen Gleichungssystemen hat in der Praxis einige Nachteile, deshalb verwendet man hier eher die rechnerischen
Abiturprüfung Mathematik 13 Technik A II - Lösung mit CAS
GS.6.6 - m6_3t-a_lsg_cas_gs.pdf Abiturprüfung 6 - Mathematik 3 Technik A II - Lösung mit CAS Teilaufgabe Gegeben ist die Funktion f mit ( x ) mit der Definitionsmenge D ( x ) ( x 3) f IR \ { ; 3 }. Teilaufgabe.
Einführung in die Mathematik für Volks- und Betriebswirte
Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Lineare Differenzengleichungen
Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung
A.12 Nullstellen / Gleichungen lösen
A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten
, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3
Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen
Analysis für Wirtschaftswissenschaftler und Ingenieure
Dieter Hoffmann 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Analysis für Wirtschaftswissenschaftler und Ingenieure
4 Schaltvorgänge R, L, C R, L, C
4 Schaltvorgänge In diesem Kapitel beschäftigen wir uns mit R, L, C Netzwerken, in welchen durch sprunghafte Änderungen Ausgleichsvorgänge ausgelöst werden. Zur Berechnung dieser Transienten müssen gewöhnliche
Bericht zur Überprüfung und ggf. Anpassung des Einzelhandels- und Zentrenkonzeptes für die Stadt Wuppertal
Überprüfung und ggf. Anpassung des Einzelhandels- und Zentrenkonzeptes für die Stadt Wuppertal Bericht zur Überprüfung und ggf. Anpassung des Einzelhandels- und Zentrenkonzeptes für die Stadt Wuppertal
Differentialgleichungen
Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig
Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test
Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1
6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum
6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte
