Rekursive Folgen im Pascalschen Dreieck

Größe: px
Ab Seite anzeigen:

Download "Rekursive Folgen im Pascalschen Dreieck"

Transkript

1 Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-, Spiel- und Chaostheorie) führen früher oder später auf das Pascalsche Dreiec. Jeder weiß, dass die horizontale Summe (die Summe einer Zeile) im Pascalschen Dreiec die Zweierpotenzen ergibt. Schon wenigen ist beannt, dass gewisse schiefe Summen die Fibonaccizahlen ergeben. Diese sind ebenfalls so ein zentrales Objet der Mathemati, auf das man laufend stößt. Sie sind das typische Beispiel einer linearen reursiven Folge, also einer Folgen, bei der ein Folgeglied eine Linearombination vorangehender Glieder ist (für die Fibonaccifolge gilt f(n) f(n ) f(n )). Und noch weniger wissen, dass jede schiefe Summe im Pascalschen Dreiec eine reursive Folge bildet. Auch das ist ein Grund dafür, warum viele ombinatorische Aufgaben auf reursive Folgen führen. Lineare reursive Folgen spielen in fast allen Teilgebieten der Mathemati eine wichtige Rolle (z.b. bei Iterationsverfahren, rationalen Approximationen, Pseudoprimzahlen,...) und sind ein elementarer Einstieg in die Analysis (Differenzialgleichungen). Am Beispiel schiefer Summen im Pascalschen Dreiec wird auf den Zusammenhang zwischen reursiver und expliziter Darstellung von Folgen eingegangen und ein Verfahren (das Quotienten-Differenzen-Schema) vorgestellt, mit dem man bei einer durch ihre Anfangswerte gegebenen Folge feststellen ann, ob sie reursiv ist und wie man ihre allgemeine Bildungsvorschrift herleiten ann. Schüler, die diesen Vortrag hören wollen, sollten arithmetische Folgen, das Pascalsche Dreiec und die Fibonaccifolge ennen und möglichst auch schon von ihrer expliziten Darstellungsform gehört haben.

2 Zahlenfolgen Wie setze ich eine Folge fort? Wie bestimme ich das Bildungsgesetz einer Folge? a n, 5, 8,, 4,,,,... a n n b n,, 4, 9, 6, 5, 6, 49, 64,... b n n c n,, 4, 8, 6,, 64, 8,... c n n Kombinatori Wieviele Diagonalen hat ein n-ec? Wieviele Möglicheiten gibt es, n als Summe von Einsen und Zweien darzustellen? Wieviele Dreiece mit ganzzahligen Seitenlängen gibt es, deren Umfang n ist?

3 Das Pascalsche Dreiec n (n ) (n ) ( )

4 Das Pascalsche Vierec B n ( ) n n ( ) 4 4 ( ) ( ) 4 5 6

5 Arithmetische Folgen : 4 5 Differenzen- 6 5 schema 4 5 arithmetische Folge -ter Ordnung ( ) n n(n )(n ) n 6 n n n 4 : n 4? ( ) ( ) ( ) ( ) ( ) n n n n n n(n )(n )(n ) n(n )(n ) n(n ) n 4 6 n(n )(n )(n ) 6n(n )(n ) n(n ) n ( n 4 6n n 6n ) ( 6n 8n n ) ( n n ) n n 4 Arithmetische Folge -ter Ordnung Polynom -ten Grades -te Differenzenfolge ist onstant Linearombinationen von Binomialoeffizienten 4

6 Anzahl d n der Diagonalen im n-ec d d 4 d 5 5 d 6 9 d 4 d 8 d 9 d 5 d 44 d 54 d n : d n n(n ) n n n n n(n ) Lösungsmethode: ) Folgenanfang experimentell bestimmen. ) Differenzenschema bilden. Arithmetische Folge? ) Wenn ja: Allgemeines Glied bilden ( als ) n Linearombination von s. 4) Formel interpretieren und beweisen. 5

7 Anzahl F n der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen Beispiel: 6 Hilfsaufgabe: Anzahl der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen 6 n Einsen {}}{... n } {{... } n Einsen ( ) Anzahl der Möglicheiten, n als Summe n von Einsen oder Zweien darzustellen Probe am Beispiel: n 6, 4 ( ) ( ) Lösung der Aufgabe: Summe über alle F n ( ) ( ) ( ) ( ) ( ) n n n n n ( ) ( ) ( ) ( ) ( ) n n n n n n 6

8 Schiefe Summen von Binomialoeffizienten I ( ) 8 ( ) ( ) 6 ( ) 5 ( ) 4 4 ( ) 5 ( ) 6 ( ) ( ) 4 8 F n ( ) ( ) ( ) n n n ( ) n ( ) n,,,, 5, 8,,, 4, 55, 89,...

9 Die Fibonaccifolge F n ( ) ( ) n n ( ) n ( ) n,,,, 5, 8,,, 4, 55, 89,... Differenzenschema: F n : F n ist eine arithmetische Folge, also auch ein Polynom! F n F n F n, F, F F n ist eine reursive Folge -ter Ordnung F n Anzahl der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen Frage: Wie erennt man reursive Folgen? 8

10 Das Quotienten Differenzen Schema N F n : W X O S X N S O W S X O W N 5 5 F n : S X O W N ( ) 8 -te Quotienten Differenzen Folge ist Reursive Folge -ter Ordnung f n c f n c f n... c f n 9

11 Schiefe Summen von Binomialoeffizienten II ( ) 5 ( ) ( ) 9 6 ( ) 9 ( ) ( ) f n ( ) ( ) ( ) n n 4 n n,, 6, 9, 6, 89, 595, 8, 5896, 856,...

12 Das Quotienten Differenzen Schema für f n N f n : W X O S S X O W N te Quotienten Differenzen Folge ist Null! f n ist reursive Folge -ter Ordnung f n af n bf n cf n 9 6a b c 6 9a 6b c a 4, b, c 89 6a 9b 6c f n 4f n f n f n 595?

13 Andere schiefe Summen F n n ( ) ( ) ( ) n n n... F n F n f n n ( ) ( ) ( ) n n 4 n f n f n f n a n n... a n n s n (i, j) n i j ( ) ( ) ( ) n i n i n i... j j j s n (i, j, m, z) n i m z j Zum Beispiel c n s n (,,, z) n ( ) ( ) n n c n z z z i j i m z... j ( ) ( ) n n z z... c n (z )c n ( 6z)c n z( z)c n 4 z c n 5 z c n 6

14 Explizite Darstellung der Fibonaccifolge F n F n F n, F, F,,,, 5, 8,,, 4, 55, 89,... a n,, 4, 8, 6,,... n... Ansatz: F n x n x n x n x n charateristische Gleichung: x x ) ( ) Lösungen: x ( 5 und x 5 n a n n ( ( ) ) n ( ( ) ) n F n a 5 b 5 ( ( ) ) ( ( ) ) F a 5 b 5 a b ( ( ) ) ( ( ) ) F a 5 b 5 a b 5(b a) ( ( ) n ( ) ) n Lösung: F n 5 5 n 5 ( ( ) 5 ( ) ) 5 F ( ( ) ( )) 5 ( )

15 Explizite Darstellung anderer reursiver Folgen f n ( ) ( ) ( ) n n 4 n n,, 6, 9, 6, 89, 595, 8, 5896, 856,... Reursive Bildungsvorschrift: f n 4f n f n f n charateristische Gleichung: x 4x x Lösungen: x 6 ( ( 8 4 ) 9 ( 4 ) ) x 4 6 x 4 6 ( i ( i ) ( 4 9 ) ( 4 9 ) ) 6 6 ( i ( i ) ( 4 9 ) ( 4 9 ) ) x, ± i f n n ( i)( i) n ( i)( i) n n n cos( n) n sin( n) sinnlos!!! 4

16 Die Anzahl t n der Dreiece mit ganzzahliger Seitenlänge und gegebenem Umfang n n a b c a b c > a < b c (Dreiecsungleichung) n t n t n t n t n 4 4 t 4 n 5 5 t 5 n 6 6 t 6 n t n 8 8 t 8 n t 9 n t n t 4 n t n t 5 n t 4 4 n t 5 t n,,,,,,,,,,, 4,, 5, 4,, 5, 8,,, 8,,... 5

17 Die Anzahl t n der Dreiece mit ganzzahliger Seitenlänge und gegebenem Umfang n t n,,,,,,,,,,, 4,, 5, 4,, 5, 8,,, 8,,... t n t n t n t n 4 t n 5 t n 6 t n t n 9 charateristische Gleichung: x 9 x x 6 x 5 x 4 x x (x 4 )(x )(x ) t n ( 6n 8n 8( ) n n ( ) n 88 ) 6 cos(9 n) 64 cos( n) 6 sin(9 n) Probe für ein Beispiel: t 5 ( ( ) 5 ( ) 88 ) 6 cos(5 9 ) 64 cos(5 ) 6 sin(5 9 ) ( ) ( ) 88 ( )

18 Zusammenfassung Lineare reursive Folgen -ter Ordnung sind solche mit einer Bildungsvorschrift der Form f n c f n c f n... c f n ; f, f,..., f Viele ombinatorische Aufgaben und fast alle Spielereien mit dem Pascalschen Dreiec führen auf reursive Folgen. Mit dem Quotienten Differenzen Schema erennt man reursive Folgen. Die Koeffizienten c,..., c ann man aus den ersten Folgegliedern durch ein lineares Gleichungssystem bestimmen. Jede reursive Folge hat eine explizite Bildungsvorschrift der Form (nur wenn x i verschieden, sonst omplizierter!!) f n a x n... a x n dabei sind x,..., x die Lösungen der charaterist. Gleichung x c x c x... c x c Die Koeffizienten a,..., a ann man aus den ersten Folgegliedern durch ein lineares Gleichungssystem bestimmen.

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................

Mehr

Zahlenfolgen. Version 1.0, Juli Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik

Zahlenfolgen. Version 1.0, Juli Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik Zahlenfolgen Version 1.0, Juli 001 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik Inhaltsverzeichnis 0.0.1 Bezeichnungen................................ 3 1 Arithmetische

Mehr

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3 Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

Arithmetische Folgen 1-E. Ma 1 Lubov Vassilevskaya

Arithmetische Folgen 1-E. Ma 1 Lubov Vassilevskaya Arithmetische Folgen 1-E Arithmetische Folge Definition 1: Eine Folge heißt arithmetische Folge, wenn es eine Konstante d gibt, so dass für alle Folgenglieder gilt: +1 = + d +1 = d Definition 2: Eine Folge

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Mathematik macht Freu(n)de im Wintersemester 2018/19

Mathematik macht Freu(n)de im Wintersemester 2018/19 Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden

Mehr

Formale Potenzreihen, Rekursionen und erzeugende Funktionen

Formale Potenzreihen, Rekursionen und erzeugende Funktionen KAPITEL 2 Formale Potenzreihen, Reursionen und erzeugende Funtionen Wir gehen von folgender abstraten Situation aus Gegeben ist eine Klasse O ombinatorischer Objete und eine Klassifiationsabbildung t :

Mehr

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: J. Hörner B. Kabil B. Krinn. Gruppenübung zur Vorlesung Höhere Mathemati Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Hausübungen Teil, empfohlener Bearbeitungszeitraum:

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014 Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck

Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck Lineare Differenzengleichungen Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-6020 Innsbruck, Österreich. [email protected] Vortrag beim LehrerInnenfortbildungstag

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2

Mehr

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?

Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen? Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen

Mehr

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal

Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal 1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]

Mehr

von Zahlenfolgen, die bei Gebietsteilungsproblemen

von Zahlenfolgen, die bei Gebietsteilungsproblemen Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:

Mehr

Folgen und Reihen. 1. Folgen

Folgen und Reihen. 1. Folgen 1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................

Mehr

Lineare Differenzengleichungen und Polynome. Franz Pauer

Lineare Differenzengleichungen und Polynome. Franz Pauer Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag

Mehr

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

GF Mathematik 4c PAM Übungsfragen

GF Mathematik 4c PAM Übungsfragen GF Mathematik c PAM Übungsfragen Vektorgeometrie Repräsentanten von zwei Vektoren a und b b a a + b a b c b a b b b Vektorgeometrie ( a b + c ) = b ( a + b c ). Eine Vektorgleichung ( ) ( ) a b + c = b

Mehr

Die Ziffern der Fibonacci-Zahlen

Die Ziffern der Fibonacci-Zahlen Elem. Math. 58 23 26 33 3-68/3/26-8 c Birhäuser Verlag, Basel, 23 Elemente der Mathemati Die Ziffern der Fibonacci-Zahlen Jürgen Spiler Einleitung und Sätze Die reursiv definierte Folge Jürgen Spiler wurde

Mehr

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen

Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen 1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]

Mehr

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes

28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes 8 4. DIE MATHEMATIK HINTER DER COMPACT DISC y1 1 4 3 y3 y Abbildung 4.1: Selbstkorrigierende Codes 4. Die Mathematik hinter der Compact Disc 4.1. Selbstkorrigierende Codes Wenn wir eine Reihe von 0 und

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

Folgen und Reihen. Zahlenfolgen , ,

Folgen und Reihen. Zahlenfolgen , , 97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.

Mehr

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben

Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

ANGEWANDTE MATHEMATIK POLYNOMFUNKTIONEN. Autor: Wolfgang Kugler

ANGEWANDTE MATHEMATIK POLYNOMFUNKTIONEN. Autor: Wolfgang Kugler Autor: Wolfgang Kugler Inhaltsverzeichnis Definition Nullstellen und Linearfaktorzerlegung 5. Einfache reelle Nullstellen 5. Reelle Nullstellen mit höherer Vielfachheit 7.3 Komplee Nullstellen. Zusammenfassung

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015 7 Kombinatorik https://de.wikipedia.org/wiki/abzählende_kombinatorik 7.1 Grundformeln https://de.wikipedia.org/wiki/variation_(kombinatorik) https://de.wikipedia.org/wiki/permutation https://de.wikipedia.org/wiki/fakultät_(mathematik)

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Von Primzahlen und Pseudoprimzahlen

Von Primzahlen und Pseudoprimzahlen 1 Von Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 23. Tag der Mathematik 21. April 2018, Technische Universität Berlin Primzahlen

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1

Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1 Kapitel 1 Folgen und Reihen 1 a 1 Folgen und Reihen Folgen sind sehr grundlegend für die Mathematik an sich, aber auch für das persönliche Bild eines Menschen zur Mathematik. Wenn ein kleines Kind der

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

ALGORITHMISCHER BEWEIS KOMBINATORISCHER IDENTITÄTEN

ALGORITHMISCHER BEWEIS KOMBINATORISCHER IDENTITÄTEN ALGORITHMISCHER BEWEIS KOMBINATORISCHER IDENTITÄTEN MICHAEL STOLL 1. Das Problem In diesem Vortrag geht es um Identitäten. Was ist eine Identität? Das ist eine Aussage, die zwei Dinge gleich setzt, in

Mehr

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN

LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt

Mehr

2.1 Klassische kombinatorische Probleme

2.1 Klassische kombinatorische Probleme 2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Examen GF Mathematik (PAM) Kurzfragen 2017

Examen GF Mathematik (PAM) Kurzfragen 2017 Examen GF Mathematik (PAM) Kurzfragen 2017 Die mit einem + gekennzeichneten Fragen sind längere Kurzfragen. Kurzfrage 1+ Was ist ein Vektor? Ein Vektor ist die Menge aller gerichteten Strecken ( Pfeile

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.

Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als. Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen

Mehr

Rekursive Folgen. Axel Schüler, Mathematisches Institut, Univ. Leipzig

Rekursive Folgen. Axel Schüler, Mathematisches Institut, Univ. Leipzig Rekursive Folgen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:[email protected] 5.05.2005 Rekursive Folgen. Einleitung Rekursive Folgen umfassen viele aus dem Unterricht

Mehr

Identitätssatz für Potenzreihen

Identitätssatz für Potenzreihen Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion

Mehr

6. Polynom-Interpolation

6. Polynom-Interpolation 6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Messung der Schallgeschwindigkeit über Resonanz

Messung der Schallgeschwindigkeit über Resonanz Messung der Schallgeschwindigeit über Resonanz Lautsprecher Mirofon Frequenzgenerator/Wechselspannung und Verstärer Oszillosop mit Darstellung der Anregung (Kanal 1) und des Mirofon- Signals (Kanal 2)

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr