2 Vollständige Induktion

Größe: px
Ab Seite anzeigen:

Download "2 Vollständige Induktion"

Transkript

1 Vollständige Indution Wir unterbrechen jetzt die Disussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Indution ennenzulernen. Wir setzen voraus, dass die natürlichen Zahlen N als Folge 1, 1 + 1, + 1 3,... gegeben sind. Ausgehend von 1 N wird also jede natürliche Zahl erreicht, indem die 1 endlich oft addiert wird. Darauf beruht das Indutionsprinzip: Sei M N eine Menge mit den beiden Eigenschaften 1 1 M, n M n + 1 M. Dann gilt schon M N. Die Beschreibung der natürlichen Zahlen als Folge 1,, 3,... ist eine strenge Definition, da die Püntchen nicht präzisiert werden. Demzufolge önnen wir auch das Indutionsprinzip nicht rigoros begründen, sondern nehmen es schlicht als gegeben hin. Auf der Basis der Axiome K, A1 und A ann aber eine strenge Definition der natürlichen Zahlen als Teilmenge der reellen Zahlen gegeben werden, wobei das Indutionsprinzip dann als Satz gefolgert wird. Dies wird zum Beispiel in den Büchern von Barner & Flohr sowie Hildebrandt ausgeführt. Das Beweisverfahren der vollständigen Indution ergibt sich diret aus dem Indutionsprinzip. Satz.1 Beweisverfahren der vollständigen Indution Gegeben sei eine Folge von Aussagen An für n N. Es möge gelten: 1 A1 ist wahr. Indutionsanfang An ist wahr An + 1 ist wahr. Indutionsschluß Dann sind alle Aussagen An wahr. Beweis: Wir betrachten die Menge M {n N : An ist wahr}. Nach Voraussetzung gilt 1 M, und mit n M ist auch n + 1 M. Das Indutionsprinzip ergibt M N, das heißt alle Aussagen An sind wahr. Ein Indutionsbeweis funtioniert immer in zwei Schritten: Indutionsanfang n 1: Beweis der Behauptung für n 1. Indutionsschluß n n + 1: Beweis, dass aus der Wahrheit der Behauptung für An Indutionsannahme die Wahrheit der Behauptung für An + 1 folgt. Bemerung. Statt bei n 1 ann die Indution auch bei einer anderen Zahl starten. Zum Beispiel ist zu jeder ganzen Zahl n n 0 eine Aussage An gegeben. Vollstandige Indution ann sinngemäß auch in dieser Situation angewendet werden. Als Indutionsanfang hat man An 0 zu beweisen und der Indutionsschluß An An + 1 ist für die n n 0 zu erbringen. 9

2 Beispiel.1 arithmetische Summe Wir zeigen die Summenformel An : n nn + 1. Beweis: Indutionsanfang. Für n 1 ist sowohl die line als auch die rechte Seite gleich Eins, also gilt der Indutionsanfang. Indutionsschluß n n + 1. Jetzt berechnen wir unter Verwendung von An + n + 1 Damit ist An für alle n N bewiesen. nn n + 1 n + 1n Nach dem neunjährigen Gauß ommen wir natürlich auch ohne Indution zum Ziel: 1 + n nn n + 1. Der Vorteil dieses Arguments ist, dass wir die Formel nicht vorher raten müssen. Beispiel. geometrische Summe Sei x R, x 1. Dann gilt für alle n N x x n x 1 x+1 1 x. Beweis: Indutionsanfang n 0. Wir zeigen das wieder durch vollständige Indution, wobei wir bei n 0 beginnen: 0 x x x0+1 1 x. Indutionsschluß n n + 1. Jetzt gelte die Formel für ein n N. Dann folgt x x An + x 1 x womit die Behauptung An + 1 gezeigt ist. 1 x + x 1 x+1, 1 x Auch hier haben wir ein alternatives Argument, nämlich den sogenannten Telesopsummentric: 1 x 1 x + x... x n + x n x x x +1 1 x x. Ebenfalls mit dem Beweisverfahren der vollständigen Indution zeigen wir folgende nützliche Ungleichung. 10

3 Satz. Bernoullische Ungleichung Für x R, x 1, und n N 0 gilt 1 + x n 1 + nx. Beweis: Wir führen Indution über n N 0. Die Indution fäng von n 0 an. Für n 0 gilt nach Definition 1 + x x. Wegen 1 + x 0 folgt weiter 1 + x 1 + x 1 + x n 1 + x 1 + nx nach Indutionsannahme 1 + n + 1x + nx 1 + n + 1x. Wir wollen als nächstes die Elemente gewisser Mengen zählen. Satz.3 Schubfachprinzip Ist f : {1,...,m} {1,...,n} injetiv, so folgt m n. Beweis: Wir fassen die Behauptung als Aussage An auf, die jeweils für alle m N zu zeigen ist, und führen einen Indutionsbeweis. IA Für n 1 haben wir eine injetive Abbildung f : {1,...,m} {1} und es folgt sofort m 1, also der Indutionsanfang. IS Sei nun eine injetive Abbildung f : {1,...,m} {1,...,n + 1} gegeben. Zu zeigen ist m n + 1, was für m 1 offensichtlich ist. Für m onstruieren wir eine injetive Abbildung f : {1,...,m 1} {1,...,n}, f. Mit der Indutionsannahme folgt dann m 1 n beziehungsweise m n + 1 wie gewünscht. Die Funition f ist wie folgt onstruiert: Im Fall f {1,...,n} für alle 1,...,m 1 önnen wir einfach f f setzen. Andernfalls gibt es genau ein i {1,...,m 1} mit fi n + 1. Da f nach Voraussetzung injetiv ist, folgt fm n + 1, das heißt fm {1,...,n}, und wir önnen setzen { f für 1,...,m 1, i, f fm für i. Es ist leicht zu sehen Übung, dass in jedem der Fälle f injetiv ist. Definition.1 Zahl der Elemente Eine nichtleere Menge M heißt endlich, wenn für ein n N eine Bijetion f : {1,...,n} M existiert; andernfalls heißt sie unendlich. Im endlichen Fall heißt n Anzahl der Elemente von M Symbol: #M n. Die leere Menge wird ebenfalls als endlich bezeichnet mit # 0. Lemma.1 Die Anzahl einer endlichen Menge ist wohldefiniert Beweis: Wir mussen zeigen dass die Zahl n mit einer Bijetion f : {1,...,n} M eindeutig bestimmt ist. Denn ist f : {1,...,m} M ebenfalls bijetiv, so haben wir die bijetiven, insbesondere injetiven, Abbildungen f 1 f : {1,...,n} {1,...,m} sowie f 1 f : {1,...,m} {1,...,n}. 11

4 Aus dem Schubfachprinzip, Satz.3, folgt dann n m und m n, also m n. Der Satz garantiert also, dass die scheinbare Uneindeutigeit in der Definition der Anzahl nicht vorhanden ist. Die Mathematier haben dafür die schöne Formulierung, die Anzahl sei wohldefiniert. Das Produt n! n 1... n wird als n-faultät bezeichnet; dabei ist per Definition 0! 1 in Konsistenz mit unserer Vereinbarung zum leeren Produt. Der folgende Satz beantwortet die Frage nach der Anzahl der möglichen Anordnungen oder Umordnungen oder Permutationen von n Dingen. Satz.4 Zahl der Permutationen Für n N sei S n die Menge der bijetiven Abbildungen σ : {1,...,n} {1,...,n}. Dann gilt #S n n!. Beweis: Wir zeigen die Behauptung durch Indution, wobei der Indutionsanfang n 1 offensichtlich ist. Es ist pratisch, jedes σ S n mit dem n-tupel σ 1,...,σ n zu identifizieren, wobei σ i σi. Die Menge S ist disjunte Vereinigung der Teilmengen S, {τ S : τ n + 1} für 1,...,n + 1. Beispielsweise ist in aufzählender Form S 4, {1, 4,, 3,, 4, 3, 1, 3, 4, 1,, 1, 4,, 3,, 4, 1, 3, 3, 4, 1, }. Jedem σ σ 1,...,σ n S n önnen wir die Permutation σ 1,...,σ 1, n + 1, σ,...,σ n in S, zuordnen, und diese Abbildung ist bijetiv nachprüfen!. Also folgt aus der Indutionsannahme #S, #S n n! und #S #S, n + 1 n! n + 1!. Definition. Binomialoeffizienten Für α R und N setzen wir α α α 1... α + 1, sowie 1... α 1. 0 Lemma. Additionstheorem für Binomialoeffizienten Für α R und N erfüllen die Binomialoeffizienten die Formel α + 1 α α

5 Beweis: Für 1 ist leicht zu sehen, dass die Formel richtig ist. Für berechnen wir α α α α 1... α + 1 α α 1... α α α 1... α + α α + 1 α... α α + 1. Im Fall α n N 0 erlaubt Lemma. die reursive Berechnung der Binomialoeffizienten n nach dem Dreiecsschema von Blaise Pascal Das Pascalsche Dreiec nennt man auch Dreiece von Yang Hui, vor 1303 n0 1 n1 1 1 n 1 1 n n n n Ebenfalls für α n N 0 folgt durch Erweitern der Binomialoeffizienten mit n! die alternative Darstellung n n!! n! für n N 0, {0, 1,...,n},.4 und daraus weiter die am Diagramm ersichtliche Symmetrieeigenschaft n n für n N 0, {0, 1,...,n}..5 n Satz.5 Zahl der Kombinationen Sei n N 0 und {0, 1,...,n}. Dann ist die Anzahl der -elementigen Teilmengen von {1,...,n} gleich n. Beweis: Die Behauptung gilt für 0 und beliebiges n, denn die leere Menge ist die einzige null-elementige Teilmenge von {1,...,n}, und nach Definition ist n 0 1. Insbesondere gilt die Behauptung für n 0. Wir führen nun Indution über n, wobei wir die Behauptung jeweils für alle {0, 1,...,n} zeigen. Im Indutionsschluss müssen wir die Anzahl der -elementigen Teilmengen von {1,..., n + 1} bestimmen, wobei wir 1 annehmen önnen. Diese Teilmengen zerfallen in zwei disjunte Klassen: 13

6 Klasse 1: Die Menge enthält die Nummer n + 1 nicht. Klasse : Die Menge enthält die Nummer n + 1. Klasse 1 besteht genau aus den -elementigen Teilmengen von {1,...,n}, Klasse ergibt sich durch Hinzufügen des Elements zu jeder der 1-elementigen Teilmengen von {1,...,n}. Insgesamt ist die Zahl der -elementigen Teilmengen von {1,...,n + 1} nach Indutionsannahme also gleich n + n 1 nach Lemma., womit der Satz bewiesen ist. n + 1 Satz.6 Binomische Formel Für a, b R und n N gilt a + b n n a b n..6 Beweis: Ausmultiplizieren des n-fachen Produts a+b n a+b a+b... a+b mit dem Distributivgesetz und Ordnen nach dem Kommutativgesetz liefert Terme der Form a b n für {0, 1,...,n}. Die Häufigeit eines solchen Terms ist gleich der Anzahl der Möglicheiten, aus den n Klammern Klammern auszusuchen, in denen a als Fator genommen wird; in den restlichen Klammern muss dann der Fator b gewählt werden. Nach Satz.5 ommt a b n also genau n mal vor. Alternativ folgt der Satz auch durch vollständige Indution über n, und zwar gilt der Indutionsanfang n 1 wegen n 1 : a + b 1 Der Indutionsschluss ergibt sich wie folgt: a + b a + b n a + a + n a b n a +1 b n + 1 a 0 b a 1 b 0. 1 nach Indutionsannahme n a b n +1 n a b n [ n + 1 ] n a b + b n + 1 a b nach Lemma.. n a b + b Die folgende Umformulierung des Indutionsprinzips erscheint absolut selbstverständlich; wir erinnern aber daran, dass wir eine strenge Definition der natürlichen Zahlen gegeben haben. 14

7 Satz.7 Prinzip der leinsten natürlichen Zahl Jede nichtleere Menge M N besitzt ein leinstes Element. Beweis: Wir beweissen dem Satz durch eine Widerspruch-Argumente. Angenommen, es gibt ein leinstes Element in M N. Wie zeigen dann durch Indution {1,...,n} M. Für n 1 ist das richtig, denn sonst wäre 1 M das leinste Element. Ist die Behauptung für n N gezeigt, so gilt sie auch für n + 1, denn sonst wäre n + 1 leinstes Element in M. Also folgt {1,...,n} M für alle n N. Aber dann ist M die leere Menge im Widerspruch zur Voraussetzung. Als Anwendung zeigen wir nun, dass die rationalen Zahlen auf der Zahlengeraden dicht verteilt sind. Dafür brauchen wir nun das Archimedisches Axiom A3. Wir holen das hier wieder. A3 Zu jedem ε R, ε > 0, existiert ein n N mit 1/n < ε Archimedisches Axiom. Es gibt dann auch zu jedem K R, K > 0, ein n N mit n > K, wie sich mit der Wahl ε 1/K > 0 in A3 sofort ergibt. Satz.8 Q ist dicht in R Zu je zwei reellen Zahlen a, b R mit a < b gibt es eine rationale Zahl q Q mit a < q < b. Beweis: Wir önnen b > 0 annehmen, denn sonst gehen wir zu a b, b a über. Ausserdem ist o.b.d.a. a 0, da wir andernfalls einfach q 0 setzen. Nach A3 existiert ein n N mit 1/n < b a. Betrachte nun die Menge M { N : /n > a} N. M ist nichtleer: falls a 0 so ist zum Beispiel 1 M, andernfalls gibt es nach A3 ein N mit 1/ < 1/na bzw. /n > a. Sei m M das leinste Element nach Satz 1.3. Dann ist einerseits m/n > a und andererseits m 1/n a, also a < m n m 1 n Die Zahl q m/n leistet somit das Verlangte. + 1 < a + b a b. n Ebenso wichtig wie der Beweis durch vollstädige Indution ist die Konstrution durch vollständige Indution, reursive Definition genannt. Es soll jeder natürlichen Zahl n ein Element fn einer Menge X zugeordnet werden durch I die Angabe von f1 und II eine Vorschrift F, die für jedes n N ein Element fn + 1 aus den Elementen f1, f,, fn zu berechnen gestattet: Reursionsvorschrift fn + 1 Ff1,, fn. Beispiel.3 Man erlärt die Potenzen einer Zahl durch I x 1 : x und II die Reursionsformel x : x n x für jedes n N. 15

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für

1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für 1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

Einschub: Summen, Produkte und Potenzen.

Einschub: Summen, Produkte und Potenzen. Einschub: Summen, Produte und Potenzen. Allgemeine Summen und Produte. n b := b m +b m+1 + +b n (fallsm n) =m n =m b := 0 (fallsm > n, leere Summe) n =m b := b m b m+1... b n (fallsm n) n =m b := 1 (fallsm

Mehr

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1

Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten

Mehr

Teil 1. Mathematische Grundlagen

Teil 1. Mathematische Grundlagen Teil 1 Mathematische Grundlagen 5 6 1.1 Aussagenlogi Aussage und Axiom Aussage: sprachlicher Ausdruc mit eindeutigem Wahrheitswert w ( wahr ) bzw. f ( falsch ) A : Beschreibung Axiom: grundlegende nicht

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3

Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3 Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen

Mehr

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1

2n n + 2. n + (1 + j) 1. 2n + 2 = 1. 2n + 2. (n + 1) + j + 2 1 Aufgabe Die strenge Monotonie zeigen wir mittels vollständiger Indution. Indutionsanfang: Trivialerweise ist f streng monoton wachsend. Indutionsschritt: Wir nehmen an, es sei gezeigt, dass für ein gewisses

Mehr

Abzählende Kombinatorik

Abzählende Kombinatorik Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/01 0.11.015 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B (

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B ( 3 1. Die reellen Zahlen Die reellen Zahlen sind die Zahlen, mit denen wir gewöhnlich rechnen. Sie enthalten Elemente wie e, π oder 5 3. In diesem Kapitel geht es darum, ihren axiomatischen Aufbau und die

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align

4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align 4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen 3 1. Die reellen Zahlen 1.1. Undefinierte Begriffe. Wir verwenden eine Reihe von Begriffen ohne mathematisch genaue Definition: Eine Aussage nennen wir etwas, von dem wir sagen önnen, ob es wahr ist oder

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik 60 Kapitel 4 Grundlagen der Kombinatori Einer der Schwerpunte der Kombinatori ist das Abzählen von endlichen Mengen. Wir stellen zunächst einige Grundregeln des Abzählens vor, die wir gelegentlich auch

Mehr

Nützlich bei Diskretisierungen von Problemen sind Gaussklammern, die reellen Werten ganzzahlige zuordnen:

Nützlich bei Diskretisierungen von Problemen sind Gaussklammern, die reellen Werten ganzzahlige zuordnen: Nützlich bei Disretisierungen von Problemen sind Gausslammern, die reellen Werten ganzzahlige zuordnen: Definition 57 (floor, ceiling.. r R : floor(r := r := max{z Z z r} 2. r R : ceiling(r := r := min{z

Mehr

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)

Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null) Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen ohne die Null) 1.1 Teilbareit

Mehr

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz

Mathematik 1 nach der Vorlesung Mathematik für Physiker 1 Wiebe. Sebastian Ritz Mathemati 1 nach der Vorlesung Mathemati für Physier 1 Wiebe Sebastian Ritz 2 Inhaltsverzeichnis 1 Einleitung 5 2 Mengen 7 2.1 Liste der Zahlenbereiche....................... 8 2.2 Rechenregeln für Mengen......................

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

Probeklausur zur Analysis für Informatiker

Probeklausur zur Analysis für Informatiker Lehrstuhl A für Mathemati Prof. Dr. R. Stens Aachen, den 28. Januar 20 Probelausur zur Analysis für Informatier Musterlösung Aufgabe Zeigen Sie, dass für alle n N gilt. 2n+ ( ) + Beweis durch vollständige

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz

«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz 2.2.3 Der allgemeine binomische Lehrsatz Mit Hilfe dieser neuen Begriffe und Symbole önnen wir eine allgemeingültige Formel für den Ausdruc (a + b) n angeben. Es gilt: Lemma 2. [Binomischer Lehrsatz] Sind

Mehr

Technische Universität München. Aufgaben Montag WS 2011/12

Technische Universität München. Aufgaben Montag WS 2011/12 Technische Universität München Andreas Wörfel Ferienurs Analysis 1 für Physier Aufgaben Montag WS 2011/12 Aufgabe 1 Ne Menge Mengen a Zeigen Sie: A B A B B Zeige: A B A B B x (A B x A B x B, also: (A B

Mehr

Analyse von Hashfunktionen

Analyse von Hashfunktionen Analyse von Hashfuntionen Borys Gendler 5. Februar 2007 In dieser Arbeit wird die Anzahl der Kollisionen beim Einfügen eines Elements in einer Hashtabelle untersucht. Wir beantworten die Frage, wie sich

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: J. Hörner B. Kabil B. Krinn. Gruppenübung zur Vorlesung Höhere Mathemati Wintersemester 0/0 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den Hausaufgaben: Hausübungen Teil, empfohlener Bearbeitungszeitraum:

Mehr

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt

Elemente der Stochastik (SoSe 2016) 5. Übungsblatt Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!

Mehr

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen Prof Dr H Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Arbeitsblatt 5 Vernüpfungen Aufgabe 51 Betrachte die ganzen Zahlen Z mit der Differenz als Vernüpfung, also die Abbildung Z Z Z, (a, b) a b Besitzt

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

3 Ein wenig Kombinatorik

3 Ein wenig Kombinatorik 3 Ein wenig Kombinatori Definition i) Zu jedem n N definiere 1 2 3 n Saubere Definition ist indutiv 1! 1 (Konvention: 0! 1) (n +1)!(n +1) ii) Für n N und (N {0}) mit0 n setze!(n )! 1 2 n (n +1) (n +2)

Mehr

1 Häufungswerte von Folgen

1 Häufungswerte von Folgen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 0/..0 Höhere Mathemati I für die Fachrichtung Informati. Saalübung (..0) Häufungswerte von Folgen Oft

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

3 Überlagerungen und Quotienten

3 Überlagerungen und Quotienten $Id: quotient.tex,v 1.12 2017/01/25 18:36:36 h Exp $ 3 Überlagerungen und Quotienten 3.3 Der Riemannsche Existenzsatz Wie in der letzten Sitzung angeündigt wollen wir nun den Riemannschen Existenzsatz

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

Algebra - Neutrales und Nullelement. Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation

Algebra - Neutrales und Nullelement. Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation Algebra - Neutrales und Nullelement Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation 1. ein r S mit x S : x r = x, nennt man r rechtneutrales Element 2. ein l S mit x S : l x = x, nennt

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Mengenlehre. Aufgaben mit Lösungen

Mengenlehre. Aufgaben mit Lösungen Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.

Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten. n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

n n!

n n! Frage: Auf wieviele Arten lässt sich das Wort Binomialoeffizient lesen? Binomialoe inomialoef nomialoeff omialoeffi ialoeffizi aloeffizie loeffizien oeffizient Das ist ein Sript! Dennoch ann man hier sehen,

Mehr

Basen. Inhaltsverzeichnis

Basen. Inhaltsverzeichnis Vortrag zum Seminar zur Funtionentheorie, 15.07.2009 Benjamin Laumen Diese Ausarbeitung beruht auf Kapitel III, Paragraph 4 Unterpunt 1 3 aus dem Buch: Elliptische Funtionen und Modulformen von M. Koecher

Mehr

Kommentare und Lösungen zur Aufgabe 2 in Serie 1

Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen 9. Otober 2018 Kommentare und Lösungen zur Aufgabe 2 in Serie 1 Ich habe zwei Lösungsversuche zur Aufgabe 2 in Serie 1 erhalten. Die erste führt nicht

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

Thema 1 Die natürlichen Zahlen

Thema 1 Die natürlichen Zahlen Thema 1 Die natürlichen Zahlen Wir bezeichnen mit N die Menge der natürlichen Zahlen dh N {1,,, } Falls wir das Nullelement 0 dazu nehmen, dann bezeichnen wir die resultierende Menge mit N 0 also N 0 {0,

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25

Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.

Mehr

Beweis des Binomischen Satzes

Beweis des Binomischen Satzes Beweis des Binomischen Satzes Ein Beispiel für mathematische Beweisführung Oliver Müller 21. Februar 25 1 Vorwort Dieser Text soll hilfreich beim Erlernen der mathematischen Beweisführung über vollständige

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

1 Die natürlichen Zahlen und vollständige Induktion

1 Die natürlichen Zahlen und vollständige Induktion 1 Die natürlichen Zahlen und vollständige Indution 1.1 Einführung Mit Æ bezeichnen wir die Menge der natürlichen Zahlen Æ = {1,2,3,...}. Manche Autoren lassen die natürlichen Zahlen auch mit der Null beginnen,

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge

2 Zahlen. 2.1 Natürliche Zahlen Menge der natürlichen Zahlen. Der Ausgangspunkt für den Aufbau der Zahlenbereiche ist die Menge 2.1 Natürliche Zahlen 2.1.1 Menge der natürlichen Zahlen Der Ausgangspunt für den Aufbau der Zahlenbereiche ist die Menge N = {0,1,2,3,...} der natürlichen Zahlen 0, 1, 2, 3, 4,... 2.1.2 Indutionsprinzip

Mehr

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Bernoullipolynome und Bernoullizahlen

Bernoullipolynome und Bernoullizahlen Bernoullipolynome und Bernoullizahlen Artjom Zern Ausarbeitung zum Vortrag im Proseminar Analysis (Sommersemester 9, Leitung Prof. Dr. Eberhard Freitag) Zusammenfassung: Wie aus dem Titel ersichtlich ist

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Mathematischer Vorkurs MATH

Mathematischer Vorkurs MATH Mathematischer Vorkurs MATH (01.09.2014 19.09.2014) AOR Dr. Andreas Langer WS 2014-2015 Mathematischer Vorkurs TU Dortmund Seite 1 / 254 Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund

Mehr

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit

Ferienkurs Analysis 1. Tag 2 - Lösungen zu Komplexe Zahlen, Vollständige Induktion, Stetigkeit Ferienurs Analysis Tag - Lösungen zu Komplee Zahlen, Vollständige Indution, Stetigeit Pan Kessel 4.. 009 Inhaltsverzeichnis Komplee Zahlen. Darstellung einer ompleen Zahl.....................................

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 15. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Kapitel 2. Kapitel 2 Zählen (Kombinatorik)

Kapitel 2. Kapitel 2 Zählen (Kombinatorik) Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Übungsblatt 2 Höhere Mathematik I WS 2010/2011. Teil B

Übungsblatt 2 Höhere Mathematik I WS 2010/2011. Teil B Prof. Dr. Rudolf Stens Lehrstuhl A für Mathemati RWTH Aachen Aachen, den 0.11.10 Übungsblatt Höhere Mathemati I WS 010/011 Aufgabe B. Teil B Beweisen Sie mit Hilfe der vollständigen Indution: (a (b 1 n(n

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrüc WS 2011/2012 Mathemati für Anwender I Vorlesung 3 Bernoullische Ungleichung Die Bernoulli sche Ungleichung für n = 3. Die folgende Aussage heißt Bernoulli Ungleichung. Satz

Mehr

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr.

Übungsblatt 13. Lineare Algebra I, Prof. Dr. Plesken, SS (β α) tr = α tr β tr. Übungsblatt 13 Lineare Algebra I, Prof Dr Plesen, SS 2008 Aufgabe 1 (Transponierte lineare Abbildung) Sei α : V W linear Zeige: α tr ist injetiv (surjetiv) genau dann, wenn α surjetiv (injetiv) ist Ist

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 12 Ringe Wir beginnen einen neuen Abschnitt dieser Vorlesung, in dem es um Ringe geht. Definition 12.1. Ein Ring R ist eine Menge

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2

Ferienkurs Analysis I für Physiker WS 15/16 Aufgaben Tag 1. Aufgaben Tag 1. (1 + i) 2 = 0 + 2i. = i 1 + i = i1 i = 1 2 2 + i 2 Ferienurs Analysis I für Physier WS 15/16 Aufgaben Tag 1 1 Komplee Zahlen I Aufgaben Tag 1 Berechnen Sie Real- und ImaginÃďrteil von a) (1 + i) (1 + i) 0 + i b) 1 + 1 1 i ( 1 + 1 i ) 1 ( 1 + i i ) 1 i

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff 30.0.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Aufgabe : (6 Punte) Welche der folgenden Tupel sind Maßräume? Beweisen Sie Ihre Behauptung. {

Mehr

3.8 Redundante Datenspeicherung und Fehlerkorrektur Seien natürliche Zahlen k, t und s so gewählt, dass. k + 2t 2 s 1.

3.8 Redundante Datenspeicherung und Fehlerkorrektur Seien natürliche Zahlen k, t und s so gewählt, dass. k + 2t 2 s 1. 38 Redundante Datenspeicherung und Fehlerorretur Seien natürliche Zahlen, t und s so gewählt, dass + 2t 2 s 1 Sei weiter K = GF (2 s ), und seien c 0,, c 1 K Wir fassen die c i sowohl als Elemente von

Mehr

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch

Lösung zu Serie 20. Die Menge der Polynome vom Grad 4 ohne Nullstelle ist gegeben durch Lineare Algebra D-MATH, HS 2014 Prof. Richard Pin Lösung zu Serie 20 1. (a) Bestimme alle irreduziblen Polynome vom Grad 4 in F 2 [X]. (b) Bestimme die Fatorisierung von X 6 + 1 und X 10 + 1 und X 20 +

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

Kombinationen und Permutationen

Kombinationen und Permutationen 10 Kombinationen und Permutationen In den nächsten beiden Kapiteln wird die Abzählungstheorie der lassischen Abbildungstypen mit Nebenbedingungen entwicelt. Sie beschäftigt sich onret mit der Frage, auf

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 5 Das Lemma von Zorn Wir möchten im Folgenden zeigen, dass eine widerpruchsfreie Menge Γ L V von Aussagen nicht nur

Mehr

Analysis I. Guofang Wang Universität Freiburg

Analysis I. Guofang Wang Universität Freiburg Universität Freiburg 8.11.2016 Kapital 2. Konvergenz 1. Grenzwerte von Folgen Definition 1.1 (Folge) Eine Folge reeller Zahlen ist eine Abbildung N R, n a n. a n heißt das n-te Glied der Folge, die Folge

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathemati für Physier, Informatier und Ingenieure (Kapitel III) Dr. Gunther Dirr Institut für Mathemati Universität Würzburg Sript vom 4. April 04 Inhaltsverzeichnis Wintersemester III Folgen und Reihen

Mehr

Mathematik I. Vorlesung 8. Cauchy-Folgen

Mathematik I. Vorlesung 8. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 8 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen noch

Mehr