Wahrscheinlichkeitsrechnung
|
|
|
- Ernst Heidrich
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel 7 Wahrscheinlicheitsrechnung 7.1 Kombinatori Def :a) Für eine beliebige natürliche Zahl m bezeichnet man das Produt aus den Zahlen von 1 bis m mit m Faultät: m! : m, 0! : 1. Beispiele: 3! , 5! , 1! 1 b) Für zwei beliebige ganze Zahlen n und mit 0 n ist durch n! :! (n )! der Binomialoeffizient n über definiert. Für diesen Binomialoeffizienten gilt für 1 n: n (n 1) (n + 1) (7.1.1). 1 2 Diese Darstellung ist für die zahlenmäßige Auswertung oft günstiger als die Formel, durch die der Binomialoeffizient definiert ist. Darüberhinaus liefert die formale Anwendung von (7.1.1) die sinnvolle Definition: (7.1.1 ) : 0 für,n Z,0 n <. (7.1.2) (m + 1)! m! (m + 1). Beispiele für die Bildung des Binomialoeffizienten: ( ) 5 5! 2 2! 3! oder ( ) 5 2 ( ) ,
2 Satz (Binomischer Lehrsatz): Für a, b IR und n Z, n 0 gilt: (a + b) n n 0 a b n. Dabei setzt man x 0 : 1, wobei die Funtion von x gemeint ist. 0 0 für sich genommen bleibt undefiniert. Einige Eigenschaften des Binomialoeffizienten, die z.t. im Beweis des Binomischen Lehrsatzes (vergl. Sriptum zur Mathemati I, S. 22f) benötigt, werden, aber auch sonst nützlich sind: (7.1.3) n n! (n )! (n (n ))! n!! (n )! ( ) n n! n 0 0! (n 0)! n! 1 n! 1 n 1 1 n! (n 1)! n n 1! (n 1)! 1 n! ( ) ( ) ( ) n n n Urnenmodell: Urne mit n Kugeln; Kugeln werden nacheinander aus der Urne gezogen und in einer Stichprobe zusammengestellt. I) Regeln des Ziehens a) Ohne Zurüclegen (Ab.: o.z.) Jede gezogene Kugel wird nicht wieder in die Urne zurücgelegt, sondern ommt in die Stichprobe. b) Mit Zurüclegen (Ab.: m.z.) Jede gezogene Kugel wird in der Stichprobe registriert und wieder in die Urne zurücgelegt. Modell für das Registrieren : Ein Dupliat der gezogenen Kugel ommt in die Stichprobe. II) Regel des Zusammenstellens a) Ohne Berücsichtigung der Anordnung (Ab.: o.b.d.a) Jede gezogene Kugel bzw. ihr Dupliat ommt in eine Stichprobenurne. Die Reihenfolge der Ziehungen ist also nachher nicht mehr feststellbar. b) Mit Berücsichtigung der Anordnung (Ab.: m.b.d.a) Jede gezogene Kugel bzw. ihr Dupliat ommt in dasjenige Fach eines Stichprobenfächerbretts, das die Nummer der Ziehung trägt. Bem.: m. bzw. o. Wiederholung m. bzw. o. Z. Beispiel 7.1.2: Aus einer Urne mit den 3 Buchstaben A, B und C wird eine Stichprobe vom Umfang 2 gezogen. Wieviele verschiedene Möglicheiten gibt es? Wir listen alle Kombinationen auf: Kombinationen m.z.m.b.d.a.: AA, AB, AC, BA, BB, BC, CA, CB, CC, Kombinationen m.z.o.b.d.a.: AA, AB, AC, BB, BC, CC, Kombinationen o.z.o.b.d.a.: AB, AC, BC, Kombinationen o.z.m.b.d.a.: AB, AC, BA, BC, CA, CB. 55
3 n verschiedene Kugeln in der Urne, Kugel in die Stichprobe: Kombination -ter Ordnung aus n (verschiedenen) Elementen (ergänzt durch Regeln aus I) und II), z.b. m.z.o.b.d.a.) K (n) : Anzahl aller möglichen verschiedenen Kombinationen der jeweils beschriebenen Art. K (n) m.b.d.a. o.b.d.a. + 1 m.z. n ( IN bel.) (n + 1) (n + 2) n 1 2 o.z. n! (n )! ( IN und n) n (n 1) (n + 1) n (n 1) (n + 1) 1 2 Sonderfall n bei der K.o.Z.m.B.d.A.: Permutation der Menge {1,2,...,n} : Anordnung der Zahlen 1,2,...,n in willürlicher Reihenfolge. Anzahl: P n : K n (n)(o.z.m.b.d.a.) n! Bem.: Statt {1,2,...,n} ann jede beliebige Menge mit n verschiedenen Elementen verwendet werden. Beispiel 7.1.3: Ein Vertreter möchte an einem Tag die 6 Kunden A, B, C, D, E und F besuchen. Wieviele verschiedene Tourenpläne gibt es? Jedem Tourenplan entspricht eine Festlegung der Reihenfolge der Kundenbesuche, also eine Permutation von {A,B,C,D,E,F }. 1. Permutation: A,B,C,D,E,F 2. Permutation: A,B,C,D,F,E 3. Permutation: A,B,C,F,E,D. Es gibt P 6 6! 720 Permutationen, also 720 verschiedene Tourenpläne, die wir hier nicht alle aufzählen werden. Herleitung der Formel für die Anzahl der Kombinationen m.z.o.b.d.a.: Aus einer Urne mit n Kugeln wird mal eine Kugel m.z. gezogen und die Dupliate werden in einer Stichprobenurne gesammelt. Statt nun diret mit dem Urnenmodell zu arbeiten, verwenden wir ein anderes Modell: Zunächst reihen wir die n Kugeln in der Urne auf: n 1 n Bei jeder Ziehung setzen wir dann einen Strich in den Zwischenraum vor die gezogene Kugel: n 1 n 56
4 Beispiele: a) liefert die Stichprobe 1, 3, 3, 5. b) liefert die Stichprobe 2, 3, 6, 6, 6. Jeder Kombination m.z.o.b.d.a. ter Ordnung aus n Elementen entspricht eine Verteilung von Strichen und (n 1) Kugeln auf (+(n 1)) Plätze. Auf Platz (+n) ommt immer die Kugel n, also ein Strich. Deshalb wird nicht auf ( + n) Plätze verteilt und deshalb wird nur (n 1) Kugeln ein Platz zugewiesen. Jeder Kombination m.z.o.b.d.a. ter Ordnung aus n Elementen entspricht daher eine Auswahl von Plätzen (für die Striche) aus ( + (n 1)) Plätze (mit der Wahlmöglicheit Kugel oder Strich ), also eine Kombination o.z.o.b.d.a. ter Ordnung aus ( + (n 1))( n + 1) Elementen. In Beispiel a) haben wir folgende Verteilung: Auf Platz 1 ist ein Strich, auf Platz 2 ist ist die Kugel 1, auf Platz 3 ist ist die Kugel 2, auf den Plätzen 4 und 5 sind Striche, auf Platz 6 ist die Kugel 3, auf Platz 7 ist die Kugel 4, auf Platz 8 ist ein Strich, auf Platz 9 ist die Kugel 5. Der letzte Platz ist immer für die letzte Kugel, also in Beispiel a) für die Kugel 6 reserviert. Wir erhalten schließlich: + 1 K (n) m.z.o.b.d.a. K (n + 1) o.z.o.b.d.a.. Satz (Stirling Formel): Für große natürliche Zahlen m ist die folgende Näherung verwendbar: ( m ) m m! 2πm e Für die Genauigeit der Näherung gilt: (m/e) m 2πm m! m 9 prozentualer Fehler : m! m 85 prozentualer Fehler 0.1(%) 100 1(%) Bem : a) Wir haben gleichartige Mengen von je n Elementen. Ziehen wir aus jeder Menge je ein Element, so ist die Formel für Kombinationen m.z....-ter Ordnung aus n Elementen anzuwenden. Ein Urnenmodell ist dazu nicht mehr nötig. 57
5 b) Wenn es auf die Reihenfolge der Auswahl (oder Ziehung) anommt, ist die Formel m.b.d.a ist anzuwenden, und wenn nicht (z.b. wenn gezogene Zahlen in natürlicher Reihenfolge beanntgegeben werden) die Formel o.b.d.a. Beispiel 7.1.6: Für die 60 Sitze eines Parlamentes bewerben sich 3 Parteien A, B und C. Wieviele Möglicheiten der Sitzverteilung gibt es? Die Wahl einer Partei für Sitz j, ann man dabei als j te Ziehung auffassen. Pro Sitz ist eine Partei auszuwählen, d.h. ein Element aus der Menge {A, B, C}. Jede Partei ann mehrfach ausgewählt werden. Wir haben also Kombinationen m.z. 60. Ordnung aus 3 Elementen zu bilden. Offen ist zunächst, ob m.b.d.a. oder o.b.d.a. a) Wir nehmen an, dass einem Sitz ein Wahlreis entspricht wie z.b. beim Mehrheitswahlrecht. Dann ist es wichtig, welcher Wahlreis von welcher Partei vertreten wird, und damit ist die Reihenfolge der Ziehungen wesentlich, also m.b.d.a. Die Anzahl der möglichen Sitzverteilungen ist damit K 60 (3) m.z.m.b.d.a b) Wir nehmen an, dass nur von Wahllisten gewählt werden, wie z.b. beim reinen Verhältniswahlrecht. Dann ist Reihenfolge der Ziehungen unwesentlich, also o.b.d.a. Die Anzahl der möglichen Sitzverteilungen ist damit ( ) K 60 (3) m.z.o.b.d.a. 60 ( 62 2 )
Elemente der Stochastik (SoSe 2016) 5. Übungsblatt
Dr. M. Weimar 02.05.2016 Elemente der Stochasti (SoSe 2016) 5. Übungsblatt Aufgabe 1 (4 Punte) Beweisen sie, dass die Potenzmenge P(A) einer beliebigen endlichen Menge A genau P(A) 2 A Elemente enthält!
Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier
Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren
a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.
Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach
KAPITEL 2. Kombinatorik
KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,
A B A B A B C. Beispiel 1 Wie viele Möglichkeiten gibt es 3 verschiedene Kugeln: A, B und C auf verschiedene Arten auf 3 Plätze anzuordnen?
eispiel 1 Wie viele Möglicheiten gibt es 3 verschiedene Kugeln:, und auf verschiedene rten auf 3 Plätze anzuordnen? Lösung Es gibt also 6 Möglicheiten, 3 verschiedene Kugeln auf 3 verschiedene Plätze anzuordnen.
Kombinatorik und Urnenmodelle
Kapitel 2 Kombinatori und Urnenmodelle In diesem Abschnitt nehmen wir an, dass (Ω, A, P ein Laplace scher Wahrscheinlicheitsraum ist (vgl. Bsp.1.3, d.h. Ω ist endlich, A = P (Ω und P (A = A Ω A Ω. Für
Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )
A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A
2.1 Klassische kombinatorische Probleme
2 Kombinatori Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objeten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche
Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik
Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...
Abzählende Kombinatorik
Kapitel Abzählende Kombinatori Die in diesem Kapitel behandelte abzählende Kombinatori untersucht endliche Struturen und beschäftigt sich mit den Möglicheiten Objete anzuordnen oder auszuwählen Die abzählende
Kombinatorik. ÖMO-Fortgeschrittenen-Kurs an der TU Graz. Jan Pöschko. 6. März Grundlegendes 2. 2 Zählen mit Binomialkoeffizienten 3
Kombinatori ÖMO-Fortgeschrittenen-Kurs an der TU Graz Jan Pöscho 6. März 009 Inhaltsverzeichnis Grundlegendes Zählen mit Binomialoeffizienten 3 3 Inlusions-Exlusions-Prinzip 4 4 Schubfachschluss 6 Zählen
Binomialverteilung & Binomialtest
Mathemati II für Biologen & 5. Juni 2015 & -Test Kombinatori Permutationen Urnenmodelle Binomialoeffizient Motivation Bin(n, p) Histogramme Beispiel Faustregeln Vorzeichentest & -Test Permutationen Urnenmodelle
15.2 Kombinatorische Abzählformeln
15.2 Kombinatorische Abzählformeln 1. Permutationen In wie vielen verschiedenen Reihenfolgen ann man n verschiedene Dinge anordnen? Wie viele Reihenfolgen gibt es, wenn die Dinge nicht alle verschieden
Kombinatorik. Kombinatorik
Kombinatori Kombinatori Ziel: Bestimmen der Mächtigeiten bestimmter endlicher Mengen, die durch Anordnung oder Auswahl von Elementen einer Menge gebildet werden. Wir wissen bereits, dass für die Potenzmenge
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =
Kombinatorische Abzählverfahren - LÖSUNGEN
Kombinatorische Abzählverfahren - LÖSUNGEN TEIL C: Lösungen 1. Produtregel das einfache Verfahren Aufgabe 1: Auto-Ausstattung Aufgabe 2: Tanzstunde Aufgabe 3: Menüplanung Aufgabe 4: Atenzeichen Aufgabe
4. Die elementaren Zählfunktionen. Definition 165 (Binomialkoeffizienten) 4.1 Untermengen. align
4. Die elementaren Zählfuntionen 4.1 Untermengen Definition 165 (Binomialoeffizienten) align ( ) n := 1 n N 0 0 ( ) n := 0 n
Algebra - Neutrales und Nullelement. Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation
Algebra - Neutrales und Nullelement Definition 35. Gibt es in einer Algebra (S, ) mit binärer Operation 1. ein r S mit x S : x r = x, nennt man r rechtneutrales Element 2. ein l S mit x S : l x = x, nennt
Die Zahlbereiche N, Z, Q
Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird
Bei Permutationen ohne Wiederholung geht es um das Anordnen von n Dingen, die mit den Zahlen 1,2,,n nummeriert sind.
6 Kombinatori PermutationenOhneWiederholung@n_IntegerD := Permutations@Range@nDD PermutationenMitWiederholung@n_ListD := Permutations@Flatten@Table@Table@i, 8n@@iDD
Kombinatorik. 1. Permutationen 2. Variationen 3. Kombinationen. ad 1) Permutationen. a) Permutationen von n verschiedenen Elementen
Kombinatorik Zur Berechnung der Wahrscheinlichkeit eines zusammengesetzten Ereignisses ist oft erforderlich, zwei verschiedene Anzahlen zu berechnen: die Anzahl aller Elementarereignisse und die Anzahl
4. Kombinatorik *) In der Kombinatorik werden drei wichtige Symbole benötigt: o n! o (n) k o
*) Die Berechnung der Wahrscheinlichkeit im Laplace-Experiment wirkt zunächst einfach. Man muss einfach die Anzahl der günstigen Fälle durch die Anzahl der möglichen Fälle teilen. Das Feststellen dieser
Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente
Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,
Permutation = Anordnung aller Elemente einer Menge, Kombination = Auswahl von einigen aus vielen Elementen, Variation = Auswahl und Anordnung.
Kombinatorik Was ist Kombinatorik? Die 92 natürlichen chemischen Elemente sind die mathematischen Elemente der Menge chemisches Periodensystem. Ebenso sind die zehn Ziffern 0 9 eine Menge, jede Ziffer
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel
3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik
3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer
k-kombination ohne Wiederholung (es sollen ja möglichst viele verschiedene sein): k! (n k)! = 6!
Kombinatori: -Kombination: K (ow) = ( n ) = n!! (n )! -Kombination mit Wiederholung: K (mw) = ( n + 1 ) Aufgabe 1 Auf einem Nachtisch-Buffet stehen 6 verschiedene Nachtische zur Auswahl. Ralph hat noch
Grundlagen der Kombinatorik
Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben große Bedeutung zu,
(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP
.RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip
Inhaltsverzeichnis (Ausschnitt)
6 Diskrete Wahrscheinlichkeitsräume Inhaltsverzeichnis (Ausschnitt) 6 Diskrete Wahrscheinlichkeitsräume Laplacesche Wahrscheinlichkeitsräume Kombinatorik Allgemeine diskrete Wahrscheinlichkeitsräume Deskriptive
Kombinatorik kompakt. Stochastik WS 2016/17 1
Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit
1 Natürliche Zahlen und vollständige Indution Beispiel : Für jede Zahl x 6 1gilt die geometrische Summenformel 1+x + x + :::+ x n 1 xn+1 1 x : (I) Für
1 Natürliche Zahlen und vollständige Indution Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwer. (L. Kronecer) Wir setzen das System N der natürlichen Zahlen 1; ; 3;::: als beannt
Wie viele Möglichkeiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n = 5? Für n = 2 gibt es 2 Möglichkeiten.
n-faultät Wie viele Möglicheiten gibt es, n Kinder in einer Reihe zu platzieren, z.b. für n? Für n gibt es Möglicheiten. Für n 3 hat das 3. Kind 3 Möglicheiten, die beiden restlichen Plätze önnen jeweils
mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen
Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln
Kombinatorik - kurz. Ronald Balestra CH Zürich
Kombinatorik - kurz Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch 14. Mai 2012 Inhaltsverzeichnis 1 Um was geht s? 1 1.1 Allgemeines Zählprinzip....................... 2 1.2 Permutationen............................
Satz von Taylor, Taylor-Reihen
Satz von Taylor, Taylor-Reihen Die Kenntnis von f liefert gewisse Rücschlüsse auf die Funtion f selbst, zb Monotonie, mögliche loale Extrema Die Kenntnis von f liefert darüberhinaus eine Information, ob
3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik
3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer
Diskrete Wahrscheinlichkeitsverteilung
Disrete Wahrscheinlicheitsverteilung Disrete Wahrscheinlicheitsverteilung Binominalverteilung [] S. [] S. ORIGIN Wahrscheinlicheitsverteilung Die umultative Binominalverteilung geht auf den Binomischen
Kombinationen und Permutationen
10 Kombinationen und Permutationen In den nächsten beiden Kapiteln wird die Abzählungstheorie der lassischen Abbildungstypen mit Nebenbedingungen entwicelt. Sie beschäftigt sich onret mit der Frage, auf
Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx
Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c
II Wahrscheinlichkeitsrechnung
251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges
KOMBINATORIK IN DER SCHULE
KOMBINATORIK IN DER SCHULE Referenten: Florian Schmidt und Benjamin Otto GLIEDERUNG 1. Erstbegegnungen mit ombinatorischem Denen 2. Das allgemeine Zählprinzip der Kombinatori 3. Die 4 ombinatorischen Grundfiguren
2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin
2 Kombinatorik Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objekten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche
3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen
3. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1963/1964 Aufgaben und Lösungen 1 OJM 3. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Binomialkoeffizient. Gymnasium Immensee Stochastik, 5. Klassen. Bettina Bieri
Binomialkoeffizient Gymnasium Immensee Stochastik, 5. Klassen Bettina Bieri 7. Februar 7 Inhaltsverzeichnis Nötiges Vorwissen: Fakultäten. Definition: Fakultät......................... spezielle Fakuläten.........................3
Mehr Erfolg in Mathematik, Abitur: Stochastik
Mehr Erfolg in... Mehr Erfolg in Mathemati, Abitur: Stochasti von Wolfdieter Feix 1. Auflage Mehr Erfolg in Mathemati, Abitur: Stochasti Feix schnell und portofrei erhältlich bei bec-shop.de DIE FACHBUCHHANDLUNG
Das Urnenmodell. Anatoli Maier; Gregor Steinschulte; Mussie Mengstab; Robert Grendysa; Stephane Kom Djike / / / /
Das Urnenmodell Hausarbeit Mathe III (Prof. Kästner, Friedberg) Anatoli Maier; Gregor Steinschulte; Mussie Mengstab; Robert Grendysa; Stephane Kom Djike 876522 / 900265 / 885568 / 875921 / 932424 Wintersemester
Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017
Vorlesung Mathematische Strukturen Sommersemester 017 Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Kombinatorik: Einführung Es folgt eine Einführung in die abzählende Kombinatorik. Dabei geht es
Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen
Inhaltsverzeichnis: Aufgabenlösungen zu Kapitel 4 3 Lösung zu Aufgabe 3 Lösung zu Aufgabe 9 3 Lösung zu Aufgabe 30 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 33 3 Lösung zu Aufgabe
1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6
Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei
Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n.
Die Fakultät Definition: Unter dem Symbol n! (gelesen n Fakultät) versteht man das Produkt der natürlichen Zahlen von 1 bis n. n! = 1 2 3... (n 2) (n 1) n Zusätzlich wird definiert 0! = 1 Wie aus der Definition
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]
Kombinatorik. Cusanus-Gymnasium Wittlich Permutationen. Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen?
Permutationen Wie viele Möglichkeiten gibt es 10 Personen in eine Reihe auf 10 Sitze zu setzen? 1. Sitz : 10 Möglichkeiten 2. Sitz : 9 Möglichkeiten 3. Sitz : 8 Möglichkeiten. 9. Sitz : 2 Möglichkeiten
Grundlagen der Kombinatorik
Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung
Wahrscheinlichkeitsrechnung
Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben
Vorlesung 2a. Diskret uniform verteilte Zufallsvariable
Vorlesung 2a Diskret uniform verteilte Zufallsvariable 1 Eine Zufallsvariable X heißt diskret uniform verteilt, wenn ihr Zielbereich S endlich ist und P(X = a) = 1 #S für alle a S. Damit beschreibt X eine
Vorlesung 2a. Diskret uniform verteilte Zufallsvariable. (Buch S. 6-11)
Vorlesung 2a Diskret uniform verteilte Zufallsvariable (Buch S. 6-11) 1 0. Erinnerung und Auftakt 2 Sei S eine endliche Menge. Eine Zufallsvariable X heißt diskret uniform verteilt auf S, wenn P(X = a)
Das Galton - Brett. Ein schneller Zugang zu Binomialverteilungen:
B. Pollo, LSW Soest Ein schneller Zugang zu Binomialverteilungen: Das Galton - Brett Stochasti wurde in der Seundarstufe II während der letzten Jahre längst nicht von allen Mathemati-Lehrer(inne)n unterrichtet.
Permutation und Kombination
Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,
Bericht über den zweiten Tag von Mädchen machen Technik Thema Kombinatorik
Bericht über den zweiten Tag von Mädchen machen Techni Thema Kombinatori Christof Böcler und Marion Orth 31. Otober 2003 Vormittag Nachdem am ersten Tag der Begriff der Wahrscheinlicheit (stets unter der
Vorkurs Mathematik. Christoph Hindermann. Mengenlehre und Kombinatorik
Kapitel 1 Christoph Hindermann Vorkurs Mathematik 1 1.1.1 Begriff der Menge Eine Menge ist eine Zusammenfassung bestimmer, wohl unterscheidbarer Objekte unserer Anschauung oder unseres Denkens. Die Objekte
Die Formel für Kombinationen wird verwendet, wenn
1. Übung: Kombinatorik Aufgabe 1 Die Formel für Kombinationen wird verwendet, wenn a) Alle n Elemente angeordnet werden sollen. b) Aus n Elementen k Elemente gezogen werden sollen. c) Die Reihenfolge der
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
«a n k b k. (4) (a + b) n = Der allgemeine binomische Lehrsatz
2.2.3 Der allgemeine binomische Lehrsatz Mit Hilfe dieser neuen Begriffe und Symbole önnen wir eine allgemeingültige Formel für den Ausdruc (a + b) n angeben. Es gilt: Lemma 2. [Binomischer Lehrsatz] Sind
Was braucht mehr Glück... ein Lotto - Sechser? oder ein Royalflush
Was braucht mehr Glück... ein Lotto - Sechser? oder ein Royalflush 1 Ein Fachschaftstag U1a Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 8. Oktober 2016 Inhaltsverzeichnis 1 Die
Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--
1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?
1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der
b) Wie viele Möglichkeiten gibt es, den gewählten Vorstand auf drei Stühle zu setzen? (Die möglichen Anordnungen nennt man Permutation)
M8 LU 33 Kombinatori und Wahrscheinlicheiten A Kombinatori. a) Wie viele Möglicheiten gibt es, aus diesen fünf Mitgliedern des Schwinglubs einen Vorstand mit Präsident, Viepräsident und Atuar u wählen?
Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner
Kombinatorik: Abzählverfahren Teschl/Teschl 7 Fragestellung: Wie viele verschiedene Möglichkeiten gibt es, Elemente auszuwählen, z. B. Anzahl verschiedener möglicher Passwörter, IPAdressen, Zahlenkombinationen
Hallo Welt für Fortgeschrittene
Hallo Welt für Fortgeschrittene Kombinatorik Patrick Groth Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Definition Kombinatorik ist das Teilgebiet der Mathematik, das sich mit den möglichen
Kombinatorik. Kombinatorik ist die Lehre vom Bestimmen der Anzahlen
Kombinatorik Kombinatorik ist die Lehre vom Bestimmen der Anzahlen 1 Man benötigt Kombinatorik, um z.b. bei Laplace-Experimenten die große Anzahl von Ergebnissen zu bestimmen. Bsp: Beim Lotto 6 aus 49
Diskrete Verteilungen
KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder
KAPITEL 5. Erwartungswert
KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar
Fragestellung: Wir haben 5 verschiedene Gegenstände A B C D E. Auf wieviele verschiedene Arten lassen sie sich anordnen?
Kombinatorik Seite 1 von 5 PRMUTTIONN (nordnungen, Reihenfolgen) eispiel: Fragestellung: Wir haben 5 verschiedene Gegenstände. uf wieviele verschiedene rten lassen sie sich anordnen? ntwort: uf 5! = 1
Binomialkoeffizient. Für n, k N 0 mit n k definiert man den Binomialkoeffizienten. ( ) n n! n(n 1)(n 2) (n k + 1) Binomialkoeffizient 1-1
Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten n! n(n 1)(n 2) (n + 1) = =. (n )!! 1 ( 2)( 1) Binomialoeffizient 1-1 Binomialoeffizient Für n, N 0 mit n definiert man den Binomialoeffizienten
Rekursive Folgen im Pascalschen Dreieck
Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,
Rekursive Folgen im Pascalschen Dreieck
Reursive Folgen im Pascalschen Dreiec Inhaltsverzeichnis Holger Stephan, Tag der Mathemati,. Juni Vortrag. Einleitung........................................ Zahlenfolgen.......................................
Orientierungshilfe zum 7. Hausaufgabenblatt
Orientierungshilfe zum 7. Hausaufgabenblatt 25. Januar 2013 Aufgabe 38 a Urnenmodell: Ziehen mit Zurücklegen. Man stelle sich eine Urne mit zwei Kugeln, die eine weiÿ, die andere schwarz, vor. Für jedes
Elemente der Stochastik (SoSe 2016) 6. Übungsblatt
Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet
Vorkurs Mathematik KOMBINATORIK
Vorkurs Mathematik 2011 17 KOMBINATORIK Produktregel Wir illustrieren die Formel an einem einfachen Beispiel. Beispiel (Der Weg nach Hause). Max ist an der Uni (U) und will nach Hause (H). Auf dem Nachhauseweg
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien
R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen
