Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis"

Transkript

1 Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis

2 Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal des Zufallsexperiments benannt. Zufallsexperiment Merkmal Ergebnisse Hochsprung von Schülern Ziehen von Kugeln aus Urne Werfen einer Münze Werfen eines Würfels Kontrolle einer Bonbontüte Sprunghöhe Lage der Oberseite der Münze Höhen zwischen 0,75m und,70 m gelb, grün, blau 24,25,26,27,28

3 Beispiel: Würfeln mit einem Würfel Mögliche Ergebnismenge, je nach Fragestellung: Ω = {,2,3,4,5,6, Ecke, Kante} Die Ergebnismenge Ω (sprich: Omega ) enthält alle möglichen Ergebnisse eines Zufallsexperiments. Ω 2 = {,2,3,4,5,6} Ω 3 = {6, keine 6} Ω 4 = {gerade, ungerade Augenzahl} Welche Ergebnismenge erscheint am geeignetsten - d. h. nicht zu grob und ohne überflüssige Ergebnisse - für die Frage nach der Wahrscheinlichkeit einer Augenzahl? Begründe.

4 Die Ergebnisse sind also die Elemente der Ergebnismenge. Sie sollen höchstens einmal in Ω vorkommen. Keine Ergebnismenge: Ω = {gerade Zahlen oder Primzahlen kleiner gleich 6} Warum?

5 Nenne einen geeigneten Ergebnisraum für die folgenden Zufallsexperimente:. Würfeln eines Tetraeders mit den Augenzahlen,2,3 und Beim Werfen zweier Tetraederwürfels ( zweistufiges Zufallsexperiment ) bietet jemand folgende Ergebnismengen an: Bemerkung: Das Ergebnis (3 4) bedeutet, dass im ersten Wurf eine 3 und im zweiten Wurf eine 4 gewürfelt wird. Ω = {( );( 2),( 3),( 4), (2 );(2 2),(2 3),(2 4),(3 );(3 2),(3 3),(3 4),(4 );(4 2),(4 3),(4 4)} Ω 2 = {( );( 2),( 3),( 4),(2 2),(2 3),(2 4),(3 3),(3 4),(4 4)} Ω 2 = {Augensumme größer als und kleiner als 9} Welches sind Ergebnismengen des Experiments? 3. In einer Klinik wir eine Statistik über das Geschlecht der Neugeborenen geführt. a) Einzelkinder b) eineiige Zwillinge c) zweieiige Zwillinge

6 Aufgaben. Bei einem Wettrennen starten die vier Personen A,B,C und D. Man geht davon aus, dass alle Läufer zu verschiedenen Zeiten das Ziel passieren. a) Nenne die verschiedenen Einlaufreihenfolgen. Wie viele sind es? b) Gib die Ergebnismenge Ω an, wenn nur der. Sieger interessiert. c) Gib die Ergebnismenge Ω 2 an, wenn nur der. und 2. Sieger festgestellt werden soll. 2. Die drei Triebwerke eines Flugzeugs werden getestet. Gib die Ergebnismenge an, wenn interessiert, a) wie viele b) welche Triebwerke nicht einwandfrei laufen. 3. In einem Land gibt es vier politische Parteien. A, B, C und D. Welche der Mengen sind mögliche Ergebnismengen zu der Umfrage: Welche Partei würden Sie wählen, wenn morgen Wahltag wäre? a) {A;B;C;D; keine} b) {A; B oder C; keine} c) {A;sonstige; keine} d) {A oder B}

7 Aufgaben. Bei einem Wettrennen starten die vier Personen A,B,C und D. Man geht davon aus, dass alle Läufer zu verschiedenen Zeiten das Ziel passieren. a) Nenne die verschiedenen Einlaufreihenfolgen. Wie viele sind es? b) Gib die Ergebnismenge Ω an, wenn nur der. Sieger interessiert. c) Gib die Ergebnismenge Ω 2 an, wenn nur der. und 2. Sieger festgestellt werden soll. 2. Die drei Triebwerke eines Flugzeugs werden getestet. Gib die Ergebnismenge an, wenn interessiert, a) wie viele b) welche Triebwerke nicht einwandfrei laufen. 3. In einem Land gibt es vier politische Parteien. A, B, C und D. Welche der Mengen sind mögliche Ergebnismengen zu der Umfrage: Welche Partei würden Sie wählen, wenn morgen Wahltag wäre? a) {A;B;C;D; keine} b) {A; B oder C; keine} c) {A;sonstige; keine} d) {A oder B}

8 Ereignis Jede Teilmenge von Ω heißt Ereignis. Beispiel: Einmaliges Würfeln mit Ω = {,2,3,4,5,6} E: gerade Augenzahl E = {2;4;6}

9 Besondere Ereignisse Enthält ein Ereignis nur ein Ergebnis, so nennt man es Elementareignis Ω heißt sicheres Ereignis Die leere Menge {} oder heißt das unmögliche Ereignis Beispiel: E ={6} Wähle ich Ω ={,2,3,4,5,6} so betrachte ich es als sicher, dass eine der 6 Zahlen der Menge gewürfelt wird. Ich betrachte es als unmöglich, keine der 6 Zahlen zu würfeln.

10 Aufgaben. Zwei Freunde spielen das Knobelspiel Schere (S), Stein (St), Papier (P) Notiere die Ergebnismenge Ω, das sichere und das unmögliche Ereignis sowie die Ereignisse E und E 2 mit E : Erster Spieler gewinnt, E 2 : Keiner gewinnt. 2. Gib die Mengen an, die folgende Ereignisse beim zweimaligen Würfeln mit dem Tetraeder beschreiben: E : Pasch, E 2 : Augensumme gerade, E 3 : Erste Augenzahl kleiner als zweite

11 Verknüpfung von Ereignissen Ereignisse sind Mengen. Verknüpfungen von Mengen: Schnittmenge von A und B: A B A und B Vereinigungsmenge von A und B: A B A oder B Komplementärmenge von A: A nicht A Stelle für das Würfeln mit einem Würfel die Schnittund Vereinigungsmenge von A: Augenzahl prim und B: Augenzahl höchstens 4 dar. Nenne auch die Komplementärmengen zu A und B.

12 Aufgabe Auf Karins Schulweg gibt es drei Ampeln, die unabhängig voneinander den Verkehr regeln. Katrin muss sie alle drei passieren. a) Nenne die Ergebnismenge Ω für die Möglichkeiten der Ampelschaltungen, falls nur Rot und Grün beachtet werden soll. b) Gib die folgenden Ereignisse an. A: Alle Ampeln zeigen die gleiche Farbe. B: Die erste Ampel zeigt Rot. C: Die zweite Ampel zeigt Rot. D: Höchstens eine Ampel zeigt Rot. c) Notiere die folgenden Ereignisse und beschreibe sie verbal: R = B C, S = B C, T = A C, U = D, V = A C

13 Laplace-Experimente a) Werft in Gruppenarbeit zwei Münzen mit den Prägungen Kopf und Zahl und notiert die relativen Häufigkeiten nach 200-maligem Werfen für die Ereignisse E : beide Kopf, E 2 : beide Zahl und E 3 : unterschiedliche Prägung Ereignisse E E 2 E 3 relative Häufigkeit h 200 (E)

14 Laplace-Experimente b) Einigen Schülern ist es zu langweilig, die Würfe durchzuführen. Sie wollen lieber durch Berechnungen, den Ausfall des Zufallsexperiments vorhersagen. Sie schlagen folgende Modelle zur Beschreibung des Versuchs vor: Ω = {beide Kopf, beide Zahl, unterschiedlich} Ereignisse beide Kopf beide Zahl unterschiedlich Wahrscheinlichkeit P(E) Ereignisse beide Kopf beide Zahl unterschiedlich Ω 2 = Ω Wahrscheinlichkeit P(E) Ω 3 = {(K K),(Z Z),(Z K),(K Z)} Ereignisse (K K) (Z Z) (Z K) (K Z) Wahrscheinlichkeit P(E)

15 Aufgabe (Fortsetzung) Vergleicht mit den relativen Häufigkeiten aus a) und beschreibt, welche Modelle das Zufallsexperiment tatsächlich widerspiegeln. Welche Ergebnismenge ist zur Berechnung der Wahrscheinlichkeiten am geeignetsten? Begründet.

16 Laplace-Experiment Ein Zufallsexperiment, dessen Ergebnisse als gleichwahrscheinlich angenommen werden, heißt Laplace-Experiment.

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses. XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Wahrscheinlichkeit Klasse 8 7

Wahrscheinlichkeit Klasse 8 7 7 Wahrscheinlichkeit Klasse 8 Ereignisse Seite 8 a) Ω {Herz 7; Herz 8; Herz 9; Herz 0; Herz Unter; Herz Ober; Herz König; Herz Ass; Eichel 7; Eichel 8; Eichel 9; Eichel 0; Eichel Unter; Eichel Ober; Eichel

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Übungen zur Mathematik für Pharmazeuten

Übungen zur Mathematik für Pharmazeuten Blatt 1 Aufgabe 1. Wir betrachten den Ereignisraum Ω = {(i,j) 1 i,j 6} zum Zufallsexperiment des zweimaligem Würfelns. Sei A Ω das Ereignis Pasch, und B Ω das Ereignis, daß der erste Wurf eine gerade Augenzahl

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

Variationen Permutationen Kombinationen

Variationen Permutationen Kombinationen Variationen Permutationen Kombinationen Mit diesen Rechenregeln lässt sich die Wahrscheinlichkeit bestimmter Ereigniskombinationen von gleichwahrscheinlichen Elementarereignissen ermitteln, und erleichtert

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen)

Maristengymnasium Fürstenzell zuletzt geändert am 10.03.2001 Aufgaben zur Kombinatorik (mit Lösungen) Maristengymnasium Fürstenzell zuletzt geändert am 0.0.00 Aufgaben zur Kombinatorik (mit Lösungen) 0.. Wieviele Möglichkeiten gibt es für Kinder, sich auf einen Schlitten zu setzen, wenn ihn nur davon steuern

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero? Manche sagen: Ja, manche sagen: Nein Wie soll man das objektiv feststellen? Kann man Geschmack objektiv messen? - Geschmack ist subjektiv

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)

Mehr

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X

Übungsaufgaben - Kombinatorik. Übungsaufgaben - Kombinatorik. Aufgabe 1 Schwierigkeit: X. Aufgabe 3 Schwierigkeit: X Aufgabe 1 Schwierigkeit: X Aufgabe 3 Schwierigkeit: X Einer Gruppe von 15 Schülern werden 3 Theaterkarten angeboten. Auf wie viele Arten können die Karten verteilt werden, wenn sich die Karten auf nummerierte

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62

Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62 Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2007 Mathematik GK Stochastik Aufgabe C1 Eine Werbeagentur ermittelte durch eine Umfrage im Auftrag eines Kosmetikunternehmens vor Beginn einer Werbekampagne

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter

Mehr

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen RS 24.2.2005 Zufallsgroessen_i.mcd 1) Zufallsgröße Zufallsgrößen und Wahrscheinlichkeitsverteilungen Zu jedem Zufallsexeriment gehört ein Ergebnisraum Ω. Die einzelnen Ergebnisse ω i können Buchstaben,

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Einstellungen der Deutschen gegenüber dem Beruf der Putzfrau

Einstellungen der Deutschen gegenüber dem Beruf der Putzfrau Auftraggeber: Helpling GmbH Frankfurt a.m.: 5. November 05 3367/n5447 Go/Bü Untersuchungsdesign Zielgruppe: Stichprobengröße: Die in Privathaushalten in Deutschland lebenden deutschsprachigen Personen

Mehr

Impulse Inklusion 2014 Beteiligungskulturen - Netzwerke - Kooperationen (Leichte Sprache Version)

Impulse Inklusion 2014 Beteiligungskulturen - Netzwerke - Kooperationen (Leichte Sprache Version) Impulse Inklusion 2014 Beteiligungskulturen - Netzwerke - Kooperationen (Leichte Sprache Version) Das heißt: Beteiligungskultur: Wie können Menschen mit Behinderungen überall mitmachen und mitsprechen.

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3

Kapitel 7 und Kapitel 8: Gleichgewichte in gemischten Strategien. Einleitung. Übersicht Teil 2 2. Übersicht 3 Übersicht Teil 2 Kaitel 7 und Kaitel 8: Gleichgewichte in gemischten Strategien Übersicht Teil 2 2 Übersicht Einleitung Was ist eine gemischte Strategie? Nutzen aus gemischten Strategien Reaktionsfunktionen

Mehr

Wir machen neue Politik für Baden-Württemberg

Wir machen neue Politik für Baden-Württemberg Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in

Mehr

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig

Ein Rechenspiel auf der Hunderter-Tafel. Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel Reinhold Wittig Ein Rechenspiel auf der Hunderter-Tafel für 2 Spieler ab 8 Jahren Autor Reinhold Wittig Inhalt 1 Spielbrett (Hunderter-Tafel) 1 transparente Maske

Mehr

Die Post hat eine Umfrage gemacht

Die Post hat eine Umfrage gemacht Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik

MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik MI - Mission Impossible Sind Sie gut versichert? Ein kurzes Beispiel zur Versicherungsmathematik Seite 1 Vorstellung Organisation: Deutsche Aktuarvereinigung e.v. (DAV) berufsständische Vertretung der

Mehr

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)

Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll

Mehr

Alle gehören dazu. Vorwort

Alle gehören dazu. Vorwort Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören

Mehr

Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig

Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig Umfrage zur Erhebung statistischer Daten bzgl. des Rauchverhaltens von Schülerinnen und Schülern an der BBS IV in Braunschweig Datum: 16. Februar 2005 ungültig: 17 Mittleres Geburtsjahr: 1984 weiblich:

Mehr

Kreativ visualisieren

Kreativ visualisieren Kreativ visualisieren Haben Sie schon einmal etwas von sogenannten»sich selbst erfüllenden Prophezeiungen«gehört? Damit ist gemeint, dass ein Ereignis mit hoher Wahrscheinlichkeit eintritt, wenn wir uns

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Gründe für fehlende Vorsorgemaßnahmen gegen Krankheit

Gründe für fehlende Vorsorgemaßnahmen gegen Krankheit Gründe für fehlende Vorsorgemaßnahmen gegen Krankheit politische Lage verlassen sich auf Familie persönliche, finanzielle Lage meinen, sich Vorsorge leisten zu können meinen, sie seien zu alt nicht mit

Mehr

Statistik 1: Einführung

Statistik 1: Einführung Seite Stat- Statistik : Einführung Die mathematische Disziplin der Stochastik, die die Teilgebiete Wahrscheinlichkeitstheorie und mathematische Statistik umfaßt, beschäftigt sich mit der Beobachtung, Aufzeichnung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: If-clauses - conditional sentences - Nie mehr Probleme mit Satzbau im Englischen! Das komplette Material finden Sie hier: School-Scout.de

Mehr

Dr. Guido Schwarz Forschung, Schulung, Beratung; A - 1180 Wien, Edelhofgasse 31/8; Tel: +43-1-478 34 44 Mobil: +43-676 431 91 12 E-mail:

Dr. Guido Schwarz Forschung, Schulung, Beratung; A - 1180 Wien, Edelhofgasse 31/8; Tel: +43-1-478 34 44 Mobil: +43-676 431 91 12 E-mail: 1 PROTOKOLL 2 Der Startschuss verlief erfolgreich, wenn auch mit Geburtswehen. Bei herrlichem Wetter gab es einen diskussionsreichen Nachmittag mit dem Fazit: Lauter nette Menschen und interessant genug,

Mehr

Ideen für die Zukunft haben.

Ideen für die Zukunft haben. BREMEN WÄHLT AM 10. MAI 2015 Ideen für die Zukunft haben. Leichte Sprache Kurz und bündig. www.spd-land-bremen.de Bürgermeister, Hanseat, Bremer. Foto: Patrice Kunde Liebe Menschen in Bremen, am 10. Mai

Mehr

Auswertung der Umfrage 1. Lehrjahr rauchfrei vom 10. Januar 2008

Auswertung der Umfrage 1. Lehrjahr rauchfrei vom 10. Januar 2008 Auswertung der Umfrage 1. Lehrhr rauchfrei vom. Januar 28 Allgemeine Daten 26 Lernende haben im August 27 ihre Ausbildung in einem der drei Pilotbetriebe gestartet. 2 davon haben eine Vereinbarung unterschrieben.

Mehr

Fachwirt. Geprüfter. werden. Intensivtraining für eine erfolgreiche IHK-Prüfung. Teil A wirtschaftsübergreifende Qualifikationen

Fachwirt. Geprüfter. werden. Intensivtraining für eine erfolgreiche IHK-Prüfung. Teil A wirtschaftsübergreifende Qualifikationen Intensivtraining für eine erfolgreiche IHK-Prüfung Geprüfter Fachwirt werden Teil A wirtschaftsübergreifende Qualifikationen Peter Collier, Reinhard Fresow, Klaus Steines Mit Aufgaben- und Lösungssätzen

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Fragebogen zur Erhebung der Zufriedenheit und Kooperation der Ausbildungsbetriebe mit unserer Schule

Fragebogen zur Erhebung der Zufriedenheit und Kooperation der Ausbildungsbetriebe mit unserer Schule Fragebogen zur Erhebung der Zufriedenheit und Kooperation der Ausbildungsbetriebe mit unserer Schule Sehr geehrte Ausbilderinnen und Ausbilder, die bbs1celle betreiben nun bereits seit einigen Jahren ein

Mehr

Erstellen einer digitalen Signatur für Adobe-Formulare

Erstellen einer digitalen Signatur für Adobe-Formulare Erstellen einer digitalen Signatur für Adobe-Formulare (Hubert Straub 24.07.13) Die beiden Probleme beim Versenden digitaler Dokumente sind einmal die Prüfung der Authentizität des Absenders (was meist

Mehr

Eisenbahnspiel. (Dokumentation)

Eisenbahnspiel. (Dokumentation) Eisenbahnspiel (Dokumentation) Abbildung 1: Hier sieht man den Gleisparcour In der Mitte ist das Depot mit den Einnahmetalern und den dunkelfarbigen Kreditsteinen und den Sparsäcken zu sehen. Außerdem

Mehr

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle: Die neue Aufgabe von der Monitoring-Stelle Das ist die Monitoring-Stelle: Am Deutschen Institut für Menschen-Rechte in Berlin gibt es ein besonderes Büro. Dieses Büro heißt Monitoring-Stelle. Mo-ni-to-ring

Mehr

Kombinatorik Platzierungsproblem 3 Berechnungsarten

Kombinatorik Platzierungsproblem 3 Berechnungsarten Kombinatorik Platzierungsproblem 3 Berechnungsarten 10 Weinflaschen, davon Rotweinflaschen, werden rechteckförmig zufällig angeordnet 7 7 Wie groß ist die Wahrscheinlichkeit, dass die Rotweinflaschen die

Mehr

TIPS-Crash und zwei Hindenburg-Omen

TIPS-Crash und zwei Hindenburg-Omen TIPS-Crash und zwei Hindenburg-Omen In den USA bezeichnet das Kürzel TIPS eine Anleihe, die gegen Kaufkraftverlust schützt. Ein Investment in TIPS ( Treasury Inflation Protected Security, deutsch: Inflationsgeschützte

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Wärmebildkamera. Arbeitszeit: 15 Minuten

Wärmebildkamera. Arbeitszeit: 15 Minuten Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

EINMALEINS BEZIEHUNGSREICH

EINMALEINS BEZIEHUNGSREICH EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Beispiel(unten ist der Spielfeldrand):

Beispiel(unten ist der Spielfeldrand): Anleitung Side by Side ist ein Puzzle mit einfachen Regeln, das in einem 6x6 (oder größerem) Gitter gespielt wird. Ziel des Spieles ist es, die leeren Kästchen mit den Zahlen 1, 2, 3, 4 oder einem X zu

Mehr

Leichte-Sprache-Bilder

Leichte-Sprache-Bilder Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen

Mehr

Die Invaliden-Versicherung ändert sich

Die Invaliden-Versicherung ändert sich Die Invaliden-Versicherung ändert sich 1 Erklärung Die Invaliden-Versicherung ist für invalide Personen. Invalid bedeutet: Eine Person kann einige Sachen nicht machen. Wegen einer Krankheit. Wegen einem

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Auslotung der Gefühle & Wünsche von Eltern und SchülerInnen zum Schuljahr 2011/2012

Auslotung der Gefühle & Wünsche von Eltern und SchülerInnen zum Schuljahr 2011/2012 Chart Auslotung der Gefühle & Wünsche von Eltern und SchülerInnen zum Schuljahr 0/0 Projektleiter: Studien-Nr.: Mag. Reinhard Födermayr Z85.08.P.O n=5, Online Interviews mit Eltern von SchülerInnen und

Mehr

Eine der Aktien hat immer einen höheren Gewinn als die andere Aktie. Ihre Aufgabe ist es diese auszuwählen.

Eine der Aktien hat immer einen höheren Gewinn als die andere Aktie. Ihre Aufgabe ist es diese auszuwählen. Instruktionen am Anfang von Experiment 1 (auf Papier ausgeteilt: grünmarkierte Textstellen zeigen den Instruktionstext in der jeweiligen Bedingung an; Kommentare sind gelb markiert.) Stellen Sie sich vor,

Mehr

Ein Spiel für 2-3 goldhungrige Spieler ab 8 Jahren.

Ein Spiel für 2-3 goldhungrige Spieler ab 8 Jahren. Ein Spiel für 2-3 goldhungrige Spieler ab 8 Jahren. Gold! Gold! Nichts als Gold, soweit das Auge reicht. So ein Goldesel ist schon was Praktisches. Doch Vorsicht: Die störrischen Viecher können einem auch

Mehr

Geld Verdienen im Internet leicht gemacht

Geld Verdienen im Internet leicht gemacht Geld Verdienen im Internet leicht gemacht Hallo, Sie haben sich dieses E-book wahrscheinlich herunter geladen, weil Sie gerne lernen würden wie sie im Internet Geld verdienen können, oder? Denn genau das

Mehr

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.

Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen. Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss

Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein

Mehr

Der Wert von Lebensmitteln Umfragen im Auftrag des BMELV

Der Wert von Lebensmitteln Umfragen im Auftrag des BMELV Der Wert von Lebensmitteln Umfragen im Auftrag des BMELV Teil 1 Datenbasis: 1.001 Bundesbürger ab 14 Jahre Erhebungszeitraum: 4. bis 7. Januar 2011 statistische Fehlertoleranz: +/- 3 Prozentpunkte Auftraggeber:

Mehr

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis

Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis Datenanalyse Auswertung Der Kern unseres Projektes liegt ganz klar bei der Fragestellung, ob es möglich ist, Biere von und geschmacklich auseinander halten zu können. Anhand der folgenden Grafiken, sollte

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note

Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Bürger legen Wert auf selbstbestimmtes Leben

Bürger legen Wert auf selbstbestimmtes Leben PRESSEINFORMATION Umfrage Patientenverfügung Bürger legen Wert auf selbstbestimmtes Leben Ergebnisse der forsa-umfrage zur Patientenverfügung im Auftrag von VorsorgeAnwalt e.v. Der Verband VorsorgeAnwalt

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG

BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Frist berechnen BERECHNUNG DER FRIST ZUR STELLUNGNAHME DES BETRIEBSRATES BEI KÜNDIGUNG Sie erwägen die Kündigung eines Mitarbeiters und Ihr Unternehmen hat einen Betriebsrat? Dann müssen Sie die Kündigung

Mehr

13 Öffentliche Güter

13 Öffentliche Güter 1 13ÖffentlicheGüter Deregriffdes"öffentlichenGutes"hateinigespekte,dieÄhnlichkeitenzuderDiskussion vonexterneneffektenaufweisen.einsolchergemeinsamerspektist,daßnichtmehralle EntscheidungsträgerunabhängigvoneinanderüberdasNiveaueinesdesKonsumsoderdes

Mehr

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.

Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln. Übungen zur Vorlesung Wirtschaftsstatistik Zufallsvariablen Aufgabe 4.1 Ein Unternehmen fertigt einen Teil der Produktion in seinem Werk in München und den anderen Teil in seinem Werk in Köln. Auf Grund

Mehr

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen

Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen rof. G. Kemnitz Institut für Informatik, Technische Universität Clausthal 14. April 2010 1/14 Informatik für Schüler, Foliensatz 12 Pseudo-Zufallszahlen Prof. G. Kemnitz Institut für Informatik, Technische

Mehr

Ebenenmasken Grundlagen

Ebenenmasken Grundlagen Ebenenmasken Grundlagen Was sind Ebenmasken? Was machen sie? Wofür braucht man sie? Wie funktionieren sie? Ebenmasken sind eines der sinnvollsten Tools in anspruchvollen EBV Programmen (EBV = elektronische

Mehr

1. Weniger Steuern zahlen

1. Weniger Steuern zahlen 1. Weniger Steuern zahlen Wenn man arbeitet, zahlt man Geld an den Staat. Dieses Geld heißt Steuern. Viele Menschen zahlen zu viel Steuern. Sie haben daher wenig Geld für Wohnung, Gewand oder Essen. Wenn

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Gegenüber PowerPoint 2003 hat sich in PowerPoint 2007 gerade im Bereich der Master einiges geändert. Auf Handzettelmaster und Notizenmaster gehe ich in diesen Ausführungen nicht ein, die sind recht einfach

Mehr