Erinnerung: Intensive, extensive Größen
|
|
|
- Petra Hanna Bruhn
- vor 9 Jahren
- Abrufe
Transkript
1 Erinnerung: Intensive, extensive Größen Man unterscheidet intensive und extensive Größen: Vorgehen: Man denke sich ein thermodynamisches ystem in zwei eile geteilt: Untersystem Untersystem Extensive Größen (Quantitätsgrößen) sind solche, die sich additiv aus den Zahlenwerten der Untersysteme zusammensetzen. Dazu gehören: Volumen V, Gesamtmasse M, elektrische Ladung Q, elektrisches Gesamtdipolmoment Σed, Gesamtenergie, Entropie Intensive Größen (Intensitätsgrößen) sind solche, deren Werte in den Untersystemen und im Gesamtsystem gleich groß sind. Dazu gehören: Druck p, emperatur, elektr. Potential Φ, elektrisches Feld E, magnet. Feld H, Masse m und elektrische Ladung q des einzelnen eilchens, elektr. Dipolmoment jedes einzelnen Atoms ed, eilchendichte
2 Einführung der Entropie nach Clausius Clausius analysiert Energieänderungen bei reversibel geführten Prozessen. Gas F r G r Beispiel: Mechanische Arbeit des Gases: W Ihm fällt auf, dass verschiedene Arten von Energieänderungen eine gemeinsame truktur aufweisen: p V Energieänderung intensive Größe Änderung extensiver Größe Energieform intensive Größe extensive Größe Mechanische Arbeit des Gases: W p V Druck p Volumen V E kin de dp kin p m p m v Kinetische Energie E kin v p (z.b. bei Änderung der eilchenzahl in einem Gas) Geschwindig -keit v Impuls p
3 Einführung der Entropie nach Clausius Energieänderung intensive Größe Änderung extensiver Größe Energieform intensive Größe extens. Größe Coulomb-Energie bei Zufügen einer Ladung q: E C Φ q Wärmeenergie Q? Elektrisches Potential Φ Ladung q emperatur? Clausius führt 850 als neue Zustandsgröße die extensive Größe ein, die (Entropie von griechisch: en inner er ENROPIE nennt. trepein Änderung) Bei reversiblen Prozessen ist die zu- oder abgeführte Wärmeenergie Q
4 Entropiezunahme bei emperaturerhöhung Erwärmung eines Körpers der Wärmekapazität C. Zuführung der Wärmemenge Q bewrkt eine emperaturzunahmen um : C Q Zugleich gilt jetzt: Q C C Integriert: ln C d C d C e oder Also nimmt die Entropie zu, wenn die emperatur steigt.
5 Zwei Anmerkungen.) In der statistischen Mechanik wird für großkanonische Gesamtheiten die Relation E µ N eingeführt. ie beschreibt den Energieaufwand, der erforderlich ist, um einem ystem bei fester emperatur eine Anzahl N von eilchen hinzuzufügen. Genauer gesagt ist diese Energie als kinetische Energie aufzubringen, damit sich die emperatur nicht ändert. Neue Zustandsgröße µ: chemisches Potential.) Energieform extensive Größe trom der extensiven Größe E kin v p p: Impuls dp F dt : Kraft E C Φ q q: Ladung dq I : dt Elektr. trom Q : Entropie d dt I : Entropiestrom
6 Zum zweiten Hauptsatz der hermodynamik Im abgeschlossenen ystem: Gleichgewicht Entropie ist maximal heisst: ystem nimmt den wahrscheinlichsten Zustand ein, also den mit der größten Anzahl von Realisierungsmöglichkeiten Beispiel: Volumen mit N eilchen. Volumen in zwei gleiche eile geteilt gedacht, zwischen denen eilchenaustausch erfolgen kann. N eilchen Wahrscheinlichkeit, dass sich alle eilchen im linken eilvolumen befinden: P W P W i : Anzahl der Realisierungsmöglichkeiten, W die N eilchen auf i Volumina zu verteilen +
7 Zum zweiten Hauptsatz der hermodynamik W : Anzahl der Realisierungsmöglichkeiten für Alle N eilchen in eilvolumen W + N Anzahl der Realisierungsmöglichkeiten für Alle N eilchen im Gesamtvolumen P W N W + N N eilchen Zahlenbeispiel: N 00 eilchen P : sehr gering Anders veranschaulicht: Angenommen, die Anordnung der eilchen ändere sich einmal pro Millisekunde. Wie oft wird der Zustand Alle eilchen in eilvolumen dann vorliegen? Der Zustand wird für ms in x ms vorliegen: P x ms ms x 00 Der Zustand wird also alle 00 ms s Jahre einmal vorliegen (mit Jahr s). Vergleich: Alter der Erde: Jahre Alter des Universums: Jahre
8
9
10
11
12
13
14
15
Mode der Bewegung, Freiheitsgrade
Mode der Bewegung, Freiheitsgrade Bewegungsmoden (normal modes of motion) : Jede UNABHÄNGIGE Bewegungsmöglichkeit der Atome (unabhängig: im quantenmechanischen Sinne durch orthogonale Wellenfunktionen
Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?
Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles
Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik
Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik
Repetitorium QM 1 - Tag 5
Thermodynamik und 4. März 2016 Inhaltsverzeichnis 1 Thermodynamik Hauptsätze der Thermodynamik 2 Zustandsgrößen Thermodynamik Hauptsätze der Thermodynamik Ziel: Beschreibung des makroskopischen Gleichgewichtszustandes
Der 1. Hauptsatz. Energieerhaltung:
Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U
Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6
Physik I U Dortmund WS7/8 Gudrun Hiller Shaukat Khan Kapitel Carnotscher Kreisprozess Modell eines Kreisprozesses (Gedankenexperiment). Nicht nur von historischem Interesse (Carnot 84), sondern auch Prozess
Formelsammlung. Experimentalphysik II. Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester Pascal Del Haye 27.
Formelsammlung Experimentalphysik II Zur Vorlesung bei Prof. Dr. M. Wuttig, Sommersemester 2003 Pascal Del Haye www.delhaye.de 27. Juli 2003 Inhaltsverzeichnis Thermodynamik 3. Ideale Gasgleichung........................
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,
Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair
Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................
Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)
Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen
Moderne Theoretische Physik IIIa WS 18/19
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik IIIa WS 18/19 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 2 Dr. Stefan Rex Besprechung: 06.11.2018
6.2 Zweiter HS der Thermodynamik
Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W
Onsagersche Gleichung. Energetische Beziehungen
Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,
Auswahl von Prüfungsfragen für die Prüfungen im September 2011
Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen
Der Karlsruher Physikkurs.
Der Karlsruher Physikkurs www.physikdidaktik.uni-karlsruhe.de [email protected] 1. Warum ein neuer Physikkurs? 2. Physikalische Grundlagen 3. Beispiele 1. Warum ein neuer Physikkurs?
Der Karlsruher Physikkurs
Der Karlsruher Physikkurs Holger Hauptmann Abteilung für Didaktik der Physik www.physikdidaktik.uni-karlsruhe.de [email protected] 1. Ausgangspunkt 2. Physikalische Grundlagen 3.
SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse
Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie
Allgemeines Gasgesetz. PV = K o T
Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,
22. Entropie; Zweiter Hauptsatz der Wärmelehre
22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem
Erinnerung an die Thermodynamik
2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische
Modul Chemische Thermodynamik: Verdampfungsgleichgewicht
Modul Chemische hermodynamik: Verdampfungsgleichgewicht M. Broszio, F. Noll, Oktober 2007, Korrekturen September 2008 Lernziele Ziel dieses Versuches ist es einen Einblick in die Beschreibung von Phasengleichgewichten
4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:
Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar
Systemanalyse und Modellbildung
und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 8. Thermodynamik und Informationstheorie
Statistische Physik I
Statistische Physik I 136.020 SS 2010 Vortragende: C. Lemell, S. YoshidaS http://dollywood.itp.tuwien.ac.at/~statmech Übersicht (vorläufig) 1) Wiederholung Begriffsbestimmung Eulergleichung 2) Phänomenologische
Theoretische Physik F: Zwischenklausur SS 12
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:
Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.
Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,
5. Zweiter Hauptsatz der Thermodynamik 5.1 Reversible und irreversible Prozesse 5.2 Formulierung des zweiten Hauptsatzes
5.1 5. Zweiter Hauptsatz der hermodynamik 5.1 Reversible und irreversible Prozesse Stoss zweier Billardkugeln: vorwärts und rückwärts laufender Film ist physikalisch sinnvoll, vom Betrachter nicht zu unterscheiden
Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik
13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.
Theoretische Physik IV
Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1
6 Thermodynamische Potentiale und Gleichgewichtsbedingungen
6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen
Thermodynamik (Wärmelehre) IV Kreisprozesse und Entropie
Physik A VL7 (..0) hermodynamik (Wärmelehre) IV Kreisprozesse und Entropie Kreisprozesse Carnot scher Kreisprozess Reale Wärmemaschinen (tirling-motor, Dampfmaschine, Otto- und Dieselmotor) Entropie Der.
Klausur zur Statistischen Physik SS 2013
Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale
Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik
Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/
Erster und Zweiter Hauptsatz
PN 1 Einführung in die alphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Energieformen. Energieformen Umwandelbarkeit und Wertigkeit der Energie Prinzip der Wärmekraftmaschine und der Wärmepumpe
Energieformen Energieformen Umwandelbarkeit und Wertigkeit der Energie Prinzip der Wärmekraftmaschine und der Wärmepumpe Was Sie erwartet Verschiedene Energieformen Umwandlung von Energieformen Wertigkeit
Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme
Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere
Entropie und 2. Hauptsatz der Thermodynamik
Entropie und 2. Hauptsatz der hermodynamik Seminar Didaktik der Physik Datum: 20.11.1006 LV-Nummer: 706099 Vortragende: Markus Kaldinazzi Mathias Scherl Inhalte Reversible und Irreversible Prozesse Drei
Thermodynamik Prof. Dr.-Ing. Peter Hakenesch
hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch [email protected] www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische
Grundlagen der Physik 2 Schwingungen und Wärmelehre
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti [email protected] Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.
10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess
Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit
1 Massenwirkungsgesetz
1 Massenwirkungsgesetz Zeige: Bei konstantem Druck und konstanter emperatur gilt für chemische Reaktionen der Art a 1 A 1 + a A + : : : a L A L b 1 B 1 + b B + : : : b R B R : K c (A i ) ai c (B j ) bj
Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch
Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar
Eine Analogie zwischen Mechanik, Wärmelehre und Elektrizitätslehre. Strukturen und Analogien
Eine Analogie zwischen Mechanik, Wärmelehre und Elektrizitätslehre 1 1. Analogien in der Naturwissenschaft 2. Analogie zwischen Mechanik, Elektrizitätslehre, Wärmelehre und Stofflehre 3. Gemeinsame Anschauungen
Theoretische Physik 4 Thermodynamik und Statistische Physik
heoretische Phsik 4 hermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 hermodnamische Konzepte 3 1.1 Was ist hermodnamik?...........................
Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 2016 Prof. Dr. A. Shnirman Blatt 2 Dr. B. Narozhny, Dipl.-Phys. P. Schad Lösungsvorschlag
5. Die Thermodynamischen Potentiale
5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich
2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen
2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe
4 Hauptsätze der Thermodynamik
I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es
2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen
2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe
Repetition Carnot-Prozess
Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden
12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme
Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch
4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz
4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4.1 Formulierung des 2. Hauptsatzes Es ist unsere Alltagserfahrung, dass man physikalischen Prozessen in der Regel eine natürliche Zeitabfolge
Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge
Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer
Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht
Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und
Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.
Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei
Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung
- Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen
Probeklausur STATISTISCHE PHYSIK PLUS
DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben
Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.
Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei
6.7 Die Entropie und der Zweite Hauptsatz
6.7. DIE ENROPIE UND DER ZWEIE HAUPSAZ 261 6.7 Die Entropie und der Zweite Hauptsatz 6.7.1 Definition der Entropie Im vorhergehenden Abschnitt haben wir im ersten Hauptsatz der hermodynamik die Änderung
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt
Wärmelehre/Thermodynamik. Wintersemester 2007
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #7 am 18.01.006 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.
Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)
LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen
Der Karlsruher Physikkurs. Dr. Holger Hauptmann Marcus Rutz-Lewandowski Heinz-Georg Schneider
KPK Fachsitzung Kaiserslautern/Landau/Speyer 2012, Folie 1 Der Karlsruher Physikkurs Dr. Holger Hauptmann Marcus Rutz-Lewandowski Heinz-Georg Schneider KPK Fachsitzung Kaiserslautern/Landau/Speyer 2012,
a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße?
Übung 1 Aufgabe 2.6: Zustandsgrößen, Systeme und Hauptsätze a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? b) G sei eine Zustandsgröße mit der Einheit [G] = J.
Thermodynamik (Wärmelehre) I Die Temperatur
Physik A VL24 (04.12.2012) hermodynamik (Wärmelehre) I Die emperatur emperatur thermische Ausdehnung Festkörper und Flüssigkeiten Gase Das ideale Gas 1 Die emperatur Der Wärmezustand ist nicht mit bisherigen
Gemeinsame Strukturen und Analogien nutzen bei der Arbeit mit dem neuen Lehrplan Physik
Gemeinsame Strukturen und Analogien nutzen bei der Arbeit mit dem neuen Lehrplan Physik 1 Lehrplan physik Zielvorstellung Zielvorstellung Lehrplan soll nicht so überladen sein Zielvorstellung Lernen Kein
2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme
2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen
Thermodynamik un Statistische Mechanik
Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen
Prinzip der virtuellen Verschiebung
1 Elektrostatik 52 Prinzip der virtuellen Verschiebung Wir verwenden hier das Prinzip der virtuellen Verschiebung (PVV) zur Berechnung der Kraft auf einen Körper im elektrostatischen Feld. Beim PVV wird
Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)
10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen
Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0
Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus
Thermodynamik und Statistische Mechanik
Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen
1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.
1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,
Wärmelehre Wärme als Energie-Form
Wärmelehre Wärme als Energie-Form Joule's Vorrichtung zur Messung des mechanischen Wärme-Äquivalents alte Einheit: 1 cal = 4.184 J 1 kcal Wärme erwärmt 1 kg H 2 O um 1 K Wird einem Körper mit der Masse
Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur
Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen
Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008
Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip
Theoretische Physik 6: Thermodynamik und Statistik
Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag
Notizen zur statistischen Physik
Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:
Physik I Mechanik und Thermodynamik
Physik I Mechanik und hermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - heorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und Messgenauigkeit
Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:
Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine
Physikalisch-chemische Grundlagen der Verfahrenstechnik
Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik [email protected] Physikalisch-chemische Grundlagen der
1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung
1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.
Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch
Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz
Die innere Energie and die Entropie
Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir
Thermodynamik und Statistische Physik
Thermoynamik un Statistische Physik (Kompenium Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 14. Februar 2009 1 Inhaltsverzeichnis Statistische Operatoren 3 Zustäne 3 Darstellung
C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8
Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste
Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik
Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt
Wärmelehre/Thermodynamik. Wintersemester 2007
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,
