Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Größe: px
Ab Seite anzeigen:

Download "Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest."

Transkript

1 Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras ist grün, oder Kroodilien fliegen. Die erste Aussage wird meistens wahr sein; die zweite Aussage höchst selten. Für mathematische Aussagen werden wir in den Anfängervorlesungen zwei Möglicheiten zulassen: wahr oder unwahr. Um logische Folgerungen urz und lar aufschreiben zu önnen, hat man sich auf den folgenden Symbole geeinigt: A B heißt A und B gelten ; A B heißt A oder B gilt (auch beides gleichzeitig ist erlaubt); A B heißt wenn A gilt, dann gilt auch B ; A B bedeutet B A; A B bedeutet (A B) (A B); A ist die Verneinung von A. In einer Wahrheitstafel fasst man dies wie folgt zusammen: A B A B A B A B A wahr wahr wahr wahr wahr unwahr unwahr wahr unwahr wahr wahr wahr wahr unwahr unwahr wahr unwahr unwahr unwahr unwahr unwahr unwahr wahr wahr Beispiel. Die Aussage Wenn es regnet, fahre ich nicht mit dem Fahrrad zur Arbeit Diese Aussage ist wahr, denn ich fahre nie mit dem Fahrrad zur Arbeit. Ob es regnet oder nicht, ist egal.

2 2 22. Otober 205 Woche, Zahlen Beispiel.2 Die Aussage Wenn man Holländer ist, hat man Holzschuhe ist nicht wahr, denn der Autor dieses Sripts hat eine Holzschuhe. Beispiel.3 Die Aussage Die Aussage, dass wenn man Holländer ist, hat man Holzschuhe, ist unwahr ist wahr. Bei der Herleitung einer onsistenten Schlußfolgerung ist die logische Umehrung oft sehr nützlich. Mit Hilfe einer Wahrheitstafel sieht man leicht, dass A B und B A äquivalent sind: A B A B B A B A wahr wahr wahr unwahr unwahr wahr unwahr wahr wahr unwahr wahr wahr wahr unwahr unwahr wahr unwahr unwahr unwahr unwahr wahr wahr wahr wahr Diese Ergebnisse fassen wir zusammen in nächsten Lemma Lemma.4 Seien A und B beliebige Aussagen. Dann gilt die logische Umehrung: (A B) ( B A). Theoreme, Propositionen und Lemmata werden in der Mathemati benutzt um mehr oder weniger wichtige Aussagen onzentriert darzustellen...2 Sonstige Symbole Für eine onzentrierte Darstellung mathematische Ergebnisse verwendet man die folgende Symbole aus der Mengenlehre: x A heißt x ist ein Element von A ; A B heißt A ist eine Teilmenge von B ; A B = {x; x A oder x B} ist die Vereinigung beider Mengen ( oder ist hier nicht ausschließend); A B = {x; x A und x B} ist der Durchschnitt beider Mengen; A\B = {x; x A und x B}; heißt es gibt ; heißt für alle. Lemma.5 Sei A eine Menge und A x eine Aussage für x A. Dann folgt: ( x A gilt A x ) ( x A mit A x gilt nicht). Dies ann man noch ürzer fassen mittels: ( x A : A x ) ( x A : A x ). Eine allgemeine Aussage für die Elementen einer Menge ist also falsch, wenn man in dieser Menge ein Gegenbeispiel findet.

3 .2 Natürliche Zahlen 22. Otober Abbildungen, Funtionen Wenn A und B zwei Mengen sind, dann nennt man eine Vorschrift f, die an jedes Element von A ein Element von B oppelt, eine Abbildung oder Funtion. Man schreibt f : A B. Wenn für (a, b) A B gilt f(a) = b, dann nennt man b das Bild von a. Die Teilmenge f (b) := {a A; f(a) = b} nennt man das Urbild von b. Definition.6 Eine Abbildung f : A B heißt injetiv (= eineindeutig), wenn f(x) = f(y) impliziert, dass x = y. Bei einer injetiven Abbildung hat jedes Urbild höchstens ein Element. Definition.7 Eine Abbildung f : A B heißt surjetiv, wenn es für jedes b B ein a A gibt mit f(a) = b. Bei einer surjetiven Abbildung hat jedes Element von B ein nicht-leeres Urbild. Definition.8 Eine Abbildung f : A B, die surjetiv und injetiv ist, heißt bijetiv. Beispiel.9 Sei A die Menge aller Steuerzahler in Deutschland. Die Abbildung f, die deren Steuernummern liefert, ist überraschenderweise nicht injetiv. Tatsächlich scheint nur die Abbildung nach {Steuernummer,Identitätsnummer} injetiv zu sein. Beispiel.0 Sei A die Menge der Studenten am Donnerstagmorgen um 8.30 im Hörsaal B. Weil Mathemati- und Physistudierenden wieder die gleiche Vorlesung hören, haben wir befürchtet, dass die Abbildung auf die Sitzplätze surjetiv ist. Die ähnliche Abbildung am Montagmorgen wird garantiert nicht surjetiv sein. Diese und ähnliche Abbildungen sind normalerweise jedoch injetiv..2 Natürliche Zahlen Die Menge der natürlichen Zahlen nennt man N: N = {0,, 2,... }. Manchmal fängt man auch erst mit statt 0 an. Wir werden 0 dazunehmen und für die natürlichen Zahlen ohne 0 schreiben wir N + = {, 2, 3,... }. Addition und Multipliation sind Abbildungen von N N nach N. Wir nehmen an, dass man diese natürlichen Zahlen ennt. Die Liebhaber schauen sich in dieser Fußnote an, wie man sie axiomatisch einführt. Jede natürliche Zahl n 2, die nur durch n und innerhalb N teilbar ist, nennt man Primzahl. Peano führt N wie folgt ein: Definition. N wird definiert durch:. 0 N, 2. Es gibt eine Nachfolgerabbildung N : N N derart, dass: (a) 0 N(N), (b) N(n) = N() n = (N ist injetiv), (c) wenn A N derart ist, dass 0 A und N(A) A, so gilt A = N. Wenn man ein Römer ist, dann ürzt man durch: := N(0), 2 := N(N(0)) usw.

4 4 22. Otober 205 Woche, Zahlen.2. Vollständige Indution Wenn man für alle n N eine Behauptung B(n) beweisen möchte, ann man oft den folgenden Ansatz benutzen: Theorem.2 (Indutionsprinzip) Sei B(n) mit n N eine Folge von Behauptungen. Nehme an. B (0) gilt, und 2. (B(n) B(n + )) gilt für alle n N. Dann hat man B(n) gilt für alle n N. Bemerung.2. Die zweite Bedingung heißt: angenommen B(n) ist wahr, dann folgt, dass auch B(n + ) wahr ist und dies gilt für jedes n N Beweis. Nenne A die Teilmenge aus N, die definiert wird durch B(n) ist wahr für n A. Eigenschaft 2(c) aus Definition. gibt das Ergebnis. Als Beispiel betrachten wir eine berühmte Ungleichung. Lemma.3 (Bernoullische Ungleichung) Für x > und n N gilt ( + x) n + nx. (.) Beweis. Diese Behauptung läßt sich mit dem Indutionsprinzip beweisen. Zwei Aussagen sind zu beweisen.. B(0), also ( + x) 0 + 0x. Für n = 0 hat man ( + x) 0 = + 0x. 2. B(n) = B (n + ) für n N, also ( + x) n + nx = ( + x) n+ + (n + ) x. Angenommen, dass ( + x) n + nx (.2) gilt, findet man ( + x) n+ = ( + x) n ( + x) ) ( + nx) ( + x) = + (n + ) x + nx 2 + (n + ) x. Bei ) ist die Indutionsannahme (.2) benutzt worden, die Annahme, dass +x 0, und Ordnungsregeln beim Multiplizieren: a b und c 0 impliziert ca cb. Aus dem Indutionsprinzip folgt dann (.).

5 .2 Natürliche Zahlen 22. Otober Funtionen auf N Seien a für N irgendwelche Zahlen, die man addieren und multiplizieren ann. Notation.4 Man schreibt für n N + = {, 2, 3,... } folgendes: a = a + a a n, n a = a.a 2..a n. Außerdem vereinbart man, dass 0 a = 0 und 0 a =. Bemerung.4. Bei den Püntchen geht man davon aus, dass wir diese eindeutig ergänzen. Eine präzise Definition wäre indutiv: a = 0 und ( n+ ) a = a + a n+ für alle n N. So findet man 00 = = 5050 und man sieht, dass nur eine Notationshilfe ist. Für n N ann man zeigen, dass = n (n + ). 2 Auf ähnlicher Art definiert man auch a = a 0 + a + + a n und, wenn n 5 =0 a = a 5 + a a n. 5 Faultät: Man definiert für n N n! = n, sprich,,n-faultät, und dies ann man auch schreiben als n! = n(n )(n 2) für n N\ {0}, 0! =.

6 6 22. Otober 205 Woche, Zahlen Also: n n! Die Zahl n! erscheint beim Anordnen von gefärbten Kugeln. Man ann n unterschiedliche Kugeln auf n! unterschiedliche Möglicheiten hintereinander legen. 4 Kugeln ann man auf 24 verschiedene Arten anordnen. Binomialoeffizient: Man definiert für n, N: n + m = + m. m= Man spricht,,n über. Wenn man lieber mit Püntchen schreibt: = n n... n + 3 n + 2 n + für n N und N\ {0}, 3 2 = für n N. 0 Mit n unterschiedlichen Kugeln ann man unterschiedliche Teilmengen von Kugeln bilden. Nimmt man 3 aus 5 unterschiedlichen Kugeln, dann gibt es 0 Möglicheiten. Einige Identitäten: ( ) ( ) n n + Pascalsches Dreiec: =0 = = = n! für, n N mit n,! (n )! für, n N mit n, n + für, n N mit n, = 2 n für n N. 2 = ( 5 0 ( 0 ( ) 0) ( ( 0 2 ) ( 2 ) ) ( 2 ( 0 3 ) ( 3 ) ( 3 ) 2) ( 3 ( ) ( 4 ) ( 4 ) ( 4 ) 3) ( 4 ) 0 ( ) ( 5 ) ( 5 ) ( 5 ) 4) ( )

7 .3 Rationale Zahlen 22. Otober Lemma.5 Für n N und beliebige Zahlen x, y ungleich 0 gilt: (x + y) n = =0 x y n. (.3) Beweis. Man beweist dieses Lemma mit Hilfe vollständiger Indution. =0 Wenn man erschrict vor, dann ann man (.3) notfalls anders schreiben: x y n = 0 y n + x y n + 2 x 2 y n x 3 y n x 4 y n n x n y + x n. n Dann geht man wieder davon aus, dass jeder die Püntchen versteht. Übrigens gilt diese letzte Formel auch für x, y = Ganze Zahlen Man setzt: Z = {..., 2,, 0,, 2,... }. Addition, Multipliation und sogar Subtration lassen sich auf Z Z definieren. Man sagt n m für n, m Z, wenn es eine Zahl N gibt so, dass n + = m. Für die Teilmenge der geraden Zahlen schreibt man und für die Teilmenge der ungeraden 2Z = {..., 4, 2, 0, 2, 4,... } 2Z + = {..., 5, 3,,, 3,... }..3 Rationale Zahlen Man setzt: Q = { n m ; n Z und m N+ }. Dabei unterscheidet man jedoch zum Beispiel nicht zwischen 3 5 und 9 5. Man sagt n m = a b, wenn nb = am. Addition und Multipliation werden definiert durch n m + a b = nb + ma mb und n a m b = na mb. Identifiziert man n und n, dann ist Z eine Teilmenge von Q..3. Algebraische Eigenschaften Wenn man (K, +, ) schreibt, meint man damit, dass K irgendeine Menge ist, wobei Addition (+) und Multipliation ( ) definiert sind. Insbesonders soll K abgeschlossen sein unter diesen beiden Operatoren, das heißt: für alle a, b K gilt a + b K und a b K. Definition.6 (K, +, ) nennt man einen Körper, wenn:

8 8 22. Otober 205 Woche, Zahlen (K, +) additive Gruppe (K \ {0}, ) mutipliative Gruppe. Für alle a, b, c K gilt (a + b)+c = a+(b + c), die Assoziativität der Addition; 2. Es gibt ein neutrales Element der Addition 0 K so, dass für jedes a K gilt a + 0 = a; 3. Zu jedem a K gibt es ein additiv inverses Element a K mit a+( a) = 0; 4. Für alle a, b K gilt a + b = b + a, die Kommutativität der Addition; 5. Für alle a, b, c K gilt (a b) c = a (b c), die Assoziativität der Multipliation; 6. Es gibt ein neutrales Element der Multipliation K mit 0 so, dass für jedes a K gilt a = a; 7. Zu jedem a K mit a 0 gibt es ein multipliativ inverses Element a K mit a a = ; 8. Für alle a, b K gilt a b = b a, die Kommutativität der Multipliation; 9. Für alle a, b, c K gilt a (b + c) = a b + a c, die Distributivität. Q wird mit Addition und Multipliation ein Körper. Bemerung.6. Die Eigenschaften bis 4 definieren (K, +) als (additive) Gruppe. Ebenso definieren die Eigenschaften 5 bis 8 (K\ {0}, ) als (multipliative) Gruppe. Wenn nur die Eigenschaften -3 erfüllt sind, dann nennt man (K, +) eine nicht-ommutative Gruppe. Und um eine Verwirrung aufommen zu lassen, wird (K, +), wenn alle 4 Eigenschaften erfüllt sind, auch explizit eine ommutative Gruppe genannt. Man ann diret ontrollieren, dass (Q, +, ) ein Körper ist, und dass (Q, +) und (Q\ {0}, ) eine additive, respetive multipliative Gruppe ist. p Öfters sieht man folgende Addition in Q: q = p+q. Angenommen wir nehmen m n m+n immer die leinstmögliche Schreibweise in Q, also 2 statt 4, welche Probleme hat man 3 6 denn so für (Q,, )? Welche Körpereigenschaften wären nicht erfüllt?.3.2 Ordnung Auf Z gibt es eine natürliche Ordnung. Man schriebt z < z 2, wenn z lins von z 2 steht in der Standardauflistung von Z:..., 2,, 0,, 2,..., und z z 2, wenn z nicht rechts von z 2 steht in diesee Aufistung. Diese Ordnung von Z önnen wir übertragen auf Q: Definition.7 Seien a n und b m in Q (mit a, b Z und n, m N\ {0}). Man schreibt a n b, wenn ma nb, m und man schreibt a n < b m, wenn a n b m und a n b m.

9 .3 Rationale Zahlen 22. Otober Unendlich und abzählbar Definition.8. Man nennt eine Menge A unendlich, wenn A nicht leer ist und wenn es eine Abbildung f : A A gibt, die injetiv, aber nicht surjetiv ist. 2. Man nennt eine Menge A abzählbar unendlich, wenn A unendlich ist und es eine surjetive Abbildung f : N A gibt. Lemma.9 Q ist abzählbar unendlich..3.4 Rationale Zahlen reichen nicht Die Griechen aus der Zeit von vor etwa 500 v.c. brachten die Zahlen in Verbindung mit messbaren Längen und dachten, dass sich alle Zahlen als Verhältnis von ganzen Zahlen schreiben lassen. Modern gesagt: Q reicht. Die Länge der Diagonalen im Einheitsquadrat gibt da aber schon ein Problem. Wegen Pythagoras findet man für die Länge x nämlich x 2 = = 2. Lemma.20 Es gibt eine rationale Zahl x so, dass x 2 = 2. Beweis. Man beweist diese Aussage durch einen Widerspruch. Nehme an, es gibt n Z und m N\ {0} so, dass ( n ) 2 = 2. m Man darf annehmen, dass n und m einen gemeinsamen Teiler haben, denn wenn es nicht so wäre, önnte man n und m vereinfachen, indem man durch den gemeinsamen Teiler dividiert. Es folgt n 2 = 2m 2. Weil die rechte Seite gerade ist, muss auch die line Seite gerade sein und so auch n. Es folgt, dass n = 2 für irgendein Z, und man findet 4 2 = 2m 2. Aus m 2 = 2 2 folgt, dass m gerade ist und man erhält einen Widerspruch. Anscheinend reichen die rationalen Zahlen nicht aus, und es gibt Löcher zu füllen zwischen den rationalen Zahlen. Das führt zu den sogenannten reellen Zahlen..3.5 Wie ann man reelle Zahlen einführen? Eine Möglicheit, die rationalen Zahlen zu vervollständigen, ist, die Ordnung von Q zu benutzen. Eine Konstrution ist wie folgt:. Sei F die Menge aller Folgen rationaler Zahlen, die monoton wachsend und nach oben beschränt sind. 2. Wenn {a n } n=0 und {b n} n=0 aus F sind, dann sagt man {a n} n=0 {b n} n=0 (beide Folgen sind äquivalent), wenn für jedes q Q gilt a n q für alle n N b n q für alle n N. Anders gesagt: beide Folgen haben die gleichen oberen Schranen.

10 0 22. Otober 205 Woche, Zahlen 3. Schlussendlich setzt man R = (F, ), dass heißt, man identifiziert Folgen, die äquivalent sind. Man fasst diese Konstrution zusammen, indem man sagt: R ist die Menge aller Grenzwerte von monoton wachsenden, beschränten Folgen aus Q. Wir haben aber noch nicht gesagt, was ein Grenzwert oder ein Limes ist. Wir ommen dann auch nächste Woche auf diese Einführung der reellen Zahlen zurüc. Beispiel.2 Wir zeigen hier den Anfang einer monoton wachsenden Folge, die 2 = liefert: {, } 4 0, 4 00, , , ,.... (.4) Eine andere monoton wachsende Folge rationaler Zahlen, die 2 approximiert, ist {a n } n N, definiert durch a 0 = und a n+ = 3a2 n + 2 4a n für n N. (.5) Man findet {, } 5 4, 07 80, , , ,... und wenn man diese Zahlen bis in 0 Dezimalen berechnet, folgt {,.25,.3375, , , ,... }. (.6) Die Folgen in (.4) und (.6) sind äquivalent. Wir werden übrigens noch sehen, dass man 2 viel schneller approximieren ann.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

2 Vollständige Induktion

2 Vollständige Induktion Vollständige Indution Wir unterbrechen jetzt die Disussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Indution ennenzulernen. Wir setzen voraus, dass die natürlichen Zahlen

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B (

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B ( 3 1. Die reellen Zahlen Die reellen Zahlen sind die Zahlen, mit denen wir gewöhnlich rechnen. Sie enthalten Elemente wie e, π oder 5 3. In diesem Kapitel geht es darum, ihren axiomatischen Aufbau und die

Mehr

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen Prof Dr H Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Arbeitsblatt 5 Vernüpfungen Aufgabe 51 Betrachte die ganzen Zahlen Z mit der Differenz als Vernüpfung, also die Abbildung Z Z Z, (a, b) a b Besitzt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen 3 1. Die reellen Zahlen 1.1. Undefinierte Begriffe. Wir verwenden eine Reihe von Begriffen ohne mathematisch genaue Definition: Eine Aussage nennen wir etwas, von dem wir sagen önnen, ob es wahr ist oder

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Teil 1. Mathematische Grundlagen

Teil 1. Mathematische Grundlagen Teil 1 Mathematische Grundlagen 5 6 1.1 Aussagenlogi Aussage und Axiom Aussage: sprachlicher Ausdruc mit eindeutigem Wahrheitswert w ( wahr ) bzw. f ( falsch ) A : Beschreibung Axiom: grundlegende nicht

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

Kommentare und Lösungen zur Aufgabe 2 in Serie 1

Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen 9. Otober 2018 Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Ich habe zwei Lösungsversuche zur Aufgabe 2 in Serie 1 erhalten. Die erste führt nicht

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Technische Universität München. Aufgaben Montag WS 2011/12

Technische Universität München. Aufgaben Montag WS 2011/12 Technische Universität München Andreas Wörfel Ferienurs Analysis 1 für Physier Aufgaben Montag WS 2011/12 Aufgabe 1 Ne Menge Mengen a Zeigen Sie: A B A B B Zeige: A B A B B x (A B x A B x B, also: (A B

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 12 Ringe Wir beginnen einen neuen Abschnitt dieser Vorlesung, in dem es um Ringe geht. Definition 12.1. Ein Ring R ist eine Menge

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist.

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Analysis, Woche 5 Funktionen I 5. Definition Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Definition 5. Eine Funktion f : A B

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align 4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 7 Weitere Eigenschaften der reellen Zahlen Korollar 7.1. Eine beschränkte und monotone Folge in R konvergiert. Beweis. Nach Voraussetzung

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn 3. 1 Transposition der Elementarmatrizen aus R n n. Für 1 i, j n und λ G(R) bzw. λ R gilt t S i (λ) S i (λ), t Q j i (λ) Qi j (λ), t P j i P j i. 3. 11 Definition. Eine Matrix A R n n t A A. heißt symmetrisch,

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als

eine reelle (oder komplexe) Folge. Dann heißt l der Limes oder der Grenzwert dieser Folge, notiert als Analysis, Woche 9 Stetigkeit I A 9. Grenzwerte bei Funktionen 9.. Der einfachste Fall Wir erinnern noch mal an den Grenzwert bei einer Folge. Sei {a n } n=0 eine reelle (oder komplexe) Folge. Dann heißt

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k. Analysis, Woche 7 Reihen I 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n =

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrüc SS 2008 Zahlentheorie Vorlesung 5 In diesem Abschnitt beschäftigen wir uns mit der Einheitengruppe der Restlassenringe Z/(n), also mit (Z/(n)). Ihre Anzahl wird durch die

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff 30.0.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Aufgabe : (6 Punte) Welche der folgenden Tupel sind Maßräume? Beweisen Sie Ihre Behauptung. {

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

B Grundbegriffe zu Mengen und Abbildungen

B Grundbegriffe zu Mengen und Abbildungen B Grundbegriffe zu Mengen und Abbildungen Die Sprache der Mengen und Abbildungen hat sich als Basissprache in der modernen Mathematik durchgesetzt. Da sie sehr praktisch ist, wird sie auch in diesem Buch

Mehr

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, 01.11.2018 Christian Rieck, Arne Schmidt Einführendes Beispiel

Mehr

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Einschub: Summen, Produkte und Potenzen.

Einschub: Summen, Produkte und Potenzen. Einschub: Summen, Produte und Potenzen. Allgemeine Summen und Produte. n b := b m +b m+1 + +b n (fallsm n) =m n =m b := 0 (fallsm > n, leere Summe) n =m b := b m b m+1... b n (fallsm n) n =m b := 1 (fallsm

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Mengenoperationen, Abbildungen

Mengenoperationen, Abbildungen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Z6 Rechengesetze für Mengenoperationen Lineare Algebra 1 WS 2006/07 en Blatt 3 06.11.2006 Mengenoperationen,

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 3 Hinweise 1. Verwenden Sie in a) für die ersten beiden Gleichungen die Eindeutigkeit des additiven Inversen (Folgerung (b)) und

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Teil II: Lineare Algebra

Teil II: Lineare Algebra 3 Vektorräume 49 Teil II: Lineare Algebra 3 Vektorräume Wir haben in den vorangegangenen Kapiteln ausführlich die Differential- und Integralrechnung in einer (reellen Variablen untersucht Da die Welt aber

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2

heißt Exponentialreihe. Die durch = exp(1) = e (Eulersche Zahl). n! + R m+1(x) R m+1 (x) = n! m m + 2 9 DIE EXPONENTIALREIHE 48 absolut konvergent. Beweis. Wegen x n+ n! n + )!x n = x n + < 2 für n 2 x folgt dies aus dem Quotientenkriterium 8.9). Definition. Die Reihe x n heißt Exponentialreihe. Die durch

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k.

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, s n = a k. Analysis, Woche 7 Reihen I A 7. Folgen aus Folgen Wenn a n eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge s n konstruieren durch s n = a 0 + a + + a n, oder netter geschrieben s n

Mehr

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr.

Die Binomialreihe. Sebastian Schulz. Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 2008/09, Leitung Prof. Dr. Die Binomialreihe Sebastian Schulz Ausarbeitung zum Vortrag im Proseminar Analysis (Wintersemester 008/09, Leitung Prof. Dr. Eberhard Freitag Zusammenfassung: Diese Ausarbeitung beschäftigt sich mit der

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

3 Überlagerungen und Quotienten

3 Überlagerungen und Quotienten $Id: quotient.tex,v 1.12 2017/01/25 18:36:36 h Exp $ 3 Überlagerungen und Quotienten 3.3 Der Riemannsche Existenzsatz Wie in der letzten Sitzung angeündigt wollen wir nun den Riemannschen Existenzsatz

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen

Mehrfach und unendlich oft differenzierbare Funktionen, Potenzreihen Kapitel V Mehrfach und unendlich oft differenzierbare Funtionen, Potenzreihen 21 Mehrfache Differenzierbareit und Potenzreihen 22 Die trigonometrischen und die Hyperbelfuntionen 23 Konvexe Funtionen und

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit

Analysis I. Vorlesung 13. Gleichmäßige Stetigkeit Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 13 Gleichmäßige Stetigkeit Die Funktion f: R + R +, x 1/x, ist stetig. In jedem Punkt x R + gibt es zu jedem ǫ > 0 ein δ > 0 mit f(u (x,δ))

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Aussagenlogik

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 25 Das Archimedes-Axiom für die rationalen Zahlen Archimedes (ca. 287-212 v. C.) Lemma 25.1. Zu jeder rationalen Zahl q gibt

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge.

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge. Folgen Eine Folge stellt man sich am einfachsten als eine Aneinanderreihung von Zahlen (oder Elementen irgendeiner anderen Menge) vor, die immer weiter geht Etwa,,,,,, oder,,, 8,,,, oder 0,,,,,,,, In vielen

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b Kapitel 3. Folgen 3.1. Körper der reellen Zahlen Wir kennen schon den Körper Q der rationalen Zahlen: Q = { a b : a, b Z, b 0}. Die natürliche Ordnung auf Q ist eine totale Ordnung. Überdies gilt folgendes

Mehr