Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3

Größe: px
Ab Seite anzeigen:

Download "Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3"

Transkript

1 Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen mit Folgen 6 Einführung Kombinatori (enumerative combinatorics) beschäftigt sich mit dem Zählen von Objeten mit bestimmten Eigenschaften. Im weiteren Sinn geht es auch um die Konstrution entsprechender Objete (combinatorial design), das Finden von größten, leinsten oder optimalen Objeten (combinatorial optimization) bzw. um das Finden entsprechender algebraischer Struturen (algebraic combinatorics). Die Anfänge der Kombinatori gehen auf Indien um 300 v. Chr. zurüc, wo es u. a. um die Anzahl von bestimmten Tatmustern in der Rhythmuslehre ging (vgl. Beispiel.). Mathematier in China, Ägypten und im Mittleren Osten beschäftigten sich ebenfalls sehr früh mit ombinatorischen Fragestellungen. Nach Europa am die Kombinatori im 3. Jh. mit Leonardo Fibonacci (vgl. Definition 0) und Jordanus de Nemore (Entdecer des Pascalschen Dreiecs, vgl. Bemerung 6). Weitere bedeutende Mathematier auf dem Gebiet waren u. a. Pascal, Leibniz, De Moivre und Euler. eigentlich Leonardo da Pisa

2 Grundlegendes Das Zählen von Objeten entspricht der Bestimmung der Größe (Kardinalität) von entsprechenden (meist endlichen) Mengen. Definition und Bemerung. Sind A und B Mengen, dann bezeichnet A B die Vereinigung, A B den Durchschnitt und A \ B die Differenz (sprich A ohne B ) von A und B. Wenn A und B disjunt sind (also eine gemeinsamen Elemente haben, d. h. A B ), gilt für die Kardinalität der Vereinigung A B A + B. Mit A B wird das (Kreuz-) Produt von A und B geschrieben, also die Menge aller Paare mit einem Objet aus A und einem aus B: Für die Kardinalität gilt dann einfach A B {(a, b) a A, b B}. A B A B. Entsprechendes lässt sich natürlich auf eine beliebige Anzahl an Mengen A, A,..., A n verallgemeinern. Beispiel.. Wie viele verschiedene KFZ-Kennzeichen im Grazer Raum sind prinzipiell möglich? Der Einfachheit halber betrachten wir nur Kennzeichen der Form G-999ZZ und G-99ZZZ, also Kombinationen von entweder einer dreistelligen Zahl (soll nicht mit 0 beginnen!) mit zwei Buchstaben (A Z ohne Umlaute) oder einer zweistelligen Zahl mit drei Buchstaben. G-999ZZ : Die Menge der entsprechenden Kennzeichen ist {,..., 9} {0,..., 9} {0,..., 9} {A,..., Z} {A,..., Z}, ihre Kardinalität also G-99ZZZ : Die Menge der entsprechenden Kennzeichen ist {,..., 9} {0,..., 9} {A,..., Z} {A,..., Z} {A,..., Z}, ihre Kardinalität also Die Gesamtmenge ist die disjunte Vereinigung der beiden Mengen, daher ist die gesuchte Anzahl

3 Definition. Sei n eine natürliche Zahl. Dann ist ihre Faultät definiert als n! : n 3 n. Bemerung 3. Die Anzahl der Permutationen ( Umordnungen ) einer Menge mit n Elementen ist n!. Beweis. Es gibt n Möglicheiten, das erste Element einer Permutation auszuwählen, n Möglicheiten für das zweite Element, usw. Zählen mit Binomialoeffizienten Satz 4. Der Binomialoeffizient ( ) n n! n(n ) (n + ) :!(n )!! ist die Anzahl der -elementigen Teilmengen einer n-elementigen Menge ( Kombinationen ohne Wiederholung ). Beweis. Es gibt n(n ) (n +) Möglicheiten, Elemente aus einer n-elementigen Menge auszuwählen, wenn die Reihenfolge berücsichtigt wird. Dividiert man durch!, also die Anzahl der möglichen Permutationen dieser Elemente, erhält man die gewünschte Anzahl. Beispiel.. Wieviele verschiedene Tate gibt es, die n Halbnoten und Viertelnoten enthalten? Insgesamt sind n + Positionen zu besetzen, davon müssen n bzw. ausgewählt werden. Die gesuchte Anzahl ist also ( ) ( ) n + n +. n Bemerung. Der Name Binomialoeffizient ommt daher, dass er in der Entwiclung eines auspotenzierten Binoms auftritt (Binomischer Lehrsatz): (x + y) n n 0 ( ) n x y n. Das Zusammenfassen entsprechender Summanden ann man sich als Auswählen von Fatoren aus dem Produt vorstellen. (x + y) n (x + y)(x + y) (x + y) }{{} n 3

4 Bemerung 6. Es gilt die Reursionsformel ( ) ( n + n + ) + ( ) n. + Somit ann ( n ) mit dem sog. Pascalschen Dreiec ermittelt werden: Beispiel.. Für ein Parlament mit n Sitzen stehen politische Parteien auf dem Wahlzettel. Wieviele Mandatsverteilungen gibt es im Parlament? Wir schreiben die aufzuteilenden n Mandate als Folge von Nullen. Dazwischen setzen wir Trennwände in Form von Einsen. Die Mandate bis zur ersten Trennwand gehören dann der ersten Partei, von der ersten bis zur zweiten der zweiten Partei, usw. Beispielsweise önnte die Folge so aussehen: 000 }{{} Partei }{{} Partei } 0.{{.. 0} }{{} Partei 3 Partei 4 Natürlich önnen einzelne Parteien evtl. eine Mandate erhalten, wie hier Partei 4, was durch diret aufeinanderfolgende Einsen ausgedrüct wird. Die Anzahl der möglichen Mandatsverteilungen ist also genau die Anzahl solcher Folgen von n Nullen und Einsen. Dies entspricht der Anzahl der Möglicheiten, Einsen (bzw. n Nullen) auf n + Plätze zu verteilen, somit ( ) ( ) n + n + n ( Kombinationen mit Wiederholung ). Definition 7. Ein Tupel (a,..., a ) positiver ganzer Zahlen heißt Komposition von n, wenn j a n. 3 Inlusions-Exlusions-Prinzip Das Inlusions-Exlusions-Prinzip auch Einschluss-Ausschluss-Verfahren, Einschalt- Ausschalt-Prinzip oder Siebformel genannt liefert eine Möglicheit, die Kardinalität der Vereinigung von Mengen zu bestimmen, wenn es einfacher ist, Kardinalitäten von entsprechenden Durchschnitten zu ermitteln. 4

5 Satz 8. Für endliche Mengen A, B, C gilt bzw. A B A + B A B A B C A + B + C ( A B + B C + C A ) + A B C. Allgemein geschrieben bedeutet das für endliche Mengen A, A,..., A n n A j ( ) J +. A j j J {,...,n},j Beweis (Spezialfall). Wir beweisen vorerst den Spezialfall von n Mengen. Ein Beweis der allgemeinen Aussage folgt später. Die Menge A ann als disjunte Vereinigung A (A \ B) (A B) geschrieben werden (zuerst alle Elemente, die in A, aber nicht in B vorommen, dann alle, die sowohl in A als auch in B vorommen). Dementsprechend gilt A A \ B + A B und analog B B \ A + A B. Weiters ann die Vereinigung von A und B als j J A B (A \ B) (B \ A) (A B) geschrieben werden, und somit gilt insgesamt A B A \ B + B \ A + A B ( A A B ) + ( B A B ) + A B A + B A B. Beweis (allgemein). Sei x ein beliebiges Element, o.b.d.a. in Mengen A,..., A m enthalten, 0 m n. Auf der linen Seite ommt x genau dann einmal vor, wenn m (sonst 0-mal). Auf der rechten Seite wird x so oft gezählt: ( ) J + ( ) + J {,...,m},j ( ) m ( ) + J {,...,m}, J Für m 0 ist das wie auf der linen Seite gleich 0; für m ann hingegen der Summand ( ) m 0 für 0 ergänzt (und wieder abgezogen werden), und dann gilt nach Binomischem Lehrsatz ( ) m ( ) m ( ) + ( ) + + ( ) m +. 0 Für m wird x also auch auf der rechten Seite genau einmal gezählt.

6 Beispiel 3.. Wie viele Zahlen M : {,, 3,..., 000} gibt es, die durch 3, oder 7 teilbar sind? Wir bezeichnen mit A die Menge der Zahlen M, die durch teilbar sind. Gesucht ist also A 3 A A 7. Dann enthält A 3 genau jede dritte Zahl aus M, also Zahlen (. bedeutet größte ganze Zahl leiner oder gleich ). Analog folgt A 00 und A 7 4. Die Vereinigung von A 3 und A enthält genau jene Zahlen, die durch 3 und durch, also durch teilbar sind. Davon gibt es in M genau viele. Entsprechend ann man die Kardinalitäten der anderen Durchschnitte berechnen. Gemäß Inlusions-Exlusions-Prinzip folgt insgesamt A 3 A A 7 A 3 + A + A 7 ( A 3 A + A 3 A 7 + A A 7 ) + A 3 A A ( ) Schubfachschluss Satz 9 (Schubfachschluss, Taubenschlagprinzip, Pigeonhole principle, Prinzip von Dirichlet). Verteilt man n + Objete auf n Schubladen, müssen in mindestens einer Lade zwei oder mehr Objete sein. Oder: Wenn sich n + Tauben auf n Nester setzen, müssen in mindestens einem Nest zwei oder mehr Tauben sein. Bzw. allgemeiner: Verteilt man n Objete auf Mengen (n > > 0), so gibt es mindestens eine Menge, in der sich mehr als n Objete befinden. Beweis. Angenommen, es wären in allen Mengen maximal n Objete. Dann ann es aber insgesamt nicht mehr als n n Objete geben, was im Widerspruch zur Annahme von n Objeten steht. Beispiel 4.. An der TU Graz studieren 6 Studenten Technische Mathemati. Zeige, dass mindestens 6 von ihnen die selbe Note in Kombinatori beommen. Die Aussage folgt unmittelbar mittels Schubfachschluss für 6 Objete (Studenten) und Mengen (entsprechend den Noten bis ): Damit gibt es mindestens eine Menge an Studenten, die mehr als 6 und somit mindestens 6 Studenten enthält. Zählen mit Folgen Beispiel.. Wie viele Möglicheiten gibt es, ein n-feld mit Dominosteinen der Form und auszulegen? Sei a n die gesuchte Anzahl. Für die Belegung n-feld gibt es prinzipiell zwei Möglicheiten:. Das Feld endet mit einem vertialen Stein für die es a n mögliche Belegungen gibt.. Es verbleiben n Spalten davor, 6

7 bzw. nach Definition durch q n q q 0.. Das Feld endet mit. Es verbleiben n Spalten davor, also a n Möglicheiten. Insgesamt ergibt das die Reursion a n a n + a n für n. Weiters ann man sich einfach überlegen, dass es für ein -Feld Möglicheit gibt ( ) und für ein -Feld Möglicheiten, also a und a. Definition 0. Die Zahlen der reursiv definierten Folge heißen Fibonacci-Zahlen. F 0 0, F, F + F + F für Im vorherigen Beispiel gilt mit dieser Definition a n F n+. Es verbleibt eine explizite Darstellung der Fibonacci-Zahlen zu finden. Mit dem Ansatz F n q n folgt die sog. charateristische Gleichung der Folge q n+ q n + q n Diese quadratische Gleichung hat die Lösungen q, ± 4 + ±. Damit haben die Folgenglieder die allgemeine Form ( + ) n ( ) n F n A + B mit noch zu bestimmenden Koeffizienten A und B. Diese önnen aus den Anfangsbedingungen F 0 0 und F gewonnen werden und sind A bzw. B. Damit folgt die explizite Darstellung (( F n + ) n ( ) n ). Die Fibonacci-Zahlen sind nach Leonardo Fibonacci benannt, der damit 0 das Wachstum einer Kaninchenpopulation beschrieb: Beispiel.. Betrachte folgendes (theoretisches) Modell einer Kaninchenpopulation:. Zu Beginn gibt es ein Kaninchenpärchen.. Jedes Kaninchenpärchen beommt ab dem. Lebensmonat jedes Monat Nachwuchs in Form eines weiteren Kaninchenpärchens. 3. In unserem Modell sterben eine Kaninchen und es ommen weder Kaninchen von außen hinzu noch verlassen Kaninchen die Population. Unter diesen Annahmen entspricht die Anzahl der Kaninchen zu Beginn des n-ten Monat genau der n-ten Fibonacci-Zahl F n. 7

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis

Kombinatorik. LSGM Leipziger Schülergesellschaft für Mathematik. Toscho Mathecamp 12. Juli 21. Juli 2008 Klasse 11/12. Inhaltsverzeichnis LSGM Leipziger Schülergesellschaft für Mathemati Kombinatori Toscho Mathecamp 1. Juli 1. Juli 008 Klasse 11/1 Inhaltsverzeichnis 1 Grundlagen Aufgaben 3 3 Politi in der Mathemati 3 4 Olympiadeaufgaben

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: J. Hörner B. Kabil B. Krinn. Gruppenübung zur Vorlesung Höhere Mathemati Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Hausübungen Teil, empfohlener Bearbeitungszeitraum:

Mehr

2.1 Klassische kombinatorische Probleme

2.1 Klassische kombinatorische Probleme 2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Kapitel 7 Wahrscheinlicheitsrechnung 7.1 Kombinatori Def. 7.1.1:a) Für eine beliebige natürliche Zahl m bezeichnet man das Produt aus den Zahlen von 1 bis m mit m Faultät: m! : 1 2 3 m, 0! : 1. Beispiele:

Mehr

Analyse von Hashfunktionen

Analyse von Hashfunktionen Analyse von Hashfuntionen Borys Gendler 5. Februar 2007 In dieser Arbeit wird die Anzahl der Kollisionen beim Einfügen eines Elements in einer Hashtabelle untersucht. Wir beantworten die Frage, wie sich

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align 4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n

Mehr

Kombinatorik und Urnenmodelle

Kombinatorik und Urnenmodelle Kapitel 2 Kombinatori und Urnenmodelle In diesem Abschnitt nehmen wir an, dass (Ω, A, P ein Laplace scher Wahrscheinlicheitsraum ist (vgl. Bsp.1.3, d.h. Ω ist endlich, A = P (Ω und P (A = A Ω A Ω. Für

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

Beweis des Binomischen Satzes

Beweis des Binomischen Satzes Beweis des Binomischen Satzes Ein Beispiel für mathematische Beweisführung Oliver Müller 21. Februar 25 1 Vorwort Dieser Text soll hilfreich beim Erlernen der mathematischen Beweisführung über vollständige

Mehr

1 Die natürlichen Zahlen und vollständige Induktion

1 Die natürlichen Zahlen und vollständige Induktion 1 Die natürlichen Zahlen und vollständige Indution 1.1 Einführung Mit Æ bezeichnen wir die Menge der natürlichen Zahlen Æ = {1,2,3,...}. Manche Autoren lassen die natürlichen Zahlen auch mit der Null beginnen,

Mehr

Kombinatorik. Kombinatorik

Kombinatorik. Kombinatorik Kombinatori Kombinatori Ziel: Bestimmen der Mächtigeiten bestimmter endlicher Mengen, die durch Anordnung oder Auswahl von Elementen einer Menge gebildet werden. Wir wissen bereits, dass für die Potenzmenge

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Kombinationen und Permutationen

Kombinationen und Permutationen 10 Kombinationen und Permutationen In den nächsten beiden Kapiteln wird die Abzählungstheorie der lassischen Abbildungstypen mit Nebenbedingungen entwicelt. Sie beschäftigt sich onret mit der Frage, auf

Mehr

Berühmte Familien von Zahlen und ihre Zusammenhänge. Nina Elisabeth Isele

Berühmte Familien von Zahlen und ihre Zusammenhänge. Nina Elisabeth Isele Berühmte Familien von Zahlen und ihre Zusammenhänge Nina Elisabeth Isele 20.01.2015 Inhaltsverzeichnis 1 Einleitung 2 2 Berühmte Familien von Zahlen und ihre Zusammenhänge 3 2.1 Die Zahlen von Bell und

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

3 Ein wenig Kombinatorik

3 Ein wenig Kombinatorik 3 Ein wenig Kombinatori Definition i) Zu jedem n N definiere 1 2 3 n Saubere Definition ist indutiv 1! 1 (Konvention: 0! 1) (n +1)!(n +1) ii) Für n N und (N {0}) mit0 n setze!(n )! 1 2 n (n +1) (n +2)

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Berechnung von Teilmengen

Berechnung von Teilmengen Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die

Mehr

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Kapitel 2. Kapitel 2 Zählen (Kombinatorik)

Kapitel 2. Kapitel 2 Zählen (Kombinatorik) Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für

Mehr

Zahlen und Rechenstrukturen

Zahlen und Rechenstrukturen Teil 1 Zähltheorie KAPITEL 1 Zahlen und Rechenstruturen Eine lassische Aufgabe der disreten Mathemati (Kombinatori) besteht darin zu ermitteln, wieviele Konfigurationen (d.h. disrete Objete von einem

Mehr

Elementarmathematik. Im Buch Virus Dynamics von M. Nowak und R. May findet man das Zitat:

Elementarmathematik. Im Buch Virus Dynamics von M. Nowak und R. May findet man das Zitat: Elementarmathemati 1 Einleitung Im Buch Virus Dynamics von M. Nowa und R. May findet man das Zitat:... mathematics is no more, but no less, than a way of thining clearly [3]. (... die Mathemati ist nichts

Mehr

4 Die Fibonacci-Zahlen

4 Die Fibonacci-Zahlen 4 Die Fibonacci-Zahlen 4.1 Fibonacci-Zahlen und goldener Schnitt Die Fibonacci-Zahlen F n sind definiert durch die Anfangsvorgaben F 0 = 0, F 1 = 1, sowie durch die Rekursion F n+1 = F n + F n 1 für alle

Mehr

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck

Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck 1 Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck Wir kennen die beiden binomischen Formeln: Sie sind ein Sonderfall des Binomischen Lehrsatzes: Wir sehen, dass die Potenzen

Mehr

Einschub: Summen, Produkte und Potenzen.

Einschub: Summen, Produkte und Potenzen. Einschub: Summen, Produte und Potenzen. Allgemeine Summen und Produte. n b := b m +b m+1 + +b n (fallsm n) =m n =m b := 0 (fallsm > n, leere Summe) n =m b := b m b m+1... b n (fallsm n) n =m b := 1 (fallsm

Mehr

Formale Potenzreihen, Rekursionen und erzeugende Funktionen

Formale Potenzreihen, Rekursionen und erzeugende Funktionen KAPITEL 2 Formale Potenzreihen, Reursionen und erzeugende Funtionen Wir gehen von folgender abstraten Situation aus Gegeben ist eine Klasse O ombinatorischer Objete und eine Klassifiationsabbildung t :

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen ohne die Null) 1.1 Teilbareit

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

Zahlentheorie. Lisa Sauermann. März 2013

Zahlentheorie. Lisa Sauermann. März 2013 Zahlentheorie Lisa Sauermann März 2013 Hier sollen einige grundlegende Lösungsmethoden für Zahlentheorieaufgaben bei Olympiaden und anderen Wettbewerben vermittelt werden. Der Chinesische Restsatz Satz

Mehr

15.2 Kombinatorische Abzählformeln

15.2 Kombinatorische Abzählformeln 15.2 Kombinatorische Abzählformeln 1. Permutationen In wie vielen verschiedenen Reihenfolgen ann man n verschiedene Dinge anordnen? Wie viele Reihenfolgen gibt es, wenn die Dinge nicht alle verschieden

Mehr

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit

Kapitel 5. Entscheidbarkeit und Berechenbarkeit. 5.1 Entscheidbarkeit Kapitel 5 Entscheidbareit und Berechenbareit Wir wenden uns nun grundsätzlichen Fragen zu, nämlich den Fragen nach der prinzipiellen Lösbareit von Problemen. Dazu stellen wir auch einen Zusammenhang zwischen

Mehr

WAHRSCHEINLICHKEITSTHEORIE. 1. Elementare Kombinatorik Wir betrachten die Frage wieviele Möglichkeiten es gibt, aus n unterschiedlichen

WAHRSCHEINLICHKEITSTHEORIE. 1. Elementare Kombinatorik Wir betrachten die Frage wieviele Möglichkeiten es gibt, aus n unterschiedlichen WAHRSCHEINLICHKEITSTHEORIE 1. Elementare Kombinatori Wir betrachten die Frage wieviele Möglicheiten es gibt, aus n unterschiedlichen Objeten auszuwählen. Dabei müssen wir sowohl unterscheiden ob ein Objet

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrüc WS 2011/2012 Mathemati für Anwender I Vorlesung 3 Bernoullische Ungleichung Die Bernoulli sche Ungleichung für n = 3. Die folgende Aussage heißt Bernoulli Ungleichung. Satz

Mehr

ABZÄHLENDE KOMBINATORIK VORLESUNG IM WINTERSEMESTER 1999/2000

ABZÄHLENDE KOMBINATORIK VORLESUNG IM WINTERSEMESTER 1999/2000 ABZÄHLENDE KOMBINATORIK VORLESUNG IM WINTERSEMESTER 1999/2000 MICHAEL STOLL 1. Einführung und Grundlagen 1.1. Einführung. Die erste Frage, die sich stellt, ist natürlich Was ist Abzählende Kombinatori?

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit Ferienurs Analysis Tag - Lösungen zu Komplee Zahlen, Vollständige Indution, Stetigeit Pan Kessel 4.. 009 Inhaltsverzeichnis Komplee Zahlen. Darstellung einer ompleen Zahl.....................................

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Kombinatorische Beweisprinzipien

Kombinatorische Beweisprinzipien Kombinatorische Beweisprinzipien Satz Binomischer Lehrsatz Beweis (a + b) n = n k=0 ( ) n a k b n k k Multipliziere (a + b) n aus: (a + b) (a + b)... (a + b). Aus jedem der n Faktoren wird entweder a oder

Mehr

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn 3. 1 Transposition der Elementarmatrizen aus R n n. Für 1 i, j n und λ G(R) bzw. λ R gilt t S i (λ) S i (λ), t Q j i (λ) Qi j (λ), t P j i P j i. 3. 11 Definition. Eine Matrix A R n n t A A. heißt symmetrisch,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

1 Folgen und Stetigkeit

1 Folgen und Stetigkeit 1 Folgen und Stetigkeit 1.1 Folgen Eine Folge ist eine durchnummerierte Zusammenfassung von reellen Zahlen. Sie wird geschrieben als (a 1, a 2, a 3,...) = (a n ) n N. Es ist also a n R. Der Index n gibt

Mehr

7 Das Zählen von Objekten. Themen: Teile und Herrsche Zählen durch Bijektion

7 Das Zählen von Objekten. Themen: Teile und Herrsche Zählen durch Bijektion 7 Das Zählen von Objekten Themen: Teile und Herrsche Zählen durch Bijektion Grundprinzipien des Zählens 1. Teile und Hersche: Strukturiere die zu zählenden Objekte so, dass sie in Teilklassen zerfallen,

Mehr

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Kapitel 6. Elementare Kombinatorik und Abzählbarkeit. Elementare Kombinatorik und Abzählbarkeit

Kapitel 6. Elementare Kombinatorik und Abzählbarkeit. Elementare Kombinatorik und Abzählbarkeit und Abzählbarkeit Kapitel 6 und Abzählbarkeit Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester 2016/17 253 / 288 und Abzählbarkeit Inhalt Inhalt 6 und Abzählbarkeit Abzählbarkeit Peter Becker

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

solche Permutationen. Für n von 1 bis 8 ergeben sich folgende Zahlen: [ ]

solche Permutationen. Für n von 1 bis 8 ergeben sich folgende Zahlen: [ ] 5A Permutationen Symmetrien geometrischer Figuren beschreibt man mathematisch durch Vertauschungen einer gewissen Anzahl von Punten, welche die Gesamtfigur unverändert lassen Beispiel : Drehungen und Spiegelungen

Mehr

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom

Bernstein-Polynome. Autor: Johannes Erath. Schriftliche Ausarbeitung zum Vortrag vom Bernstein-Polynome Autor: Johannes Erath Schriftliche Ausarbeitung zum Vortrag vom 07.04.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Einführung 3 2.1 Etwas Geschichte........................... 3 2.2 Denition

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt06_Lsg.doc

Prof. S. Krauter Kombinatorik. WS Blatt06_Lsg.doc Prof. S. Krauter Kombinatorik. WS-05-06. Blatt06_Lsg.doc Aufgaben zur Siebformel: 1. Formulieren Sie die Siebformel ausführlich und explizit für die Vereinigung von 2, 3 bzw. 4 Mengen A, B, C und D. Machen

Mehr

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch 04.11.05 1 HEUTE 04.11.05 3 Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch die Rundungsfunktionen und modulo

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrüc SS 2008 Zahlentheorie Vorlesung 5 In diesem Abschnitt beschäftigen wir uns mit der Einheitengruppe der Restlassenringe Z/(n), also mit (Z/(n)). Ihre Anzahl wird durch die

Mehr

Folgen und Reihen Folgen

Folgen und Reihen Folgen Folgen und Reihen 30307 Folgen Einstieg: Wir beginnen mit einigen Beispielen für reelle Folgen: (i),, 4, 8, 6, (ii) 4,, 6, 3, 7, (iii) 0,,,, 3,, (iv), 3, 7,,, Aufgabe : Setzt die Zahlenfolgen logisch fort

Mehr

Rekursive Folgen. Ermittle jeweils drei weitere Elemente. Gegen welchen Wert könnte die Folge streben? c Roolfs 3 2, 7 5, 17 12,...

Rekursive Folgen. Ermittle jeweils drei weitere Elemente. Gegen welchen Wert könnte die Folge streben? c Roolfs 3 2, 7 5, 17 12,... Rekursive Folgen Ermittle jeweils drei weitere Elemente. Gegen welchen Wert könnte die Folge streben? a) b) c) d) e), 7 5, 7,... 4, 9 5, 9 4,..., 5, 4 8,..., 5, 7,..., 7, 0,... Rekursive Folgen Ermittle

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Das Prinzip der Inklusion und Exklusion

Das Prinzip der Inklusion und Exklusion Extremal Combinatorics Gliederung Einleitung Inklusion und Exklusion Bonferroni-Ungleichungen Erweiterungen Zusammenfassung Einleitung (I) Prinzip der Inklusion und Exklusion Siebformel Das Sieb des Eratosthenes

Mehr

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz 2.2.3 Der allgemeine binomische Lehrsatz Mit Hilfe dieser neuen Begriffe und Symbole önnen wir eine allgemeingültige Formel für den Ausdruc (a + b) n angeben. Es gilt: Lemma 2. [Binomischer Lehrsatz] Sind

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k

Zusammenfassung. n k+1 j k! j ( k + 1 j )! 2 + k Aussagenlogi Tobias Krähling email: Homepage: 7.. Version. Zusammenfassung Im vorliegenden Doument soll die Potenzsummenformel i= i = n+ n + + n + j= a

Mehr

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze?

ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze? Zahlenfolgen Anna Rodenhausen Wieviele Dreiecke, wieviele Trapeze? Wieviele Dreiecke, wieviele Trapeze? # Linien # Dreiecke # Trapeze 0 3 0 3 3 6 5 0 5 6 5 3 Wieviele Dreiecke, wieviele Trapeze? # Linien

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)

WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Mathematikkurs für Ingenieure Teil 6 Kombinatorik

Mathematikkurs für Ingenieure Teil 6 Kombinatorik Mathematiurs für Ingenieure Teil 6 Kombinatori von Rolf Wirz Ingenieurschule Biel Nach den NeXT Crash von 1999 restaurierte Ausgabe V.1.2.1 d/f 25. Mai 2005!Draft! Deutsche Version! V.1.2.1 d/f WIR/NeXT/93/01/05/LaTex/Teil6.tex

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt onvex, wenn sie mit je zwei Punten x,y auch stets deren Verbindungsstrece xy = {x + t xy 0 t } = {( t)x + ty 0 t } enthält. onvex nicht onvex Lemma 2. Der

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr