Variationen Permutationen Kombinationen

Größe: px
Ab Seite anzeigen:

Download "Variationen Permutationen Kombinationen"

Transkript

1 Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert die mühsame Zählarbeit von Anzahl der Günstigen bzw. Möglichen.. Variationsregel (Anzahl der Variationen) Wenn jedes von k sich gegenseitig ausschließenden Ereignissen bei jedem Versuch auftreten kann, ergeben sich bei n Versuchen k n verschiedene Ereignisabfolgen. Beispiel : Wie hoch ist die Wahrscheinlichkeit mit einem Würfel bei 5 Würfen 5 Mal die Sechs zu würfeln? Gedankengang: Die einzelnen Ereignisse (, 2, 3, 4, 5 und 6) sind einander ausschließend und gleich wahrscheinlich. Ergebnis: Anwenden der. Variationsregel: Es gibt k n = 6 5 = 7776 mögliche Variationen. Das eine günstige Ereignis tritt mit einer Wahrscheinlichkeit von 0, = auf. Die Wahrscheinlichkeit beträgt 0,029%. Anmerkung: Analog erhält man das Ergebnis durch folgenden Rechengang: 5 = 0, (Multiplikationstheorem der Wahrscheinlichkeitsrechnung für unabhängige Ereignisse) Beispiel 2: Wie hoch ist die Wahrscheinlichkeit bei einem Fragebogen mit dichotomen (zweikategoriellem) Antwortformat und 0 Fragen die Antwortfolge zu erhalten? Ja Ja Ja Nein Ja Nein Nein Ja Nein Ja Gedankengang: Die zwei möglichen Ergeinisse Ja Nein sind einander ausschließend und treten (theoretisch) mit gleicher Wahrscheinlichkeit auf. Ergebnis: Anwenden der. Variationsregel: Es gibt k n = 2 0 = 024 mögliche Variationen. Das eine günstige Ereignis tritt mit einer Wahrscheinlichkeit von 0, = auf. Die Wahrscheinlichkeit beträgt 0,0977%.

2 Anmerkung: Analoger Rechenvorgang: 2 0 = 0, Anmerkung: Natürlich treten auch alle anderen 2 0 = 024 möglichen Antwortmuster mit der gleichen Wahrscheinlichkeit auf. 2. Variationsregel (Anzahl der Variationen) Werden n voneinander unabhängige (ev. verschiedene) Zufallsexperimente durchgeführt und besteht das. Zufallsexperiment aus k möglichen (Elementar)-Ereignissen und das 2. Zufallsexperiment aus k 2 möglichen (Elementar)-Ereignissen... n. Zufallsexperiment aus k n möglichen (Elementar)-Ereignissen dann sind k... k2 kn die möglichen verschiedenen Ereignisvariationen. Beispiel : Wie hoch ist die Wahrscheinlichkeit mit einer Münze Zahl mit einem Würfel Zwei und aus 32 Karten die Herz As zu ziehen? Gedankengang: 3 voneinander unabhängige Zufallsexperimente. Zufallsexperiment (Münze) besteht aus k = 2 möglichen (Elementar)-Ereignissen 2. Zufallsexperiment (Würfel) besteht aus k 2 = 6 möglichen (Elementar)-Ereignissen 3. Zufallsexperiment (Karten) besteht aus k 2 = 32 möglichen (Elementar)-Ereignissen Aus k k2 k3 = = 384 resultieren die möglichen verschiedenen Ereignisabläufe. Ergebnis: Das eine günstige Ereignis ( Zahl und Zwei und Herz As ) kann unter 384 möglichen Ereignissen auftreten. Die Wahrscheinlichkeit ist also = 0, 0026 bzw. 0,26% 384 Anmerkung: Analog erhält man das Ergebnis durch folgenden Rechengang: = 0, (Multiplikationstheorem der Wahrscheinlichkeitsrechnung für unabhängige Ereignisse) Beispiel 2: Eine Maus läuft durch ein Labyrinth mit insgesamt 4 Weggabelungen. Es gibt nur einen richtigen Weg bis ans Ziel. Bei der ersten Weggabelung gibt es 2 bei der zweiten 4 bei der dritten 2 und bei der vierten 3 mögliche Wege. Gedankengang:. Zufallsexperiment (. Weggabelung) besteht aus k = 2 möglichen (Elementar)-Ereignissen 2. Zufallsexperiment (2. Weggabelung) besteht aus k 2 = 4 möglichen (Elementar)-Ereignissen 3. Zufallsexperiment (3. Weggabelung) besteht aus k 2 = 2 möglichen (Elementar)-Ereignissen 4. Zufallsexperiment (4. Weggabelung) besteht aus k 2 = 3 möglichen (Elementar)-Ereignissen

3 Aus k k 2 k3 k4 = 2423 = 48resultieren die möglichen verschiedenen Ereignisabläufe. Ergebnis: Das eine günstige Ereignis (richtiger Weg bei allen 4 Weggabelungen bis ans Ziel) kann unter = 48 möglichen Ereignissen auftreten. Die Wahrscheinlichkeit ist also = 0, 0208 bzw. 2,08%. 48 Anmerkung: das gleiche Ergebnis erhält man mittels Entscheidungsbaum bzw. Multiplikationstheorem der Wahrscheinlichkeitsrechnung für unabhängige Ereignisse. Da unabhängige Ereignisse folgt: = = 0, Permutationsregel (Anzahl der Reihenfolgen) ohne Wiederholung / Zurücklegen n verschiedene Objekte können in n! = n( n )( n 2)...2 ( n Fakultät ) verschiedenen Reihenfolgen angeordnet werden. Beispiel : Aus einer Urne sollen 5 Kugeln hintereinander entnommen werden. Die Kugeln haben Nummern von bis 5. Wie hoch ist die Wahrscheinlichkeit dass die Kugeln exakt nach der Reihenfolge ihres Zahlenwertes gezogen werden, beginnend mit der Eins? Gedankengang: Ziehen ohne Zurücklegen bei 5 einander ausschließenden Zufallsexperimenten:. Zufallsexperiment (. Ziehung) aus 5 möglichen Kugeln 2. Zufallsexperiment (2. Ziehung) aus 4 möglichen Kugeln 3. Zufallsexperiment (3. Ziehung) aus 3 möglichen Kugeln 4. Zufallsexperiment (4. Ziehung) aus 2 möglichen Kugeln 5. Zufallsexperiment (5. Ziehung) aus möglichen Kugel

4 Die Anzahl der Möglichkeiten bei 5 Kugeln ist demnach = nn ( )( n 2) 2 = n! = 20 Ergebnis: Das eine günstige Ereignis (Ziehung der einen richtigen Reihenfolge) kann unter 20 möglichen Reihenfolgen auftreten. Die Wahrscheinlichkeit ist also 0, = bzw. 0,833%. 2. Permutationsregel mit Wiederholung / Zurücklegen bzw.. Kombinationsregel (Anzahl der Kombinationen) Wählt man aus n verschiedenen Objekten k zufällig aus und lässt man hierbei die n n! Reihenfolge außer acht, ergeben sich für k Objekte k = mögliche k!( n k)! Kombinationen / Reihenfolgen. Beispiel : Wie hoch ist die Wahrscheinlichkeit einen Lotto-Sechser zu erzielen? Gedankengang: k = 6 richtige Zahlen aus n = 45 möglichen Zahlen, wobei die Reihenfolge nicht relevant ist ! Ergebnis: = = sind die möglichen Kombinationen von 6 aus !(45 6)! Zahlen mit beliebiger Reihenfolge. Das eine günstige Ereignis (Ziehung der 6 richtigen Zahlen) kann unter möglichen Kombinationen auftreten. Die Wahrscheinlichkeit ist also 0, = bzw. 0,000023%. Beispiel 2: Wie viele verschiedene Mannschaften zu je 5 SpielerInnen lassen sich aus n = 23 SchülerInnen aufstellen? Gedankengang: k = 5 SpielerInnen aus n = 23 möglichen Personen, wobei die Reihenfolge nicht relevant ist ! Ergebnis: = = sind die möglichen Kombinationen von 5 aus !(23 5)! Personen mit beliebiger Reihenfolge.

5 Die Wahrscheinlichkeit einer bestimmten Zuteilung ist also 0, = bzw. 0,00297%. 2. Kombinationsregel Wählt man aus n verschiedenen Objekten k zufällig - mit einer bestimmten n! Reihenfolge - aus, ergeben sich für k Objekte mögliche Kombinationen der ( n k)! Objekte k. Im Gegensatz zur ersten Kombinationsregel wird hier die Reihenfolge berücksichtigt! Beispiel: Wie hoch ist die Wahrscheinlichkeit aus 32 Karten der Reihe nach Herz As Herz König Herz Dame und Herz Bube zu ziehen? Gedankengang: Die Reihenfolge spielt eine Rolle und aus n = 32 möglichen Karten werden k = 4 günstige gezogen. Ergebnis: 32! (32 4)! = mögliche Kombinationen stehen zur Verfügung. Das eine günstige Ereignis (Ziehung der 4 Karten in richtiger Reihenfolge) kann unter möglichen Kombinationen auftreten. Die Wahrscheinlichkeit ist also 0, = bzw. 0,0006%. 3. Kombinationsregel Sollen n Objekte in k Gruppen der größe n, n 2,...n k, eingeteilt werden n! (wobei n + n n k = n), ergeben sich mögliche Kombinationen. n! n!... n! 2 k Beispiel: Ein Hotel hat für 0 Personen zwei 3-Bett-Zimmer und ein 4-Bett-Zimmer. Wie viele verschiedene Raumzuweisungen sind bei den 0 Personen möglich? Gedankengang: 0 Personen sollen in Zimmer mit n = 3, Zimmer 2 mit n = 3 und Zimmer 3 mit n = 4 Betten eingeteilt werden.

6 0! Ergebnis: Die möglichen Kombinationen ergeben sich durch 3! 3! 4! = 4200 Es sind 4200 verschiedene Raumzuweisungen möglich, wobei die Wahrscheinlichkeit für eine bestimmte Raumzuweisung = 0, bzw. 0,0238% beträgt. 4200

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik Seite 1 Vorstellung Organisation: Deutsche Aktuarvereinigung e.v. (DAV) berufsständische Vertretung der

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

Kombinatorik Platzierungsproblem 3 Berechnungsarten

Kombinatorik Platzierungsproblem 3 Berechnungsarten Kombinatorik Platzierungsproblem 3 Berechnungsarten 10 Weinflaschen, davon Rotweinflaschen, werden rechteckförmig zufällig angeordnet 7 7 Wie groß ist die Wahrscheinlichkeit, dass die Rotweinflaschen die

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden?

1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? Aufgaben zur Kombinatorik, Nr. 1 1.) Wie viele verschiedene Anordnungen mit drei unterschiedlichen Buchstaben lassen sich aus acht verschiedenen Buchstaben bilden? 2.) Jemand hat 10 verschiedene Bonbons

Mehr

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Modul: Stochastik. Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung Modul: Stochastik Ablauf Vorstellung der Themen Lernen Spielen Wiederholen Zusammenfassen Zufallsexperimente oder Wahrscheinlichkeit relative Häufigkeit Variation Permutation Kombinationen Binomialverteilung

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Zahlenoptimierung Herr Clever spielt optimierte Zahlen

Zahlenoptimierung Herr Clever spielt optimierte Zahlen system oder Zahlenoptimierung unabhängig. Keines von beiden wird durch die Wahrscheinlichkeit bevorzugt. An ein gutes System der Zahlenoptimierung ist die Bedingung geknüpft, dass bei geringstmöglichem

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Binär Codierte Dezimalzahlen (BCD-Code)

Binär Codierte Dezimalzahlen (BCD-Code) http://www.reiner-tolksdorf.de/tab/bcd_code.html Hier geht es zur Startseite der Homepage Binär Codierte Dezimalzahlen (BCD-) zum 8-4-2-1- zum Aiken- zum Exeß-3- zum Gray- zum 2-4-2-1- 57 zum 2-4-2-1-

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Spielerklärung Black Jack. Black. Jack

Spielerklärung Black Jack. Black. Jack Spielerklärung Black Jack Herzlich willkommen bei WestSpiel die faire und spannende Spielbank-Variante des beliebten Kartenspiels 17 und 4. Wir möchten Ihnen hier zeigen, wie Sie mit Spaß gewinnen können.

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Dazu gilt Folgendes: : Hier kannst du bis zum 6. Stich problemlos abwerfen und

Dazu gilt Folgendes: : Hier kannst du bis zum 6. Stich problemlos abwerfen und 1 Die wurde erstmals im Essener System erklärt und ist bis heute Standard für das Gegenspiel beim sogenannten Standard-Asssolo (Solist hat eine lange Farbe und Seitenass[e], die er runterzieht die Reststiche

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Ihr Einkommensteuertarif: 26.152.-

Ihr Einkommensteuertarif: 26.152.- Ihr Einkommensteuertarif: 26.152.- Einkommensteuertarif Splitting Ihr Tarif Einkommensteuertarif in 10.000 5.000 0 45.000 50.000 55.000 zu versteuerndes Einkommen in 60.000 65.000 70.000 75.000 80.000

Mehr

Lösungen zur Party-Aufgabe

Lösungen zur Party-Aufgabe Lösungen zur Party-Aufgabe Die Clique von Tamara möchte einen Mädelsabend machen. Männer sind dabei unerwünscht. Die 5 Mädels planen zuerst bei Tamara im Garten vorzuglühen und danach in die angesagt Disko

Mehr

Anwendungsbeispiele Buchhaltung

Anwendungsbeispiele Buchhaltung Kostenstellen in Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Kostenstellen 1.1 Was sind Kostenstellen? 1.2 Kostenstellen in der 2 Kostenstellen in Webling 2.1 Kostenstellen erstellen

Mehr

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt:

Durch Wissen Millionär WerDen... Wer hat zuerst die Million erreicht? spielanleitung Zahl der spieler: alter: redaktion / autor: inhalt: Spielanleitung Durch Wissen Millionär werden... Diesen Traum kann man sich in diesem beliebten Quiz-Spiel erfüllen. Ob allein oder in der geselligen Runde dieses Quiz enthält 330 Fragen und 1.320 Multiple-Choice-Antworten.

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,

Mehr

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,

Mehr

Unternehmensname Straße PLZ/Ort Branche Mitarbeiterzahl in Deutschland Projektverantwortlicher Funktion/Bereich E-Mail* Telefon

Unternehmensname Straße PLZ/Ort Branche Mitarbeiterzahl in Deutschland Projektverantwortlicher Funktion/Bereich E-Mail* Telefon Hinweis: Bei Begriffen, für die es sowohl eine weibliche als auch eine männliche Form gibt, wird in diesem Dokument aus Gründen der besseren Lesbarkeit auf eine Unterscheidung verzichtet. Entsprechende

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678

q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678 Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Fragebogen zur Masterarbeit Betriebliche Beurteilungspraxis von Auszubildenden. 1. Welcher Gruppe von Kreditinstituten gehören Sie an?

Fragebogen zur Masterarbeit Betriebliche Beurteilungspraxis von Auszubildenden. 1. Welcher Gruppe von Kreditinstituten gehören Sie an? Dr. Andreas Rausch Lehrstuhl für Wirtschaftspädagogik Otto-Friedrich-Universität Bamberg Kärntenstraße 7 96052 Bamberg http://www.uni-ba.de/wipaed Tel.: 0951/863-2767 andreas.rausch@uni-bamberg.de Fragebogen

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Gegenüber PowerPoint 2003 hat sich in PowerPoint 2007 gerade im Bereich der Master einiges geändert. Auf Handzettelmaster und Notizenmaster gehe ich in diesen Ausführungen nicht ein, die sind recht einfach

Mehr

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X Aufgabe 1 Schwierigkeit: X Aufgabe 3 Schwierigkeit: X Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

Tevalo Handbuch v 1.1 vom 10.11.2011

Tevalo Handbuch v 1.1 vom 10.11.2011 Tevalo Handbuch v 1.1 vom 10.11.2011 Inhalt Registrierung... 3 Kennwort vergessen... 3 Startseite nach dem Login... 4 Umfrage erstellen... 4 Fragebogen Vorschau... 7 Umfrage fertigstellen... 7 Öffentliche

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Arbeiterwohlfahrt Kreisverband Siegen - Wittgenstein/ Olpe 1 Diese Information hat geschrieben: Arbeiterwohlfahrt Stephanie Schür Koblenzer

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

PTV VISUM TIPPS & TRICKS:

PTV VISUM TIPPS & TRICKS: PTV VISUM TIPPS & TRICKS: LUFTBILD VON GOOGLEMAPS EINFÜGEN Wie fügt man ein richtig georeferenziertes Luftbild von GoogleMaps ein? Der vorherige Beitrag zum Thema Wie wählt man ein passendes Koordinatensystem

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Moodle Lernplattform Educorb

Moodle Lernplattform Educorb Moodle Lernplattform Educorb Benutzerhandbuch Verfasser: Mag. Dr. Ingeborg Derkits Regionaler Entwicklungsverband Industrieviertel Projektmanagement (REVI-PM) Schlossstraße 1 A-2801 Katzelsdorf Version:

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Dr. Guido Schwarz Forschung, Schulung, Beratung; A - 1180 Wien, Edelhofgasse 31/8; Tel: +43-1-478 34 44 Mobil: +43-676 431 91 12 E-mail:

Dr. Guido Schwarz Forschung, Schulung, Beratung; A - 1180 Wien, Edelhofgasse 31/8; Tel: +43-1-478 34 44 Mobil: +43-676 431 91 12 E-mail: 1 PROTOKOLL 2 Der Startschuss verlief erfolgreich, wenn auch mit Geburtswehen. Bei herrlichem Wetter gab es einen diskussionsreichen Nachmittag mit dem Fazit: Lauter nette Menschen und interessant genug,

Mehr

Fehler und Probleme bei Auswahl und Installation eines Dokumentenmanagement Systems

Fehler und Probleme bei Auswahl und Installation eines Dokumentenmanagement Systems Fehler und Probleme bei Auswahl und Installation eines Dokumentenmanagement Systems Name: Bruno Handler Funktion: Marketing/Vertrieb Organisation: AXAVIA Software GmbH Liebe Leserinnen und liebe Leser,

Mehr

Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind.

Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind. Online-Bestellung Tageskarten für Mitglieder des FC St. Pauli, die nicht im Besitz einer Dauer- oder Saisonkarte sind. 1. Anmeldung Soweit noch nicht geschehen, muss im Vorfeld (vor Verkaufsstart am 21.07.)

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Den Durchblick haben. VOLKSBANK BAD MÜNDER eg. Online aber sicher: Unsere Produkt- und Sicherheitshotline hilft und informiert

Den Durchblick haben. VOLKSBANK BAD MÜNDER eg. Online aber sicher: Unsere Produkt- und Sicherheitshotline hilft und informiert Den Durchblick haben Online aber sicher: Unsere Produkt- und Sicherheitshotline hilft und informiert VOLKSBANK BAD MÜNDER eg www.vbbadmuender.de...meine Bank! Jeder Mensch hat etwas, das ihn antreibt.

Mehr

Betriebskalender & Kalenderfunktionen

Betriebskalender & Kalenderfunktionen Betriebskalender & Kalenderfunktionen Der Betriebskalender ist in OpenZ für 2 Dinge verantwortlich: 1. Berechnung der Produktionszeiten im Modul Herstellung 2. Schaffung der Rahmenbedingungen, für die

Mehr

Die Post hat eine Umfrage gemacht

Die Post hat eine Umfrage gemacht Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.

Mehr

Multicheck Schülerumfrage 2013

Multicheck Schülerumfrage 2013 Multicheck Schülerumfrage 2013 Die gemeinsame Studie von Multicheck und Forschungsinstitut gfs-zürich Sonderauswertung ICT Berufsbildung Schweiz Auswertung der Fragen der ICT Berufsbildung Schweiz Wir

Mehr

Bei der Anlage von Pauschalen ist folgendes zu beachten!!!!!!!!

Bei der Anlage von Pauschalen ist folgendes zu beachten!!!!!!!! Bei der Anlage von Pauschalen ist folgendes zu beachten!!!!!!!! Vorgaben für Pauschen: Die Pauschale wird in der Homepage mit 3 Punkten dargestellt Titel ist der Produkttitel Pro Punkt jeweils maximal

Mehr

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert

Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Beamen in EEP Das sogenannte Beamen ist auch in EEP möglich ohne das Zusatzprogramm Beamer. Zwar etwas umständlicher aber es funktioniert Zuerst musst du dir 2 Programme besorgen und zwar: Albert, das

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Animationen erstellen

Animationen erstellen Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Risiko und Versicherung - Übung

Risiko und Versicherung - Übung Sommer 2009 Risiko und Versicherung - Übung Entscheidungstheoretische Grundlagen Renate Bodenstaff Vera Brinkmann r.bodenstaff@uni-hohenheim.de vera.brinkmann@uni-hohenheim.de https://insurance.uni-hohenheim.de

Mehr

Kurzanleitung MAN E-Learning (WBT)

Kurzanleitung MAN E-Learning (WBT) Kurzanleitung MAN E-Learning (WBT) Um Ihr gebuchtes E-Learning zu bearbeiten, starten Sie bitte das MAN Online- Buchungssystem (ICPM / Seminaris) unter dem Link www.man-academy.eu Klicken Sie dann auf

Mehr

Senioren helfen Junioren

Senioren helfen Junioren Was lernen Sie hier? Sie überprüfen Ihr Wort- und Textverständnis. Was machen Sie? Sie finden Synonyme, beurteilen und formulieren Aussagen. Senioren helfen Junioren Lektion 9 in Themen aktuell 2, nach

Mehr

präsentiert: Ventildeckel lackieren www.e30forum.de

präsentiert: Ventildeckel lackieren www.e30forum.de präsentiert: Ventildeckel lackieren www.e30forum.de DIY/FAQ: --===> Ventildeckel lackieren

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Manfred Ludwig. Spielmaterial

Manfred Ludwig. Spielmaterial Manfred Ludwig Manfred Ludwig wurde 1936 in München geboren. Er studierte an der Universität in München und arbeitete ab 1964 als Gymnasiallehrer für Französisch und Sport in Regensburg. Zum Spieleerfinden

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Anleitung Outlook 2002 & 2003

Anleitung Outlook 2002 & 2003 Schritt 1: Starten Sie "Outlook 2003" und gehen Sie auf Extras und dann auf E-Mail-Konten! Schritt 2: Klicken Sie auf "Ein neues E-Mail-Konto hinzufügen" und dann auf Weiter! Omega-FX _webmedia_ Seite

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu.

Schritte 4. Lesetexte 13. Kosten für ein Girokonto vergleichen. 1. Was passt? Ordnen Sie zu. Kosten für ein Girokonto vergleichen 1. Was passt? Ordnen Sie zu. a. die Buchung, -en b. die Auszahlung, -en c. der Dauerauftrag, - e d. die Überweisung, -en e. die Filiale, -n f. der Kontoauszug, - e

Mehr

Gesetz zur Berufskraftfahrerqualifikation (BKrfFQG)

Gesetz zur Berufskraftfahrerqualifikation (BKrfFQG) Gesetz zur Berufskraftfahrerqualifikation (BKrfFQG) Ab dem 09.Sept.2009 gilt das Gesetz zur Berufskraftfahrerqualifikation (BKrFQG). Alle Kfz und Kombinationen mit mehr als 3,5t Gesamtmasse, die man für

Mehr

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Grundkursabitur 2011 Stochastik Aufgabe III

Grundkursabitur 2011 Stochastik Aufgabe III Grundkursabitur 011 Stochastik Aufgabe III An einem Musikwettbewerb, der aus einer Messehalle bundesweit live im Fernsehen übertragenwird, nehmen zwölf Nachwuchsbands aus ganz Deutschland teil. Genau zwei

Mehr