Rekursive Folgen im Pascalschen Dreieck
|
|
|
- Sara Ursler
- vor 9 Jahren
- Abrufe
Transkript
1 Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-, Spiel- und Chaostheorie) führen früher oder später auf das Pascalsche Dreiec. Jeder weiß, dass die horizontale Summe (die Summe einer Zeile) im Pascalschen Dreiec die Zweierpotenzen ergibt. Schon wenigen ist beannt, dass gewisse schiefe Summen die Fibonaccizahlen ergeben. Diese sind ebenfalls so ein zentrales Objet der Mathemati, auf das man laufend stößt. Sie sind das typische Beispiel einer linearen reursiven Folge, also einer Folgen, bei der ein Folgeglied eine Linearombination vorangehender Glieder ist (für die Fibonaccifolge gilt f(n) f(n ) f(n )). Und noch weniger wissen, dass jede schiefe Summe im Pascalschen Dreiec eine reursive Folge bildet. Auch das ist ein Grund dafür, warum viele ombinatorische Aufgaben auf reursive Folgen führen. Lineare reursive Folgen spielen in fast allen Teilgebieten der Mathemati eine wichtige Rolle (z.b. bei Iterationsverfahren, rationalen Approximationen, Pseudoprimzahlen,...) und sind ein elementarer Einstieg in die Analysis (Differenzialgleichungen). Am Beispiel schiefer Summen im Pascalschen Dreiec wird auf den Zusammenhang zwischen reursiver und expliziter Darstellung von Folgen eingegangen und ein Verfahren (das Quotienten-Differenzen-Schema) vorgestellt, mit dem man bei einer durch ihre Anfangswerte gegebenen Folge feststellen ann, ob sie reursiv ist und wie man ihre allgemeine Bildungsvorschrift herleiten ann. Schüler, die diesen Vortrag hören wollen, sollten arithmetische Folgen, das Pascalsche Dreiec und die Fibonaccifolge ennen und möglichst auch schon von ihrer expliziten Darstellungsform gehört haben.
2 Zahlenfolgen Wie setze ich eine Folge fort? Wie bestimme ich das Bildungsgesetz einer Folge? a n, 5, 8,, 4,,,,... a n n b n,, 4, 9, 6, 5, 6, 49, 64,... b n n c n,, 4, 8, 6,, 64, 8,... c n n Kombinatori Wieviele Diagonalen hat ein n-ec? Wieviele Möglicheiten gibt es, n als Summe von Einsen und Zweien darzustellen? Wieviele Dreiece mit ganzzahligen Seitenlängen gibt es, deren Umfang n ist?
3 Das Pascalsche Dreiec n (n ) (n ) ( )
4 Das Pascalsche Vierec B n ( ) n n ( ) 4 4 ( ) ( ) 4 5 6
5 Arithmetische Folgen : 4 5 Differenzen- 6 5 schema 4 5 arithmetische Folge -ter Ordnung ( ) n n(n )(n ) n 6 n n n 4 : n 4? ( ) ( ) ( ) ( ) ( ) n n n n n n(n )(n )(n ) n(n )(n ) n(n ) n 4 6 n(n )(n )(n ) 6n(n )(n ) n(n ) n ( n 4 6n n 6n ) ( 6n 8n n ) ( n n ) n n 4 Arithmetische Folge -ter Ordnung Polynom -ten Grades -te Differenzenfolge ist onstant Linearombinationen von Binomialoeffizienten 4
6 Anzahl d n der Diagonalen im n-ec d d 4 d 5 5 d 6 9 d 4 d 8 d 9 d 5 d 44 d 54 d n : d n n(n ) n n n n n(n ) Lösungsmethode: ) Folgenanfang experimentell bestimmen. ) Differenzenschema bilden. Arithmetische Folge? ) Wenn ja: Allgemeines Glied bilden ( als ) n Linearombination von s. 4) Formel interpretieren und beweisen. 5
7 Anzahl F n der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen Beispiel: 6 Hilfsaufgabe: Anzahl der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen 6 n Einsen {}}{... n } {{... } n Einsen ( ) Anzahl der Möglicheiten, n als Summe n von Einsen oder Zweien darzustellen Probe am Beispiel: n 6, 4 ( ) ( ) Lösung der Aufgabe: Summe über alle F n ( ) ( ) ( ) ( ) ( ) n n n n n ( ) ( ) ( ) ( ) ( ) n n n n n n 6
8 Schiefe Summen von Binomialoeffizienten I ( ) 8 ( ) ( ) 6 ( ) 5 ( ) 4 4 ( ) 5 ( ) 6 ( ) ( ) 4 8 F n ( ) ( ) ( ) n n n ( ) n ( ) n,,,, 5, 8,,, 4, 55, 89,...
9 Die Fibonaccifolge F n ( ) ( ) n n ( ) n ( ) n,,,, 5, 8,,, 4, 55, 89,... Differenzenschema: F n : F n ist eine arithmetische Folge, also auch ein Polynom! F n F n F n, F, F F n ist eine reursive Folge -ter Ordnung F n Anzahl der Möglicheiten, n als Summe von Einsen oder Zweien darzustellen Frage: Wie erennt man reursive Folgen? 8
10 Das Quotienten Differenzen Schema N F n : W X O S X N S O W S X O W N 5 5 F n : S X O W N ( ) 8 -te Quotienten Differenzen Folge ist Reursive Folge -ter Ordnung f n c f n c f n... c f n 9
11 Schiefe Summen von Binomialoeffizienten II ( ) 5 ( ) ( ) 9 6 ( ) 9 ( ) ( ) f n ( ) ( ) ( ) n n 4 n n,, 6, 9, 6, 89, 595, 8, 5896, 856,...
12 Das Quotienten Differenzen Schema für f n N f n : W X O S S X O W N te Quotienten Differenzen Folge ist Null! f n ist reursive Folge -ter Ordnung f n af n bf n cf n 9 6a b c 6 9a 6b c a 4, b, c 89 6a 9b 6c f n 4f n f n f n 595?
13 Andere schiefe Summen F n n ( ) ( ) ( ) n n n... F n F n f n n ( ) ( ) ( ) n n 4 n f n f n f n a n n... a n n s n (i, j) n i j ( ) ( ) ( ) n i n i n i... j j j s n (i, j, m, z) n i m z j Zum Beispiel c n s n (,,, z) n ( ) ( ) n n c n z z z i j i m z... j ( ) ( ) n n z z... c n (z )c n ( 6z)c n z( z)c n 4 z c n 5 z c n 6
14 Explizite Darstellung der Fibonaccifolge F n F n F n, F, F,,,, 5, 8,,, 4, 55, 89,... a n,, 4, 8, 6,,... n... Ansatz: F n x n x n x n x n charateristische Gleichung: x x ) ( ) Lösungen: x ( 5 und x 5 n a n n ( ( ) ) n ( ( ) ) n F n a 5 b 5 ( ( ) ) ( ( ) ) F a 5 b 5 a b ( ( ) ) ( ( ) ) F a 5 b 5 a b 5(b a) ( ( ) n ( ) ) n Lösung: F n 5 5 n 5 ( ( ) 5 ( ) ) 5 F ( ( ) ( )) 5 ( )
15 Explizite Darstellung anderer reursiver Folgen f n ( ) ( ) ( ) n n 4 n n,, 6, 9, 6, 89, 595, 8, 5896, 856,... Reursive Bildungsvorschrift: f n 4f n f n f n charateristische Gleichung: x 4x x Lösungen: x 6 ( ( 8 4 ) 9 ( 4 ) ) x 4 6 x 4 6 ( i ( i ) ( 4 9 ) ( 4 9 ) ) 6 6 ( i ( i ) ( 4 9 ) ( 4 9 ) ) x, ± i f n n ( i)( i) n ( i)( i) n n n cos( n) n sin( n) sinnlos!!! 4
16 Die Anzahl t n der Dreiece mit ganzzahliger Seitenlänge und gegebenem Umfang n n a b c a b c > a < b c (Dreiecsungleichung) n t n t n t n t n 4 4 t 4 n 5 5 t 5 n 6 6 t 6 n t n 8 8 t 8 n t 9 n t n t 4 n t n t 5 n t 4 4 n t 5 t n,,,,,,,,,,, 4,, 5, 4,, 5, 8,,, 8,,... 5
17 Die Anzahl t n der Dreiece mit ganzzahliger Seitenlänge und gegebenem Umfang n t n,,,,,,,,,,, 4,, 5, 4,, 5, 8,,, 8,,... t n t n t n t n 4 t n 5 t n 6 t n t n 9 charateristische Gleichung: x 9 x x 6 x 5 x 4 x x (x 4 )(x )(x ) t n ( 6n 8n 8( ) n n ( ) n 88 ) 6 cos(9 n) 64 cos( n) 6 sin(9 n) Probe für ein Beispiel: t 5 ( ( ) 5 ( ) 88 ) 6 cos(5 9 ) 64 cos(5 ) 6 sin(5 9 ) ( ) ( ) 88 ( )
18 Zusammenfassung Lineare reursive Folgen -ter Ordnung sind solche mit einer Bildungsvorschrift der Form f n c f n c f n... c f n ; f, f,..., f Viele ombinatorische Aufgaben und fast alle Spielereien mit dem Pascalschen Dreiec führen auf reursive Folgen. Mit dem Quotienten Differenzen Schema erennt man reursive Folgen. Die Koeffizienten c,..., c ann man aus den ersten Folgegliedern durch ein lineares Gleichungssystem bestimmen. Jede reursive Folge hat eine explizite Bildungsvorschrift der Form (nur wenn x i verschieden, sonst omplizierter!!) f n a x n... a x n dabei sind x,..., x die Lösungen der charaterist. Gleichung x c x c x... c x c Die Koeffizienten a,..., a ann man aus den ersten Folgegliedern durch ein lineares Gleichungssystem bestimmen.
Rekursive Folgen im Pascalschen Dreieck
Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................
Zahlenfolgen. Version 1.0, Juli Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik
Zahlenfolgen Version 1.0, Juli 001 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stochastik Inhaltsverzeichnis 0.0.1 Bezeichnungen................................ 3 1 Arithmetische
Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3
Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen
Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!
WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1
Folgen und Reihen Folgen
Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)
Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)
Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)
Die Zahlbereiche N, Z, Q
Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird
Arithmetische Folgen 1-E. Ma 1 Lubov Vassilevskaya
Arithmetische Folgen 1-E Arithmetische Folge Definition 1: Eine Folge heißt arithmetische Folge, wenn es eine Konstante d gibt, so dass für alle Folgenglieder gilt: +1 = + d +1 = d Definition 2: Eine Folge
Bernoullipolynome und Bernoullizahlen
Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist
Mathematik macht Freu(n)de im Wintersemester 2018/19
Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden
Formale Potenzreihen, Rekursionen und erzeugende Funktionen
KAPITEL 2 Formale Potenzreihen, Reursionen und erzeugende Funtionen Wir gehen von folgender abstraten Situation aus Gegeben ist eine Klasse O ombinatorischer Objete und eine Klassifiationsabbildung t :
1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für
1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt
Lösungshinweise zu den Hausaufgaben:
J. Hörner B. Kabil B. Krinn. Gruppenübung zur Vorlesung Höhere Mathemati Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Hausübungen Teil, empfohlener Bearbeitungszeitraum:
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014
Inhalt Mathematik für Chemiker Teil 1: Analysis Vorlesung im Wintersemester 2014 Kurt Frischmuth Institut für Mathematik, Universität Rostock Rostock, Oktober 2014... Folgen und Reihen Reelle Funktionen
$Id: reell.tex,v /11/15 13:12:24 hk Exp $
$Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt
Lineare Differenzengleichungen. Franz Pauer. Vortrag beim LehrerInnenfortbildungstag West 2010 in Innsbruck
Lineare Differenzengleichungen Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-6020 Innsbruck, Österreich. [email protected] Vortrag beim LehrerInnenfortbildungstag
Lineare Differenzengleichungen
Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung
Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri
Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2
Schreibe die jeweilige Dreieckszahl unter die Zeichnung. Wie heißen die nächsten vier Dreieckszahlen?
Hier siehst du Figuren, die aus Kreisen bestehen. Schon ab der zweiten Figur ergibt sich ein Dreieck. Die Anzahl der Kreise, die ein Dreieck bilden, nennt man Dreieckszahlen. Man tut so, als ob auch der
Kombinatorik von Zahlenfolgen
6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten
Differenzengleichungen. und Polynome
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich [email protected] 1 Einleitung Mit linearen Differenzengleichungen
Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal
1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
von Zahlenfolgen, die bei Gebietsteilungsproblemen
Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:
Folgen und Reihen. 1. Folgen
1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?
Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier
Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren
Partialbruchzerlegung
Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................
Lineare Differenzengleichungen und Polynome. Franz Pauer
Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 13/7, A-600 Innsbruck, Österreich. [email protected] Vortrag beim ÖMG-LehrerInnenfortbildungstag
Abzählende Kombinatorik
Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Polynomiale Gleichungen
Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben
$Id: reell.tex,v /11/11 12:32:08 hk Exp $
Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig
GF Mathematik 4c PAM Übungsfragen
GF Mathematik c PAM Übungsfragen Vektorgeometrie Repräsentanten von zwei Vektoren a und b b a a + b a b c b a b b b Vektorgeometrie ( a b + c ) = b ( a + b c ). Eine Vektorgleichung ( ) ( ) a b + c = b
Die Ziffern der Fibonacci-Zahlen
Elem. Math. 58 23 26 33 3-68/3/26-8 c Birhäuser Verlag, Basel, 23 Elemente der Mathemati Die Ziffern der Fibonacci-Zahlen Jürgen Spiler Einleitung und Sätze Die reursiv definierte Folge Jürgen Spiler wurde
Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen
1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1
Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten
Vorkurs Mathematik. Vorlesung 5. Verknüpfungen
Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer
Brüche, Polynome, Terme
KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure
Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de
Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.
n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils
28 4. DIE MATHEMATIK HINTER DER COMPACT DISC. Abbildung 4.1: Selbstkorrigierende Codes
8 4. DIE MATHEMATIK HINTER DER COMPACT DISC y1 1 4 3 y3 y Abbildung 4.1: Selbstkorrigierende Codes 4. Die Mathematik hinter der Compact Disc 4.1. Selbstkorrigierende Codes Wenn wir eine Reihe von 0 und
Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte
Explizite Formeln für rekursiv definierte Folgen
Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als
Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form
3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,
Folgen und Reihen. Zahlenfolgen , ,
97 Wegener Math/5_Reihen Mittwoch 04.04.2007 8:38:52 Folgen und Reihen Zahlenfolgen Eine Zahlenfolge a besteht aus Zahlen a,a 2,a 3,a 4,a 5,... Die einzelnen Zahlen einer Folge heißen Glieder oder Terme.
Folgen und Reihen. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben
Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten
Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene
ANGEWANDTE MATHEMATIK POLYNOMFUNKTIONEN. Autor: Wolfgang Kugler
Autor: Wolfgang Kugler Inhaltsverzeichnis Definition Nullstellen und Linearfaktorzerlegung 5. Einfache reelle Nullstellen 5. Reelle Nullstellen mit höherer Vielfachheit 7.3 Komplee Nullstellen. Zusammenfassung
osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen
Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen
Vorkurs Mathematik für Naturwissenschaftler und Ingenieure 2015
7 Kombinatorik https://de.wikipedia.org/wiki/abzählende_kombinatorik 7.1 Grundformeln https://de.wikipedia.org/wiki/variation_(kombinatorik) https://de.wikipedia.org/wiki/permutation https://de.wikipedia.org/wiki/fakultät_(mathematik)
Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen
Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen
Von Primzahlen und Pseudoprimzahlen
1 Von Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 23. Tag der Mathematik 21. April 2018, Technische Universität Berlin Primzahlen
Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012
Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf
$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln
$Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der
Folgen und Reihen. 1.1 Zahlenfolgen. Kapitel 1 Folgen und Reihen 1 a 1
Kapitel 1 Folgen und Reihen 1 a 1 Folgen und Reihen Folgen sind sehr grundlegend für die Mathematik an sich, aber auch für das persönliche Bild eines Menschen zur Mathematik. Wenn ein kleines Kind der
Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)
WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 18. Januar 2012 ZÜ DS ZÜ XII
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
ALGORITHMISCHER BEWEIS KOMBINATORISCHER IDENTITÄTEN
ALGORITHMISCHER BEWEIS KOMBINATORISCHER IDENTITÄTEN MICHAEL STOLL 1. Das Problem In diesem Vortrag geht es um Identitäten. Was ist eine Identität? Das ist eine Aussage, die zwei Dinge gleich setzt, in
LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN
Fakultät Mathematik Institut für Numerische Mathematik LINEARE ALGEBRA UND ANALYSIS FÜR FUNKTIONEN EINER VARIABLEN 6. Komplexe Zahlen Prof. Dr. Gunar Matthies Wintersemester 2017/18 G. Matthies Lineare
Differentialgleichungen
Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Informatier II (Sommersemester 00) Lösungen zu Aufgabenblatt
2.1 Klassische kombinatorische Probleme
2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik
Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)
Examen GF Mathematik (PAM) Kurzfragen 2017
Examen GF Mathematik (PAM) Kurzfragen 2017 Die mit einem + gekennzeichneten Fragen sind längere Kurzfragen. Kurzfrage 1+ Was ist ein Vektor? Ein Vektor ist die Menge aller gerichteten Strecken ( Pfeile
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das
Residuum. Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als.
Residuum Für eine in einer punktierten Kreisscheibe D\{a} analytische Funktion f definiert man das Residuum im Punkt a als Res Res f = 1 f (z) dz, z=a a 2πi wobei C : t a + re it, 0 t 2π, ein entgegen
Rekursive Folgen. Axel Schüler, Mathematisches Institut, Univ. Leipzig
Rekursive Folgen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:[email protected] 5.05.2005 Rekursive Folgen. Einleitung Rekursive Folgen umfassen viele aus dem Unterricht
Identitätssatz für Potenzreihen
Identitätssatz für Potenzreihen Satz 3.56 Seien f (z) = a n z n und g(z) = b n z n zwei Potenzreihen mit positiven Konvergenzradien R f > 0 und R g > 0. Gilt f (z) = g(z) für alle z mit 0 z < min{r f,
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion
6. Polynom-Interpolation
6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für
2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.
2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n
4.4. Rang und Inversion einer Matrix
44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert
sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja
Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation
Messung der Schallgeschwindigkeit über Resonanz
Messung der Schallgeschwindigeit über Resonanz Lautsprecher Mirofon Frequenzgenerator/Wechselspannung und Verstärer Oszillosop mit Darstellung der Anregung (Kanal 1) und des Mirofon- Signals (Kanal 2)
Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen
MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass
