Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Größe: px
Ab Seite anzeigen:

Download "Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik"

Transkript

1 Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt von Martin Wolf Datum: c Copyright Martin Wolf, 2007.

2 1 Zusammenfassung 1.1 Ensembles Mikrokanonisches Ensemble Der Wert der Energie E = E 0 und der Teilchenzahl N = N 0 sind fest vorgegeben. (f Anzahl der Freiheitsgrade des Systems) Zustandssumme: Z mik (E, x) = Trδ(Ĥ E 0)δ( N N 0 ) (1) Z mik (E) E f (2) Entropie S: S = k B lnz mik (3) Kanonisches Ensemble Das kanonische Ensemble beschreibt den Gleichgewichtszustand eines Systems bei vorgegebener Temperatur T. Aus ihm können alle Mittelwerte berechnet werden. Im thermodynamischen Limes sind die Energiefluktuationen im kanonischen Ensemble verschwindend gering. Zustandssumme (β = 1 k B T ): Z k (T, x) = e βer(x) (4) r Thermodynamische Energie E und ihre Abweichung ( E) 2 : ( ) lnzk E(T, x) = (5) β x ( ) ( E) 2 = E 2 E 2 E = k B T 2 = k B T 2 C x (6) T x Spezifische Wärme C V : C V = ( ) E T V,N (7) Freie Energie F : F (T, x) = k B T lnz k (T, x) = E(T, x) T S (8) 2

3 1.1.3 Großkanonisches Ensemble Das großkanonische Ensemble beschreibt den Gleichgewichtszustand eines Systems bei vorgegebener Temperatur T und vorgegebenen chemischen Potental µ. Aus ihm können alle Mittelwerte berechnet werden. Im thermodynamischen Limes sind die Energie- und Teilchenfluktuationen im großkanonischen Ensemble (außerhalb von Phasenübergängen) verschwindend gering. Zustandssumme (β = 1 k B T, z = eβµ ): Z gk (T, µ, x) = r,s e β(er(ns) µns) (9) = z N Z k (T, N, x) (10) N=1 Thermodynamische Energie E und mittlere Teilchenzahl N: ( ) lnzgk E(T, µ, x) = β z,x N(T, µ, x) = 1 ( ) lnzgk β µ T,x (11) (12) Großkanonische Potental J: J(T, µ, x) = E T S µn (13) = F µn (14) 1.2 Thermodynamische Beziehungen Temperatur T T 1 = ( S E ) V = k B lnz mik E 0 (15) Druck P P = T ( ) S E,N (16) 3

4 1.2.3 chemisches Potential µ µ = T ( ) S N E,V (17) innere Energie E E = F + T S (18) Guggenberg Schema Merksatz: Gute Physiker haben stets eine Vorliebe für Thermodynamik S E V H F + P G T (19) Aus diesem Schema lassen sich sie Maxwell-Relationen ablesen, indem man immer die gegenüberliegenden Ecken miteinander differenziert. Folgende Maxwell-Relationen existieren: S = P T = 2 F T S = T P = + 2 H S P S P = T = + 2 G P T P S = T = + 2 E S Außerdem lässt sich aus dem Guggenberg-Schema die Ableitungen der verschiedenen Energien ablesen, indem man die jeweilige Energie nach der jeweiligen danebenstehenden Größe ableitet. Deren gegenüberliegende Größe ist dann das Ergebnis. Folgende Ableitungen existieren: E S = +T H S = +T G P = +V F T = S (20) (21) (22) (23) E = P (24) H = +V P (25) G = S T (26) F = P (27) 4

5 1.2.6 Von der Hamiltonfunktion zu thermodynamischen Relationen H(x) E r (x) Z mik (E, N, x) S(E, N, x) Z k (T, N, x) F (T, N, x) Z gk (T, µ, x) J(T, µ, x) thermodynamische Relationen (28) 1.3 Fluktuations-Dissipations-Theorem Zusammenhänge der spezifischen Wärme c V, der Suzeptibilität χ und der Kompressibilität k T mit Fluktuationen und der kritischen Temperatur T c : c V < E 2 > < E > 2 (T T c ) α (29) χ < m 2 > < m > 2 (T T c ) γ (30) k T < m 2 > < m > 2 (T T c ) γ (31) 1.4 Kritische Exponenten α + 2β + γ = 2 (32) 1.5 Minimum- und Maximumprinzipien Gesetz der maximalen Entropie Sei x eine extensive makroskopische, von der Energie E unabhängige Größe. Dann bestimmt sich sein Wert x für ein abgeschlossenes Gleichgewichtssystem aus der Maximalbedingung S(E, x) = maximal S x = 0 (33) x=x 1.6 Bose Gas Beim Bose-Gas steigt die speziefische Wärme in Abhängigkeit T 3/2 mit der Temperatur C V T 3/2 bis zu einem Maximum bei der kritischen Temperatur. Bei der kritischen Temperatur existiert ein Phasenübergang 2. Ordnung (stetig in der spezifischen Wärme aber unstetig in dessen Ableitung) und die spezifische Wärme verläuft asymptotisch zum Idealwert C V = (3/2)Nk B. ɛ = p2 2m 5

6 Großkanonische Zustandssumme: Mittlere Besetzungszahl: Z gk = Π k (1 ze βɛ k ) 1 (34) n k = Zustandsgleichung (nicht-relativistisches Bose UND Fermi-Gas): ( ) 1 1 z eβɛ k 1 (35) P V = 2 3 E (36) Mittlere Energie (Bose UND Fermi-Gas): ( ) lnzgk E(T, µ, V ) = β z,v = k n k ɛ k (37) Mittlere Teilchenzahl (Bose UND Fermi-Gas): N(T, µ, V ) = 1 ( ) lnzgk β µ T,V = k n k (38) 1.7 Fermi-Gas Großkanonische Zustandssumme: Z gk = Π k (1 + ze βɛ k ) (39) Mittlere Besetzungszahl: n k = ( ) 1 1 z eβɛ k + 1 (40) 1.8 Phononen im flüssigen Helium Innere Energie: E = 3F (41) Spezifische Wärme: C V = E T T 3 (42) 6

7 1.9 ISING-Modell s i (i = 1,.., N) N-Spins, h Magnetfeld Hamilton-Funktion: H = J <i,j> s i s j µh i s i (43) Kanonische Zustandsgleichung: Z k = {s i } e βh {s i } (44) = Tr(M N ) = λ N + (45) Magnetisierung: < m >= F h h 0 = 0 (46) 1.10 Virial- und Äquipartitionstheorem (klassisches N-Teilchensystem) Der Mittelwert der kinetischen Energie E kin ist nach dem Virial-Theorem: E kin = 3 2 Nk BT (47) Der Mittelwert der inneren Energie ist nach dem Äquipartitionstheorem: E = 3d + 6 2d Nk BT (48) 7

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

Theoretische Physik F: Zwischenklausur SS 12

Theoretische Physik F: Zwischenklausur SS 12 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Seminar für Fragen der Festkörpertheorie. P.N. Racec

Seminar für Fragen der Festkörpertheorie. P.N. Racec Seminar für Fragen der Festkörpertheorie P.N. Racec WS2003/2004 2 Contents Spezialthemen in Festkörperphysik 5. Fermi-Dirac Verteilungsfunktion........................ 6.2 Bose-Einstein Verteilungsfunktion.......................

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Theorie der Phasenübergänge: Eine Einführung

Theorie der Phasenübergänge: Eine Einführung Michael Kastner, SS06, Universität Bayreuth heorie der Phasenübergänge: Eine Einführung Übersicht: Ein Phasenübergang ist ein Phänomen aus der physikalischen Disziplin der Statistischen Physik bzw. der

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

5 Bose-Einstein-Kondensation. Suprafluidität

5 Bose-Einstein-Kondensation. Suprafluidität Prof. Dr. A. Muramatsu Fortgeschrittene Quantentheorie WS / 9 5 Bose-Einstein-Kondensation. Suprafluidität Wie im Fall der Fermionen betrachten wir in diesem Kapitel zunächst nicht wechselwirkende Bosonen.

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

7. Kritische Exponenten, Skalenhypothese

7. Kritische Exponenten, Skalenhypothese 7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Response-Funktionen Bisher haben wir vorwiegend Eigenschaften des thermodynamischen Gleichgewichts untersucht. Diese stellen aber nur einen beschränkten Ausschnitt der interessierenden Phänomene dar. Zur

Mehr

Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II

Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II Modulprüfung Fortgeschrittene Theoretische Physik / Theoretische Physik II Ablauf der Prüfung In der Regel dauert die Prüfung 45 Minuten. Ich beginne immer mit dem Thema Bewegung eines materiellen Teilchens

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Ising-Modell Vorlesung Statistische Mechanik: Ising-Modell Das Ising Modell besteht auser einer Anzahl von Spins, die wir mit s i bezeichnen wollen. Jeder der N Spins kann den Wert ±1 annehmen. Die Spins

Mehr

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0 Thermodynamik: 1. Hauptsatz Energieerhaltung: Arbeit plus Wärmeentwicklung gleich Änderung der inneren Energie E = w + q kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff)

Mehr

Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk)

Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk) Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk) 1. Observable und Zustände (a) Klassische Observable als Funktionen auf dem Phasenraum; Quantenobservable

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik STATISTISCHE PHYSIK Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik Zusammenfassung und Stichwort-Sammlung April 2003 Teil I Thermodynamik 1 Grundbegriffe

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells 1

Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells 1 Die ausgefrorene freie Energie des Sherrington Kirkpatrick Modells Vorbemerkung In der Statistischen hysik können magnetische Materialien als System von miteinander wechselwirkender Elementarmagneten,

Mehr

Inhaltsverzeichnis XVII. Vorwort. 1 Einleitung 1

Inhaltsverzeichnis XVII. Vorwort. 1 Einleitung 1 VII Vorwort XVII 1 Einleitung 1 1.1 Deterministische und statistische Physik 1 1.2 Aufbau des Bandes Statistische Physik und Thermodynamik 5 1.3 Grenzen der Statistik und Thermodynamik des Gleichgewichts

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Statistische Mechanik Wintersemester 2011/12. Unvollständiges Skript - Nicht zur Verbreitung bestimmt c Michael Lässig

Statistische Mechanik Wintersemester 2011/12. Unvollständiges Skript - Nicht zur Verbreitung bestimmt c Michael Lässig Statistische Mechanik Wintersemester 2011/12 Unvollständiges Skript - Nicht zur Verbreitung bestimmt c Michael Lässig 3. Februar 2012 2 Inhaltsverzeichnis Einleitung........................................

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Seminar zur Theorie der Teilchen und Felder. Kritische Phänomene. Florian König WS 2009/2010

Seminar zur Theorie der Teilchen und Felder. Kritische Phänomene. Florian König WS 2009/2010 Seminar zur Theorie der Teilchen und Felder Kritische Phänomene Florian König WS 2009/2010 1 Phasendiagramme Thermodynamische Systeme treten oft in mehreren unterschiedlichen Phasen in Erscheinung. In

Mehr

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

T.1 Kinetische Gastheorie und Verteilungen

T.1 Kinetische Gastheorie und Verteilungen T.1 Kinetische Gastheorie und Verteilungen T 1.1 Physik von Gasen T 1.2 Ideales Gas - Makroskopische Betrachtung T 1.3 Barometrische Höhenformel T 1.4 Mikroskopische Betrachtung: kinetische Gastheorie

Mehr

u v w v = 1 w u w u v schon in der Mathematik gesehen?

u v w v = 1 w u w u v schon in der Mathematik gesehen? Die Kettenregel für die Thermodynamik Ziel ist die in der Thermodynamik benutzten Differentiationsregeln die auf den ersten Blick nicht denen aus der Mathematik ähneln doch als dieselben zu beschreiben

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Erinnerung: Intensive, extensive Größen

Erinnerung: Intensive, extensive Größen Erinnerung: Intensive, extensive Größen Man unterscheidet intensive und extensive Größen: Vorgehen: Man denke sich ein thermodynamisches ystem in zwei eile geteilt: Untersystem Untersystem Extensive Größen

Mehr

Musterlösung: Zweite Klausur in Thermodynamik und statistischer Physik (T4) 5. April 2014

Musterlösung: Zweite Klausur in Thermodynamik und statistischer Physik (T4) 5. April 2014 Musterlösung: Zweite Klausur in Thermodynamik und statistischer Physik (T4) 5. April 24 Bitte ausfüllen: Vorname und Nachname: Matrikelnummer: Anzahl der Extrablätter: Ergebnis veröffentlichen? Ja Nein

Mehr

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler

Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet. Andreas Irmler Fortgeschrittene MD/MC Methoden Wie man die freie Energie berechnet Andreas Irmler 22. März 2010 Inhaltsverzeichnis 1 Freie Energie 2 1.1 Motivation............................................... 2 1.2

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Kapitel 11. Phasen und Phasenübergänge Phasengleichgewichte

Kapitel 11. Phasen und Phasenübergänge Phasengleichgewichte Kapitel Phasen und Phasenübergänge Viele physikalische Systeme können in mehreren Phasen auftreten, die bei bestimmten Bedingungen miteinander koexistieren. Bekannte Beispiele sind der feste, flüssige

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Phasengleichgewichte und Phasenübergänge

Phasengleichgewichte und Phasenübergänge Kapitel 5 Phasengleichgewichte und Phasenübergänge 5.1 Beispiele für Phasenübergänge (siehe auch: Einleitung) Bereits kennengelernt: Bose-Einstein-Kondensation (Kapitel??. Exakt berechenbar, in mancher

Mehr

V5: Klassische statistische Mechanik thermodynamische Ensembles

V5: Klassische statistische Mechanik thermodynamische Ensembles V5: Klassische statistische Mechanik thermodynamische Ensembles Die statistische Mechanik behandelt Systeme mit vielen (im Grunde unendlich vielen) Freiheitsgraden. Diese sollen durch wenige Makrovariablen

Mehr

Übungen zur Theoretischen Physik F SS 12

Übungen zur Theoretischen Physik F SS 12 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS Prof. Dr. Jörg Schmalian Blatt 8: Lösungen Dr. Igor Gornyi Besprechung 5.6.. Landauscher

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

Ferromagnetismus: Heisenberg-Modell

Ferromagnetismus: Heisenberg-Modell Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Physikalisches Fortgeschrittenenpraktikum Spezifische Wärme. Vorbereitung. 1 Thermodynamische Grundlagen. 1.1 Die spezifische Wärme eines Festkörpers

Physikalisches Fortgeschrittenenpraktikum Spezifische Wärme. Vorbereitung. 1 Thermodynamische Grundlagen. 1.1 Die spezifische Wärme eines Festkörpers Physikalisches Fortgeschrittenenpraktikum Spezifische Wärme Vorbereitung Armin Burgmeier Robert Schittny In diesem Versuch wollen wir die spezifische Wärme eines Festkörpers, in unserem Fall Dysprosium,

Mehr

1 Terminologie und Methodik

1 Terminologie und Methodik Terminologie und Methodik Wir befassen uns mit thermodynamischen Systemen (engl. thermodynamic system). Dies sind meist makroskopische physikalische Systeme mit vielen mikroskopischen Freiheitsgraden,

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

STATISTISCHE PHYSIK L. D. LANDAU E. M. LIFSCHITZ. Teil 1. In deutscher Sprache herausgegeben

STATISTISCHE PHYSIK L. D. LANDAU E. M. LIFSCHITZ. Teil 1. In deutscher Sprache herausgegeben L. D. LANDAU E. M. LIFSCHITZ STATISTISCHE PHYSIK Teil 1 In deutscher Sprache herausgegeben von Prof. Dr. habil. RICHARD LENK Sektion Physik der Technischen Universität Chemnitz 8., berichtigte, von E.

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Thermodynamik und Statistik

Thermodynamik und Statistik Thermodynamik und Statistik Prof. Klaus Becker Institut für Theoretische Physik 10. Februar 2006 1 2 INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Einführung 5 2 Der statistische Operator ρ eines Gemisches 7

Mehr

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme"

Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme Vorlesung Physikalische Chemie IV Statistische Thermodynamik realer chemischer Systeme" Dietmar Paschek SS 016 Gittermodell für Mischungen Grenzen der Bragg-Williams Näherung Das Ising Modell Quasi-Chemische

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 6/7 Fachbereich Physik 1.11.6 Statistische Physik - Theorie der Wärme PD Dr. M. Falcke Übungsblatt 5: an-der-waals Gas / Kanonisches Ensemble Aufgabe 1 Punkte Leiten Sie aus

Mehr

Prof. Dr. W. Dieterich Fachbereich Physik Universität Konstanz

Prof. Dr. W. Dieterich Fachbereich Physik Universität Konstanz Theorie der Phasenübergänge Prof. Dr. W. Dieterich Fachbereich Physik Universität Konstanz Auszüge aus den Vorlesungen Theorie der Phasenübergänge, SS 1995 und Phase Transitions and Critical Phenomena

Mehr

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter

Experimentalphysik I : Mechanik und Wärmelehre WS 2010/11 Prof. Dr. J. Winter Informationen zur Klausur 2. Teilklausur Freitag, den 28.1.2011 Schwingungen (2.7) Wellen (2.8) Wärmelehre kin. Gastheorie (3.1) Wärme (3.2) Wärmetransport (3.3) 1. Haupsatz (isotherm, adiabatisch, isochor,

Mehr

Theoretische Biophysikalische Chemie

Theoretische Biophysikalische Chemie Theoretische Biophysikalische Chemie Thermochemie (und Schwingungsspektroskopie) Christoph Jacob DFG-CENTRUM FÜR FUNKTIONELLE NANOSTRUKTUREN 0 KIT 17.12.2012 Universität deschristoph Landes Baden-Württemberg

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik hermodynamik und Statistische Physik Matthias Vojta Institut für heoretische Physik U Dresden, WS 0/3 hermodynamik Nullter Hauptsatz Für jedes thermodynamische System existiert eine intensive Zustandsgröße

Mehr

Inhalt. Vorwort v Hinweise zur Benutzung vi Über die Autoren vii

Inhalt. Vorwort v Hinweise zur Benutzung vi Über die Autoren vii Inhalt Vorwort v Hinweise zur Benutzung vi Über die Autoren vii 1 Phänomenologische Thermodynamik 1 1.1 Die grundlegenden Größen und Konzepte 1 1.1.1 Reduktion des Systems auf wenige ausgewählte Zustandsgrößen

Mehr

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe

llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe llya Prigogine VOM SEIN ZUM WERDEN Zeit und Komplexität in den Naturwissenschaften Überarbeitete und erweiterte Neuausgabe Aus dem Englischen von Friedrich Griese Piper München Zürich Inhaltsverzeichnis

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr

15 Differentialrechnung in R n

15 Differentialrechnung in R n 36 15 Differentialrechnung in R n 15.1 Lineare Abbilungen Eine Abbilung A : R n R m heißt linear falls A(αx + βy) = αa(x) + βa(y) für alle x, y R n un alle α, β R. Man schreibt oft Ax statt A(x) un spricht

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Kapitel XI - Operationscharakteristik und Gütefunktion

Kapitel XI - Operationscharakteristik und Gütefunktion Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Operationscharakteristik und Gütefunktion Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Kritische Phänomene. -Klassifizierung von Phasenübergängen -Kritische Exponenten

Kritische Phänomene. -Klassifizierung von Phasenübergängen -Kritische Exponenten Kritische Phänomene Kritische Phänomene -Klassifizierung von Phasenübergängen -Kritische Exponenten Kritische Phänomene -Klassifizierung von Phasenübergängen -Kritische Exponenten -Beispiele für Phasenübergänge

Mehr

Institut für Theorie der Kondensierten Materie. Universität Karlsruhe

Institut für Theorie der Kondensierten Materie. Universität Karlsruhe Theorie F: Statistische Physik P. Wölfle Institut für Theorie der Kondensierten Materie Universität Karlsruhe http://www-tkm.physik.uni-karlsruhe.de Vorlesung SS 200 und SS 2007 Ausarbeitung: Daniel Hermann

Mehr

Statistische Mechanik Musterlösungen

Statistische Mechanik Musterlösungen 23. April 23 PD Dr. H. Kohler Statistische Mechanik Musterlösungen P. Differentialformen Sei ω = f x (x, ydx+f y (x, ydy eine Form in lokalen Koordinaten, dann lässt sich die Exaktheit leicht über die

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 8. Thermodynamik und Informationstheorie

Mehr

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)

Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig

Mehr

Man kann zeigen, dass das Magnetfeld an der Oberfläche des Supraleiters eindringen

Man kann zeigen, dass das Magnetfeld an der Oberfläche des Supraleiters eindringen Friedrich-Alexander-Universität Erlangen-Nürnberg Institut für Werkstoffwissenschaften 6 / AlN Martensstr. 7, 91058 Erlangen Vorlesung Grundlagen der WET I Dr.-Ing. Matthias Bickermann, Prof. Dr. A. Winnacker

Mehr

Maßeinheiten der Wärmelehre

Maßeinheiten der Wärmelehre Maßeinheiten der Wärmelehre Temperatur (thermodynamisch) Benennung der Einheit: Einheitenzeichen: T für Temp.-punkte, ΔT für Temp.-differenzen Kelvin K 1 K ist der 273,16te Teil der (thermodynamischen)

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

1.5 Elektronen im Festkörper

1.5 Elektronen im Festkörper Theoretische Festkörperphysik Prof. Heermann 45 1.5 Elektronen im Festkörper Bis jetzt habe wir eine adiabatische Approximation benutzt, d.h. die kinetische Energie der Atome vernachlässigt bzw. als kleine

Mehr

Theoretische Physik T4: Thermodynamik und Statistische Physik Mitschrift zur Vorlesung von Prof. Harald Grosse

Theoretische Physik T4: Thermodynamik und Statistische Physik Mitschrift zur Vorlesung von Prof. Harald Grosse Theoretische Physik T4: Thermodynamik und Statistische Physik Mitschrift zur orlesung von Prof. Harald Grosse erfasst von Markus Drapalik, Christian Gepp und Bernhard Reiter ersion vom 7.6.6 Inhaltsverzeichnis

Mehr

Formelsammlung Theoretische Physik IV: Statistische Physik

Formelsammlung Theoretische Physik IV: Statistische Physik Formelsammlung Theoretische Physik I: Statistische Physik Stand: 08.07.2007 - ersion: 0.9. Erhältlich unter http://privat.macrolab.de Diese Formelsammlung basiert auf der orlesung

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik

Klausur Wärmelehre E2/E2p, SoSe 2012 Braun. Formelsammlung Thermodynamik Name: Klausur Wärmelehre E2/E2p, SoSe 2012 Braun Matrikelnummer: Benotung für: O E2 O E2p (bitte ankreuzen, Mehrfachnennungen möglich) Mit Stern (*) gekennzeichnete Aufgaben sind für E2-Kandidaten [E2p-Kandidaten

Mehr

STATISTISCHE PHYSIK. Heinz Horner Institut für Theoretische Physik Ruprecht-Karls-Universität Heidelberg WS 2001/2002 SS 2004 I GRUNDLAGEN 1

STATISTISCHE PHYSIK. Heinz Horner Institut für Theoretische Physik Ruprecht-Karls-Universität Heidelberg WS 2001/2002 SS 2004 I GRUNDLAGEN 1 STATISTISCHE PHYSIK Heinz Horner Institut für Theoretische Physik Ruprecht-Karls-Universität Heidelberg WS 2001/2002 SS 2004 Inhalt I GRUNDLAGEN 1 1 Vorbemerkungen 1 2 Begriffe der Statistik 4 2.1 Ereignisse

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr