Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Größe: px
Ab Seite anzeigen:

Download "Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch"

Transkript

1 Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch

2 Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen Massebilanz Energiebilanz und 1. Hauptsatz der Thermodynamik Spezifische Wärmekapazitäten Kreisprozesse und Zustandsgrößen Bewertung thermodynamischer Prozesse Stationärer Fließprozess Energiebilanz bei Mischung feuchter Luft 2

3 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch Massenbilanz wegen Massenerhaltung 0 Integration für konstante Massenströme: 3

4 3.3.2 Energiebilanz und 1. Hauptsatz der Thermodynamik Integration von 1 nach 2: 0 wegen Energieerhaltung oder 1. Hauptsatz der Thermodynamik Änderung im System Flüsse: Arbeit Wärme Energie mit Massenstrom 4

5 Verschiedene Schreibweisen Integrale Form: Ratenform: Massenbezogene integrale Form: Massenbezogene differentielle Form: - Merke: Unterschied zwischen vollständigem Differential (d) und infinitesimaler Menge Energie (d) Formulierung der Energiebilanz: 1. Geschlossenes oder offenes System 2. Absolut- oder Ratenform 3. Spezifisch oder Massenform 5

6 Energiebilanz in geschlossenen Systemen Zustandsänderung Zustandsänderung 1 2 oder bzw. 6

7 Beispiel 1: Wasserdampf in Zylinder m = 5 kg p 1 = 500 kpa, J 1 = 200 o C p 2 = p 1 = 500 kpa, J 2 = 120 o C Fragen: 1. Wie groß ist die ausgetauschte Wärmemenge Q 12? 2. Skizze im T,v Diagramm! Lösung 1. Geschlossenes oder offenes System? 2. Absolut- oder Ratenform? 3. Spezifisch oder Massenform? Geschlossen Absolut Massenform 7

8 Beispiel 1: Wasserdampf in Zylinder 1. Hauptsatz: Es ist: DE kin = DE pot = 0 [E] : Arbeit bei isobarer Zustandsänderung: Einsetzen Für Q 12 folgt Volumenänderungsarbeit 8

9 Stoffdaten Zustand 1 (500 kpa, 200 o C) Zustand 2 (500 kpa, 120 o C) 9 überhitzt unterkühlt Tabelle Überhitzter Dampf Inkompressible Flüssigkeit, Sättigungstabelle

10 Skizze im T,v - Diagramm 10

11 Zustand 2 Näherung: u (J 2 ) = 503,5 kj/kg, v (J 2 ) = 0,00106 m 3 /kg ( h (J 2 ) = 503,71 kj/kg ) Sättigungsenthalpie gute Näherung, h 2 (J 2 ) = 504,03 kj/kg 11 aber oft nicht genau genug!

12 Zustand 1 12 h 1 = 2855,4 kj/kg Q 12 = m (h 2 -h 1 ) = 5 kg (504,03 kj/kg ,4 kj/kg) kj

13 Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen Massebilanz Energiebilanz und 1. Hauptsatz der Thermodynamik Spezifische Wärmekapazitäten Kreisprozesse und Zustandsgrößen Bewertung thermodynamischer Prozesse Stationärer Fließprozess Energiebilanz bei Mischung feuchter Luft 17

14 3.3.3 Spezifische Wärmekapazitäten Spezifische Wärmekapazitäten bei konstantem Volumen: c v Änderung der Inneren Energie u = u(t,v): Definition der spezifischen Wärmekapazität bei konstantem Volumen: Wir betrachten die Änderung der inneren Energie auf Grund der Temperaturänderung für den isochoren Prozess Dann gilt und 18

15 Isochorer Prozess 1. Hauptsatz für isochoren Prozess V = const Mit folgt c v ist die spezifische Wärme, die zugeführt werden muss, um die Temperatur für ein Kilogramm des Stoffes im System bei konstantem Volumen um 1 K zu erhöhen 19

16 Spez. Wärmekapazität bei konstantem Druck: c p Änderung der Enthalpie h = h(t,p) Definition der spezifischen Wärmekapazität bei konstantem Druck: Wir betrachten die Änderung der Enthalpie auf Grund einer Temperaturänderung für einen isobaren Prozess Dann gilt und 20

17 Isobarer Prozess 1. Hauptsatz für isobaren Prozess Mit folgt und c p ist die spezifische Wärme, die zugeführt werden muss, um die Temperatur für ein Kilogramm des Stoffes im System bei konstantem Druck um 1 K zu erhöhen 21

18 Spezifische Wärmekapazitäten idealer Gase Bei idealen Gasen sind die innere Energie und die Enthalpie ausschließlich Funktionen der Temperatur Daher gilt für ideale Gase immer Daher müssen auch die spezifischen Wärmekapazitäten idealer Gase reine Temperaturfunktionen sein Mit folgt durch Ableitung und damit 22

19 Spezifische Wärmekapazitäten idealer Gase Verhältnis der spezifischen Wärmen: k *) Daraus ergibt sich Aus Diagramm - Einatomige Gase: c p /R 5/2 k 5/3 = 1,66 - Zweiatomige Gase: c p /R 7/2 k 7/5 = 1,4 *) Das Verhältnis der spezifischen Wärmen k spielt eine besondere Rolle. Wir werden sehen, dass für die idealen Gase k gleich dem sogenannten Isentropenxponenten k ist. 23

20 Spezifische Wärmekapazitäten idealer Flüssigkeiten Annahme: Inkompressibel, d. h. konstantes Volumen: dv = 0 Aus vollständigem Differential folgt, dass, und damit dass die innere Energie eine reine Temperaturfunktion ist 1. Hauptsatz liefert mit pdv = 0: 24

21 Folgerung für Enthalpie idealer Flüssigkeiten und c p Definition der Enthalpie: Vollständiges Differential: Vergleich: Wärmekapazitäten c p und c v sind gleich für ideale Flüssigkeiten Enthalpie für ideale Flüssigkeiten hängt also von Temperatur und Druck ab Kalorische Zustandsgleichung lautet Integration 25

22 Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen Massebilanz Energiebilanz und 1. Hauptsatz der Thermodynamik Spezifische Wärmekapazitäten Kreisprozesse und Zustandsgrößen Bewertung thermodynamischer Prozesse Stationärer Fließprozess Energiebilanz bei Mischung feuchter Luft 26

23 3.3.4 Kreisprozesse und Zustandsgrößen Definition: Ändert ein System Zustand so, dass es vom Anfangszustand 1 über Zwischenzustände wieder zum Anfangszustand zurückkehrt 2=1, hat das System einen Kreisprozess durchlaufen Für jede Zustandsgröße z = f(z 1,z 2 ) gilt: Umgekehrt: Verschwindet das Umlaufintegral, so ist z eine Zustandsgröße

24 Darstellung von Kreisprozessen mit quasistatischen Zustandsänderungen rechtslaufender Kreisprozess (Arbeit wird an Umgebung abgegeben) linkslaufender Kreisprozess (Arbeit wird von Umgebung zugeführt) Umlaufintegrale verschwinden nicht Volumenänderungsarbeit ist also keine Zustandsgröße sondern eine Prozessgröße!

25 Zustands- und Prozessgrößen Zustandgrößen z besitzen ein vollständiges Differential: dz zum Beispiel: Volumen V: dv, Druck p: dp, innere Energie U: du Genauso wie Volumenänderungsarbeit ist auch die ausgetauschte Wärme keine Zustandsgröße, sondern vom Prozessverlauf abhängig Wärme Q und Volumenänderungsarbeit W V besitzen kein vollständiges Differential Kleine Menge Wärme, Arbeit: dq und dw V = - p dv Erster Hauptsatz in differentieller Form: Unterscheidung zwischen Zustands- und Prozessgrößen auch in der Indizierung bei integraler Schreibweise:

26 Gesamtbilanz Kreisprozess Erster Hauptsatz n+1 Einzelschritte: 0-1: 1-2: 2-3:.... n-0: S insgesamt: aber:

27 Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen Massebilanz Energiebilanz und 1. Hauptsatz der Thermodynamik Spezifische Wärmekapazitäten Kreisprozesse und Zustandsgrößen Bewertung thermodynamischer Prozesse Stationärer Fließprozess Energiebilanz bei Mischung feuchter Luft 31

28 3.3.5 Bewertung thermodynamischer Prozesse Generell: Vergleich von Nutzen zu Aufwand bei Arbeitsmaschinen thermischer Wirkungsgrad h th bei Kühlprozessen und Wärmepumpen: Leistungszahl e 32

29 Beispiel: Otto-Motor Viertaktmotor (schematisch) 33

30 Der idealisierte Otto-Prozess (Gleichraumprozess) Ideales Gas mit konstanten Wärmekapazitäten Luft als Arbeitsmedium Vernachlässigung von Verlusten Annahme reversibler Prozesse Massenaustausch mit Umgebung (Ein- und Ausschieben) bleibt unberücksichtigt Geschlossenes System Ladungswechsel durch Wärmeabfuhr ersetzt Verbrennung wird durch Wärmezufuhr ersetzt Kompression und Expansion werden als reversibel-adiabate Prozesse aufgefasst Wärmezufuhr und Wärmeabfuhr erfolgen bei konstantem Volumen 34

31 Darstellung im p,v-diagramm 1 2 Adiabate & reibungsfreie Kompression 2 3 Isochore Wärmezufuhr: Verbrennung 3 4 Adiabate & reibungsfreie Expansion: Arbeit 4 1 Isochore Wärmeabfuhr: Ladungswechsel Wirkungsgrad: 35

32 Bilanz des Kreisprozesses Wirkungsgrad: 1. HS Gesamtsystem Analyse Für adiabate und reibungsfreie Zustandsänderungen folgt 1 2: 3 4:

33 Bilanz des Kreisprozesses Verbrennung HS 2 3 : Mit folgt Wärmeabfuhr HS 4 1 : Mit Thermischer Wirkungsgrad: folgt 37

34 Thermischer Wirkungsgrad Thermischer Wirkungsgrad Bestimmung der Temperaturverhältnisse: analog... 38

35 Thermischer Wirkungsgrad: Idealisierter Otto-Prozess Aus folgt mit pv k = C oder p = C/V k und Wirkungsgrad steigt mit Verdichtungsverhältnis ɛ an. *) Werden Wärmeverluste bei Kompression und Expansion und andere Verluste berücksichtigt, so kann statt des Isentropenexponenten k auch ein adäquater Polytropenexponent n verwendet werden 39

36 Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen Massebilanz Energiebilanz und 1. Hauptsatz der Thermodynamik Spezifische Wärmekapazitäten Kreisprozesse und Zustandsgrößen Bewertung thermodynamischer Prozesse Stationärer Fließprozess Energiebilanz bei Mischung feuchter Luft 40

37 3.3.6 Stationärer Fließprozess in offenen Systemen Annahmen: Stationär Masse und Gesamtenergie im System konstant: 41

38 Bilanz am stationären offenen System 1. Hauptsatz Energie mit Massenstrom Einsetzen der Totalenthalpien Spezifisch mit Arbeit und Wärmestrom auf Massenstrom bezogen 42

39 Beispiel: Kühlschrank 1. Hauptsatz geschlossenes System, stationär: Gesamtsystem Prozessbewertung durch Leistungszahl: Bestimmung von Arbeit- und Wärmestromes an geeigneten (Teil)-Systemen 43

40 Bilanz am Kompressor System Kompressor 1. Hauptsatz offenes System, stationär und adiabat: Annahme De kin = De pot 0: 44

41 Bilanz am Verdampfer System Verdampfer 1. Hauptsatz offenes System, stationär: Annahme De kin = De pot 0 : 45 Leistungszahl:

42 Bilanz am Kondensator Gesamtsytem System Kondensator 1. Hauptsatz, offenes System, stationär, Δe kin = Δ e pot 0: Oder aus Bilanz am Gesamtsystem, stationär 46 ( Es folgt: )

43 Bilanz an der Drossel System Drossel 1. Hauptsatz offenes System, stationär, adiabat, Δe kin = Δe pot 0: 47 Adiabate Drossel ist isenthalp!

44 T,v - Diagramm Drücke p 1 und p 2 werden so gewählt, dass T 3 > T Raum T 4 < T Kühlschrank In der Drossel soll mit Druck auch Temperatur absinken - Mit Joule-Thomson-Koeffizient (siehe Thermo II) Kühlmittel μ > 0 Regeneration zur Erhöhung der Kapazität 48

45 p,h-digramm zur Analyse von Kältemaschine/Wärmepumpe p p

46 Leistungszahl Aus Tabellen (aus h-p Diagramm) für Kältemittel R134a: h 1 = 231,4 (380) kj/kg h 2 = 280,2 (430) kj/kg h 3 = h 4 = 105,3 (255) kj/kg e = 2,58 Kühlleistung ist damit um Faktor 2,58 höher als eingesetzte Leistung! Energie wird zur Verschiebung der thermischen Energie eingesetzt! 50

47 Beispiel: Elektrische Heizung 1. Hauptsatz geschlossenes System Leistungszahl: Heizen mit Strom ineffizient, da Wirkungsgrad der Stromerzeugung im Kraftwerk h KW 40 %, so dass Gesamtleistungszahl 51

48 Beispiel: Konventionelle Heizung Wärmeleistung aus chemischer Energie 1. Hauptsatz geschlossenes System für stationäre Verhältnisse im Haus (In der Heizung wird gespeicherte chemische Energie in Wärme überführt de H /dt 0) Leistungszahl: 52

49 Beispiel: Heizung mit elektrischer Wärmepumpe Prinzip: Umgekehrter Kühlschrank - Eisfach draußen - Kondensator im Haus Eisfachtemperatur muss kälter sein als Außentemperatur Analyse: 1. Hauptsatz geschlossenes System für stationäre Verhältnisse im Haus 53

50 Beispiel: Heizung mit elektrischer Wärmepumpe Leistungszahl: Mit Zahlenwert für Kühlschrank: Berücksichtigung der Stromerzeugung: Wärmepumpe sehr viel effizienter als konventionelle Heizung, aber kompliziertere Gerätetechnik 54

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3: Übersicht (1) 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer durch

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Thermodynamik I Kapitel 4 Zweiter Hauptsatz der Thermodynamik Prof. Dr.-Ing. Heinz Pitsch Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 5, Teil 1. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 5, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 5, Teil 1: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel isotherme

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

4.1.2 Quantitative Definition durch Wärmekapazitäten

4.1.2 Quantitative Definition durch Wärmekapazitäten 4 Energie Aus moderner (mikroskopischer Sicht ist klar, daß die Summe U der kinetischen Energien der Moleküle eines Gases (und ggf. ihrer Wechselwirkungsenergien eine thd. Zustandsgröße des Gases ist,

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Thermodynamik I Klausur 1

Thermodynamik I Klausur 1 Aufgabenteil / 100 Minuten Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und mit Namen versehenen) Lösungsblättern abgegeben werden. Nicht nachvollziehbare

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser

Repetitorium. Thermodynamik. 3., überarbeitete und ergänzte Auflage. von. Wilhelm Schneider. unter Mitarbeit von. Stefan Haas und Karl Ponweiser Repetitorium Thermodynamik 3., überarbeitete und ergänzte Auflage von Wilhelm Schneider unter Mitarbeit von Stefan Haas und Karl Ponweiser Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundbegriffe 1

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

3. 1. Hauptsatz der Thermodynamik, Energie Hauptsatz für das System

3. 1. Hauptsatz der Thermodynamik, Energie Hauptsatz für das System 3. 1. Hauptsatz der Thermodynamik, Energie 3.1 1. Hauptsatz für das System Einheitliche Überlegung Betrachtet: Zwei Zustände eines Systems 1 und 2. Es gibt unendlich viele Wege, die von 1 nach 2 führen.

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach des Ingenieurstudiums Dirk Labuhn Oliver Romberg Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums \ 4., aktualisierte Auflage STUDIUM... V : ;; VIEWEG+ TEUBNER Inhaltsverzeichnis

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1

II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1 II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie

Mehr

Klausur im Fach Thermodynamik I, SS 2010 am

Klausur im Fach Thermodynamik I, SS 2010 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Thermodynamik mit Mathcad

Thermodynamik mit Mathcad Thermodynamik mit Mathcad von Prof. Dr.-Ing. Michael Reimann Oldenbourg Verlag München Inhalt Vorwort V Einleitung 1 1 Grundbegriffe 7 1.1 Das thermodynamische System >... 7 1.2 Zustandsgrößen und Prozessgrößen

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Keine Panik vor Thermodynamik!

Keine Panik vor Thermodynamik! Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen "Dickbrettbohrerfach" des Ingenieurstudiums Bearbeitet von Dirk Labuhn, Oliver Romberg 1. Auflage 2013. Taschenbuch. xii, 351 S. Paperback

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik -. Hauptsatz der Thermodynamik - Prof. Dr. Ulrich Hahn WS 2008/09 Energieerhaltung Erweiterung des Energieerhaltungssatzes der Mechanik Erfahrung: verschiedene

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008

Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen

Mehr

Thermodynamik Thermodynamische Systeme

Thermodynamik Thermodynamische Systeme Thermodynamik Thermodynamische Systeme p... Druck V... Volumen T... Temperatur (in Kelvin) U... innere Energie Q... Wärme W... Arbeit Idealisierung; für die Betrachtung spielt die Temperatur eine entscheidende

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Technische Universität Hamburg

Technische Universität Hamburg NAME, Vorname Studiengang Technische Universität Hamburg ÈÖÓ º Öº¹ÁÒ º Ö Ö Ë Ñ ØÞ Prüfung am 16. 08. 2016 im Fach Technische Thermodynamik II Fragenteil ohne Hilfsmittel erreichbare Punktzahl: 20 Dauer:

Mehr

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann.

2. so rasch ausströmen, dass keine Wärmeübertragung stattfinden kann. Aufgabe 33 Aus einer Druckluftflasche V 50 dm 3 ) mit einem Anfangsdruck p 0 60 bar strömt solange Luft in die Umgebung p U bar, T U 300 K), bis der Druck in der Flasche auf 0 bar gefallen ist. Dabei soll

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

III. Der erste Hauptsatz. - Summe dieser Energien bleibt in abgeschlossenem System konstant - Charakterisierung des äußeren Systemzustands.

III. Der erste Hauptsatz. - Summe dieser Energien bleibt in abgeschlossenem System konstant - Charakterisierung des äußeren Systemzustands. III. Der erste Hauptsatz Technische Thermodynamik Rückblick Mechanik: Anwendung der Energieerhaltung auf zwei Energiearten: - potentielle und kinetische Energie - Summe dieser Energien bleibt in abgeschlossenem

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Kapitel 8: Thermodynamik

Kapitel 8: Thermodynamik Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz

Mehr

Keine Panik vor Th e r m ody n a m i k!

Keine Panik vor Th e r m ody n a m i k! Dirk Labuhn Oliver Romberg Keine Panik vor Th e r m ody n a m i k! Erfolg und SpaB im klassischen,,dickbrettbohrerfach" des Ingenieurstudiums Mit Cartoons von Oliver Romberg vieweg Inhaltsverzeichnis 1

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Prüfung: Thermodynamik II (Prof. Adam)

Prüfung: Thermodynamik II (Prof. Adam) Prüfung: Thermodynamik II (Prof. Adam) 18.09.2008 Erreichbare Gesamtpunktzahl: 48 Punkte Aufgabe 1 (30 Punkte): In einem Heizkraftwerk (siehe Skizze) wird dem Arbeitsmedium Wasser im Dampferzeuger 75 MW

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter Rainer Müller Thermodynamik Vom Tautropfen zum Solarkraftwerk De Gruyter Inhaltsverzeichnis 1 Biologie und Chemie des Kochens 1 1.1 Was beim Garen geschieht 2 1.2 Gemüse... 2 1.3 Fleisch... 5 1.4 Spaghetti

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik 1 Einleitung 2 Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2012 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

d) Das ideale Gas makroskopisch

d) Das ideale Gas makroskopisch d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Heinz Herwig Christian H. Kautz Technische Thermodynamik

Heinz Herwig Christian H. Kautz Technische Thermodynamik Heinz Herwig Christian H. Kautz Technische Thermodynamik ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Technische

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 18. Februar 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren

6.4.2 Verdampfen und Eindampfen Destillieren und Rektifizieren Absorbieren Inhaltsverzeichnis 1 Allgemeine Grundlagen................................... 1 1.1 Thermodynamik....................................... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. März 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur Lösung Aufgabe 6.2 Gaserflüssigung nach Linde heoretische Lufterflüssigungsanlage Reersibler Kälteprozess - Isotherme Verdichtung des Gases bei Umgebungstemperatur 1 2 2 1 - adiabate und reibungsfreie

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr