Diskrete Wahrscheinlichkeitsverteilung
|
|
|
- Detlef Beltz
- vor 8 Jahren
- Abrufe
Transkript
1 Disrete Wahrscheinlicheitsverteilung Disrete Wahrscheinlicheitsverteilung Binominalverteilung [] S. [] S. ORIGIN Wahrscheinlicheitsverteilung Die umultative Binominalverteilung geht auf den Binomischen Satz zurüc. n n n n n n n n n n n n n n! ( a + b) a b ab + a b + a b +... ab n!( n )! für die wahrscheinlicheitstheoretische Deutung des Binomischen Satzes werden die n a und b als Wahrscheinlicheit p und q zweier sich gegenseitig ausschließender Elementarereignisse aufgefasst mit der Summe p+q. n n n n n n n n n n n n n n! ( p + q) pq pq + pq + pq +... pq n!( n )! Bevor die theoretische Betrachtung begonnen wird, soll zuerst die "Abzählmethode" mit Hilfe des Urnenexperimentes (Gedanenexperiment) unter Verwendung des Binomischen Satzes angewandt werden. Die folgende Tabelle zeigt einen Bernoulli-Versuch von bis n Ziehungen mit Zurüclegen. Die möglichen Umstellungen der erzielten Treffer (rote Kugel: R) und Niete (weiße Kugel:W) sind nicht im Einzelnen angegeben. Aber die Zahl der Umstellungen (Kombinationen) ist in der Tabelle aufgeführt. Die Wahrscheinlicheit als Elementarereignis eine weiße Kugel zu ziehen ist p, eine rote zu entnehmen q. Auswertung des Versuchs Zahl der Wahrschein- Zahl der Um- Anordnung n n- Kombina- lichet stellungen der Treffer R tonen und Nieten W q W p R q WW p q RW p RR q WWW p q RWW p q RRW p RRR q WWWW p q RWWW p q RRWW p q RRRW p RRRR q WWWWW p q RWWWW p q RRWWW p q RRRWW p q RRRRW p RRRRR q WWWWWW p q RWWWWW p q RRWWWW p q RRRWWW p q RRRRWW p q RRRRRW p RRRRRR.. Disret.mcd
2 Disrete Wahrscheinlicheitsverteilung Die Binomische Verteilung, Binominalverteilung oder Bernoulliverteilung ann mit Hilfe eines Urnenexperiments erlärt werden. Das Experiment besteht in Ziehen einer Kugel, eines Loses oder dergleichen und Zurüclegen. Parameter und In einer Urne liegen zwei Sorten Gegenstände z.b. Kugeln von unterschiedlicher Anzahl. Die eine Kugelsorte, z.b. rote Kugeln besteht aus r : Kugeln. Die andere Sorte, z.b. weiße Kugeln weist w : Kugeln auf. Die Gesamtzahl der Kugeln beträgt r + w. Die Wahrscheinlicheit dafür, dass man bei einem Griff in die Urne eine rote Kugel erwischt, beträgt r p : p. r + w Die Wahrscheinlicheit dafür, dass man bei einem Griff in die Urne eine weiße Kugel erwischt, beträgt w q : q. p + q r + w Die frei wählbare Anzahl der Experimente (Entnahme und Rücgabe einer Kugel) soll im vorliegenden Fall n : betragen. Die Anzahl der Fälle, bei der das Ereignis "Entnahme einer roten Kugel" (Einzelwahrscheinlicheit p) oder "Entnahme einer weißen Kugel" (Einzelwahrscheinlicheit q) eintreten soll, beträgt :,.. n Zufallsvariable. Der Boolesche Operator n muss für alle Zufallsvariablen gleich sein. Die Beziehung zur Ermittlung der Binominalverteilung (Wahrscheinlicheitsdichte) wird in der folgenden Betrachtung wenn auch nicht bewiesen so doch plausibel gemacht. n! f binom (, n, p) : p ( p) n! ( n )! n Der Term p (-p) n- gibt gemäß der Multipliationsregel an, wie groß die Wahrscheinlicheit ist, dass bei Versuchen -mal die rote Kugel und bei den restlichen (n-) Versuchen (n-)-mal die weiße Kugel gezogen wird, wobei noch die Anzahl der möglichen Anordnungen der.. n Ereignisse (Ziehen einer roten oder weißen Kugel) durch Anwendung der Additionsregel berücsichtigt werden muss. Die Berücsichtigung dieser Anordnungsanzahl geschieht durch die ombinatorische Anzahl P om_a combin(n,) (), die hier zusätzlich als ganzzahliger Fator auftritt. Die Wahrscheinlicheitsverteilung dafür, dass bei einer n-maligen Ausführung des Urnenexperiments die rote Kugel -mal entnommen wird, beträgt in mathematischer Schreibweise n! f binom (, n, p) : p ( p) n! ( n )! n M, : f binom (, n, p) Matrix.. Disret.mcd
3 Disrete Wahrscheinlicheitsverteilung Binominalverteilung f binom (, n, p) dbinom(, n, p) Die Wahrscheinlicheitsverteilung f binom (,n,q) in mathematischer Schreibweise gibt die Wahrscheinlicheit dafür an, dass bei der n-maligen Ausführung des Urnenexperiments die weiße Kugel -mal entnommen wird. f binom (, n, q) : n! q ( q) n! ( n )!. Wahrscheinlicheitsverteilung q. N, : f binom (, n, q) Matrix Binominalverteilung f binom (, n, p).. f binom (, n, q) Binominalverteilung bei der Entnahme der roten Kugeln (p,) f binom (, n, q)... Binominalverteilung bei der Entnahme der weißen Kugeln (q,) Die wahrscheinliche Anzahl der Ereignisse (Entnahme einer roten bzw. weißen Kugel) in dem angeführten beträgt, wenn die Wahrscheinlicheit als relative Häufigeit gedeutet wird,.. Disret.mcd
4 Disrete Wahrscheinlicheitsverteilung A(, n, p) : n f binom (, n, p) A(, n, q) : n f binom (, n, q). Da die Anzahl der Ereignisse nur durch eine ganze Zahl angegeben werden ann, wird der ganzzahlige Anteil von A(,n,p) noch mit Hilfe von trunc () bestimmt. trunc( A(, n, p) ) trunc( A(, n, q) ) Kumulative Wahrscheinlicheitsverteilung Die umulative Wahrscheinlicheitsverteilung gibt die Wahrscheinlicheit an, bei der mehrere Zufallsvariable zugelassen sind. Die umulative Wahrscheinlicheitsverteilung ergibt sich aus der Summation der Wahrscheinlicheitswerte der Binominalverteilung. (Additionsregel) f binom (, n, p) Die Summe der Wahrscheinlicheiten über den gesamten Bereich der Zufallsvariablen von bis ist gleich. Parameter und n : Anzahl der Experimente :,.. n Zufallsvariable Auswertung Kumulative Wahrscheinlicheitsverteilung pbinom(, n, p) pbinom(, n, q) f binom (, n, p) f binom (, n, q).. Disret.mcd
5 Disrete Wahrscheinlicheitsverteilung pbinom(, n, q). pbinom(, n, p). Kumulative Wahrscheinlicheitsverteilung für die Entnahme von weißen Kugeln (q,) Kumulative Wahrscheinlicheitsverteilung für die Entnahme von roten Kugeln (p,) Inverse umulative Wahrscheinlicheitsverteilung Die inverse umulative Binominalverteilung oder inverse Wahrscheinlicheitsfuntion gibt die wahrscheinliche Anzahl erfolgreicher Experimente (Zufallsvariable) an, die bei einer vorgegebenen Wahrscheinlicheit m und der Einzelwahrscheinlicheit p bzw. q - p zu erwarten sind. Auswertung Parameter und p :. q : p m :. n : qbinom( m, n, p) qbinom( m, n, q) Zufallszahlengenerator der Binominalverteilung Der Zufallsgenerator liefert eine vorgegebenen Anzahl von Zufallszahlen, die eine entsprechende Wahrscheinlicheitsverteilung aufweisen. In diesem Fall sind die Zahlen binominal verteilt. Parameter und Anzahl der binominal zu verteilenden Zufallszahlen Charateristische Größen der Binominalverteilung z : h :,.. z Bereich der Zufallszahlen n : Einzelwahrscheinlicheit p. Auswertung R binom : rbinom( z, n, p) Zufallszahlen Mathematische Schreibweise Zufallszahlen Matrix h R binom Zufallszahl R binomh Zufallszahlen Die erzeugten Zufallszahlen sind einmalig. Jeder neue Aufruf des Zufallszahlengenerators führt in MathCad zu einer anderen Zahlengruppe. h.. Disret.mcd
6 Disrete Wahrscheinlicheitsverteilung Geometrische Verteilung Wahrscheinlicheitsverteilung Parameter und :,.. (ganze Zahl) p :. Einzelwahrscheinlicheit f geom ( ) : p ( p) Wahrscheinlicheitsverteilung Auswertung Wahrscheinlicheitsverteilung Mathematische Schreibweise dgeom(, p) dgeom(, p).. Wahrscheinlicheitsverteilung Kumulative Wahrscheinlicheitsverteilung Mathematische Schreibweise Funtion f geom : p ( p) Matrix, f geom. p ( p)... pgeom(, p) Kumulative Wahrscheinlicheitsverteilung.... Hypergeometrische Wahrscheinlicheitsverteilung [] S. Das Experiment besteht in der Auswahl und dem Zurüclegen eines Elements aus einem Kolletiv, wobei eine besondere Eigenart, Eigenschaft oder Mermal dieses Elements festgestellt wird. Parameter und.. Disret.mcd
7 Gesamte Anzahl der Elemente, Größe des gesamten Kolletivs z z : Anzahl der Elemente mit einer bestimmten Eigenschaft m m : Disrete Wahrscheinlicheitsverteilung Anzahl der Elemente, denen die bestimmte Eigenschaft fehlt z-m z m n Anzahl der durchgeführten Experimente n n : Anzahl der eingetretenen Ereignisse :,.. n ( n ) ( z m) combin( m, ) combin[ ( z m), ( n ) ] f hyper : combin(m,) Binominalzahl combin( z, n) Die Funtion combin(m,) gibt die ombinatorische Anzahl der möglichen Kombinationen an, die sich bei der Auswahl von Elementen in leinen Gruppen aus einer größeren Ausgangsmenge von m Elementen ohne Berücsichtigung der Reihenfolge und ohne Wiederholungen, ergeben. Die Zahl der Möglicheiten aus den m Elementen, die mit einer bestimmten, abfragbaren Eigenschaft behaftet sind, Elemente auszuwählen, beträgt combin(m,). Die Zahl der Möglicheiten aus den z-m Elementen, die nicht mit dieser Eigenschaft behaftet sind, n- Elemente auszuwählen, beträgt combin(z-m,n-). Die Kombination der Möglicheiten Elemente mit der besonderen Eigenschaft und Elemente ohne diese Eigenschaft zu finden ist gleich dem Produt dieser Möglicheiten. Die Zahl der Möglicheiten aus den z Elementen der gesamten Ausgangsmenge n Elemente auszuwählen, beträgt combin(z,n). Gemäß der nachgewiesenen "Stabilität der relativen Häufigeit" bei der Durchführung umfangreicher Zufallsexperimente ann die rechnerisch ermittelte Häufigeit zur Berechnung der Wahrscheinlicheit herangezogen werden. Auswertung z m Wahrscheinlicheitsdichte f hyper f hyper. Wahrscheinlicheitsdichte Mathem. Schreibweise Wahrscheinlicheitsdichte dhypergeom(, m, z m, n) dhypergeom(, m, zm, n) Disret.mcd
8 Disrete Wahrscheinlicheitsverteilung Wahrscheinlicheitsdichte Kumulative hypergeometrische Wahrscheinlicheitsverteilung Parameter und Auswertung Parameter und n : Anzahl der durchgeführten Experimente p :. Wahrscheinlicheit des Einzelereignisses µ : n p Mittelwert µ :,.. Zufallsvariable Auswertung f pois (, µ ) Die vorgegebenen Daten sind die gleichen wie bei der hypergeometrischen Wahrscheinlicheitsverteilung. Kumulative Wahrscheinlicheitsverteilung phypergeom(, m, z m, n) Poisson-Verteilung n Wahrscheinlicheitsverteilung [] S., S. phypergeom(, m, zm, n) f hyper µ : e µ Wahrscheinlicheitsdichte Mathematische Schreibweise!. Kumulative Wahrscheinlicheitsverteilung Die Poisson-Verteilung geht aus der Bernoulli-Verteilung hervor. Sie gilt bei einer großen Zahl von n Elementen bei einer geringen Wahrscheinlicheit p und einer geringen Zahl eingetretener Ereignisse. Wahrscheinlicheitsdichte dpois(, µ ) f pois (, µ ) Disret.mcd
9 Disrete Wahrscheinlicheitsverteilung Wahrscheinlicheitsdichte Kumulative Wahrscheinlicheitsverteilung Parameter und Die vorgegebenen Daten sind die gleichen wie bei der Poisson-Verteilung. Auswertung Kumulative Wahrschvtg. ppois(, µ ) ppois(, µ )..... Wahrscheinlicheitsdichte Kumulative Wahrscheinlicheitsverteilung :,.. µ :. f pois (, µ ) : µ! e µ µ : f pois (, µ ) : µ! e µ µ : f pois (, µ ) : µ! e µ µ : f pois (, µ ) : µ! e µ µ : f pois (, µ ) : µ! e µ µ : f pois (, µ ) : µ! e µ.. Disret.mcd
10 Disrete Wahrscheinlicheitsverteilung. f pois (, µ ) f pois (, µ ) f pois (, µ ) f pois (, µ ) f pois (, µ ) f pois (, µ ) Wahrscheinlicheitsdichte der Poisson-Verteilung.. Disret.mcd
Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier
Disrete Struturen und Logi WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Disrete Struturen und Logi Gesamtübersicht Organisatorisches Einführung Logi & Mengenlehre Beweisverfahren
Stetige Wahrscheinlichkeitsverteilung
Stetige Wahrscheinlichkeitsverteilung Stetige Wahrscheinlichkeitsverteilung Gaußsche Normalverteilung [7] S.77 [6] S.7 ORIGIN µ : Mittelwert σ : Streuung :, 9.. Zufallsvariable, Zufallsgröße oder stochastische
mathphys-online Zahlenlotto 6 aus 49 Quelle: Akademiebericht 470 Dillingen
Zahlenlotto aus Quelle: Aademiebericht 470 Dillingen Spielregeln Beim Spiel Sechs aus Neunundvierzig werden jeden Mittwoch und Samstag sechs Gewinnzahlen gezogen. Dazu befinden sich nummerierte Kugeln
Ziel der Wahrscheinlichkeitsrechnung. Teil V. Wahrscheinlichkeitsrechnung. Experiment: Wurf eines Würfels
Ziel der Wahrscheinlicheitsrechnung Teil V Wahrscheinlicheitsrechnung Aussagen über Experimente und Prozesse mit unsicherem Ausgang. Beispiele Würfeln Literatur: Ziehen von Losen aus einer Urne Glücsspiele
2.2 Ereignisse und deren Wahrscheinlichkeit
2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,
Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien
R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen
Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?
1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der
Diskrete Verteilungen
KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder
Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung
Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt
Analysis Seite 1. 1 f' = g f (x) g'(f(x)) f '(x) f (y) = mit y = f(x) bzw. f (x) = k f(x)dx = k f(x) + c. (f(x) ± g(x))dx = f(x)dx ± g(x)dx
Analysis Seite Ableitungsregeln: (f±g) = f ± g (f g) = f g + fg ' f f'g fg' = 2 g g ' f' = 2 f f ' ( ) = g f () g'(f()) f '() ' ' f (y) = mit y = f() bzw. f () = f'() f' f( ) Integrationsregeln: b a c
1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6
Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte
Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:
Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln
Wahrscheinlichkeitsrechnung für die Mittelstufe
Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite
Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.
10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,
Der Binomialkoeffizient (Einführung):
Der Binomialoeffizient (Einführung): ) Wie viele Kombinationsmöglicheiten gibt es, Kugeln in Kästchen anzuordnen? Lösung: ) Beispiel: Fragen sollen beantwortet werden. Die Antwort ann richtig (r) oder
II Wahrscheinlichkeitsrechnung
251 1 Hilfsmittel aus der Kombinatorik Wir beschäftigen uns in diesem Abschnitt mit den Permutationen, Kombinationen und Variationen. Diese aus der Kombinatorik stammenden Abzählmethoden sind ein wichtiges
15 Wahrscheinlichkeitsrechnung und Statistik
5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.
. Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem
Variationen Permutationen Kombinationen
Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert
Wahrscheinlichkeitsverteilungen
Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung
Diskrete Wahrscheinlichkeitstheorie - Probeklausur
Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten
Stochastik und Statistik für Ingenieure Vorlesung 4
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall
Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen
$ % + 0 sonst. " p für X =1 $
31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses
M13 Übungsaufgaben / pl
Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr
10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg
. Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei
Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006
3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, [email protected], TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten
Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt.
Aufgabe 0 Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. a) Wie hoch ist die Wahrscheinlichkeit, bei Schüssen mindestens
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.
Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche
Übungen zur Mathematik für Pharmazeuten
Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl
2. Rechnen mit Wahrscheinlichkeiten
2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
Signifikanztest. Grundlagen zum Verständnis
Signifianztest Signifianztest zum Verständnis Heinz Tüchler Vorbemerungen: wichtige Bereiche der linischen Statisti: - Studienplanung - Studienauswertung: - Beschreibung der Daten - Exploration von Datenstruturen
Wahrscheinlichkeitstheorie
Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten
Ü b u n g s b l a t t 15
Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine
Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.
XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------
Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016
Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3
Schulinterner Lehrplan Mathematik Jahrgangsstufe 10
Themenbereich: Körperberechnungen Buch: Mathe heute 10 Seiten: 96-126 Zeitrahmen: 5 Wochen - Wiederholung der Körper Erfassen Würfel, Quader, Zylinder - Wiederholung des Satzes des Geometrie Konstruieren
10 Bedingte Wahrscheinlichkeit
10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--
1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich
Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält
Wirtschaftsstatistik I [E1]
040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 [email protected] http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h
LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE
LEHRPLAN MATHEMATIK SPORT- UND MUSIKKLASSE STUNDENDOTATION GF EF 3. KLASSE 1. SEM. 4 2. SEM. 4 4. KLASSE 1. SEM. 3 2. SEM. 3 5. KLASSE 1. SEM. 3 2. SEM. 3 6. KLASSE 1. SEM. 3 2 2. SEM. 3 2 7. KLASSE 1.
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen
Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe
Bereiche der Stochastik
Statistik Wahrscheinlichkeit Kombinatorik Bereiche der Stochastik Kombinatorik Hans Freudenthal: Einfache Kombinatorik ist das Rückgrat elementarer Wahrscheinlichkeitsrechnung. Die Lehrkraft bereitet sich
Die Binomialverteilung
Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel
Modellierungskonzepte 2
Modellierungskonzepte 2 Elke Warmuth Humboldt-Universität Berlin WS 2008/09 1 / 50 1 Pfadregeln 2 Begriff Umbewertung von Chancen Bayessche Formel 3 Verwechslungsgefahr Implizite Lotterien 2 / 50 mehrstufige
Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz
Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:
Risiko und Versicherung - Übung
Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann [email protected] [email protected] https://insurance.uni-hohenheim.de
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,
8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik
Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
möglicher Einsatz Neuer Medien Quadratische Funktionen und quadratische Gleichungen
Quadratische und quadratische Gleichungen Arithmetik / Algebra Lösen einfacher und allgemeiner quadratischer Gleichungen (z.b. durch Faktorisieren oder pq-formel) Darstellung quadratischer mit eigenen
Lösungen Zufallsexperimente, Baumdiagramm, Ergebnismenge I
R. rinkmann http://brinkmann-du.de Seite 1 23.09.2013 Lösungen Zufallsexperimente,, I en: 1 1 2 2 3 Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Ein Zufallsexperiment
Statistiktraining im Qualitätsmanagement
Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel
Permutation und Kombination
Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,
Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik
mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: [email protected]
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und
Übungsaufgaben Wahrscheinlichkeit
Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Stochastik (Laplace-Formel)
Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel
Wahrscheinlichkeitsrechnung
Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder
Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.
Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit
3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.
Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik Klasse 7/8 Stand Schuljahr 2009/10 Klasse 7 UE 1 Prozent- und Zinsrechnung Anteile in Prozent Grundaufgaben der Prozentrechnung Promille Prozentuale Änderungen Zinsen
Kurs 2 Stochastik EBBR Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.
Wahrscheinlichkeit. Kapitel Wahrscheinlichkeitsbegriff
Kapitel 2 Wahrscheinlichkeit Betrachtungen zu wahrscheinlichen und unwahrscheinlichen Vorgängen sind heutzutage Teil unserer Alltagsüberlegungen. In diesem Kapitel stellen wir den Wahrscheinlichkeitsbegriff
Inhaltsverzeichnis. Fit in Mathe ein klares Ziel Mit Variablen und Potenzen umgehen... 22
Inhaltsverzeichnis 1 2 Fit in Mathe ein klares Ziel... 8 Kannst du das?... 10 Termwerte, Rechenbäume, Tastenfolge... 10 Rechengesetze, Termstrukturen... 12 Gleichungen lösen.............................................
Operations Research (OR) II
Operations Research (OR) II Fortgeschrittene Methoden der Wirtschaftsinformatik 27. Juni 2007 Michael H. Breitner, Hans-Jörg von Mettenheim und Frank Köller 27.06.2007 # 1 Stochastische Inputgrößen Stochastische
(d) 1,5 1, 02 2x 1 = x x = 2
KLASSENARBEIT MATHEMATIK G9A 14.03.013 Aufgabe 1 3 4 5 Punkte (max) 11 4 4 4 3 Punkte (1) Löse folgende Gleichungen. (a) x 3 5x + x = 0 (b) 4x 4 + 11x 3 = 0 (c) 1 x = 1 7 (e) (x + 17)(x 16) = 0 (f) (d)
4b. Wahrscheinlichkeit und Binomialverteilung
b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl
Stochastik Boris Boor 2010
Stochastik Boris Boor 010 Inhaltsverzeichnis S.1 Grundbegriffe... S.1.1 Ergebnisse und Ereignisse... S.1. Relative Häufigkeit und Wahrscheinlichkeit...4 S.1.3 Wahrscheinlichkeitsverteilung...5 S.1.4 Mehrstufige
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Kontrolle. Themenübersicht
Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,
Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796
Uli Greßler Qualitätsmanagement Überwachung der Produt- und Prozessqualität Arbeitsheft 2. Auflage Bestellnummer 04796 Haben Sie Anregungen oder Kritipunte zu diesem Produt? Dann senden Sie eine E-Mail
Anleitung: Standardabweichung
Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen
3.3. Aufgaben zur Normalverteilung und Hypothesentests
3.3. Aufgaben zur Normalverteilung und Hypothesentests Aufgabe : Näherung der Binomialverteilung durch die Normalverteilung a) Die Zufallsvariable X sei B,,5 ()-verteilt. Sizziere das Histogramm von X
Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit
ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker
Reelle Zahlen (R)
Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große
Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:
Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)
Einführung in die Statistik für Biologen. Jörg Witte
Einführung in die Statistik für Biologen Jörg Witte 1997 Inhaltsverzeichnis 1 Endliche Wahrscheinlichkeitstheorie 3 1.1 Grundbegriffe........................ 3 1.2 Zufallsgrößen und Verteilungsfunktionen.........
Anzahl möglicher Anordnungen bei 3 Elementen
Anzahl möglicher Anordnungen bei 3 Elementen Man kann die Anzahl möglicher Anordnungen der drei Buchstaben A, B und C mit einem Baumdiagramm bestimmen. 3 2 6 verschiedene Anordnungen Permutationen Die
Stoffverteilungsplan Mathematik Klasse 9
Kapitel I Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktbestimmung quadratische Ergänzung 3 Lösen einfacher quadratischer Gleichungen
Kapitel 5. Stochastik
76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter
Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
M Geoppelte Pendel Versuchsprotooll von Thomas Bauer und Patric Fritzsch Münster, den.1.1 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Die Pendelbewegung. Dder Kopplungsgrad 3. Versuchsbeschreibung
