Repetitorium QM 1 - Tag 5

Größe: px
Ab Seite anzeigen:

Download "Repetitorium QM 1 - Tag 5"

Transkript

1 Thermodynamik und 4. März 2016

2 Inhaltsverzeichnis 1 Thermodynamik Hauptsätze der Thermodynamik 2

3 Zustandsgrößen Thermodynamik Hauptsätze der Thermodynamik Ziel: Beschreibung des makroskopischen Gleichgewichtszustandes eines Systems von sehr vielen Teilchen durch wenige Zustandsgrößen Zwei Arten von Zustandsgrößen: intensive Zustandsgrößen sind unabhängig von der Systemgröße, z.b. Druck p, Temperatur T,... extensive Zustandsgrößen skalieren linear mit der Größe des Systems, z.b. Volumen V, Teilchenzahl N,... Y (1) Y (2) intensiv: Y ges = Y (1) = Y (2) (im Gleichgewicht) extensiv:y ges = Y (1) + Y (2)

4 1. Hauptsatz der Thermodynamik Hauptsätze der Thermodynamik 1. Hauptsatz Es existiert eine extensive Zustandsgröße U, die innere Energie, deren Änderung durch gegeben ist. Bemerkungen: du = dq }{{} + }{{} dw + µdn }{{} Wärmezufuhr (mechanische) Arbeit Materialerhöhung in abgeschlossenen Systemen Energieerhaltung Q und W sind keine Zustandsgrößen (prozessabhängig)

5 2. Hauptsatz der Thermodynamik Hauptsätze der Thermodynamik Die Energieerhaltung erlaubt Prozesse, die in der Natur nicht beobachtet werden. Beispiel: Ein Bach fließt einen Berg hoch und kühlt sich dabei ab. Lösung: Einführung einer zusätzlichen Größe, der Entropie 2. Hauptsatz Es existiert eine extensive Zustandsgröße, die Entropie S, die monoton mit der Energie U anwächst und für die gilt: S B S A für alle Zustände B, die von A adiabatisch erreicht werden können. Bemerkung: adiabatisch ohne Wärmeaustausch mit der Umgebung

6 2. Hauptsatz der Thermodynamik Hauptsätze der Thermodynamik Bemerkungen: reversibler Prozess, d.h. A B A S A = S B bzw. ds = 0 für reversible Prozesse dq = TdS, für irreversible dq < TdS Entropie kann in abgeschlossenem System nur ansteigen im Gleichgewichtszustand S maximal, ds = 0 3. Hauptsatz Am absoluten Temperaturnullpunkt gilt S(T=0) = 0.

7 Hauptsätze der Thermodynamik Sei die innere Energie eine Funktion der extensiven Zustandsgrößen S, V, N: U = U(S, V, N): ( ) ( ) ( ) U U U du = ds + dv + dn S V,N V S,N N S,V }{{}}{{}}{{} dq dw µdn Wir erkennen darin den 1. Hauptsatz. Wir definieren: ( ) U S ( ) U V ( ) U N V,N S,N S,V := T (Temperatur) := p (Druck) := µ (chemisches Potential)

8 Hauptsätze der Thermodynamik Bemerkung: #1 Wir können U(S, V, N) auch nach S(U, V, N) auflösen: ds = 1 T du p T dv + µ T dn und erhalten dann beispielsweise ( ) S E V,N = 1 T Bemerkung: #2 Weitere wichtige Größen: Wärmekapazitäten C V = T ( ) S = T V ( ) U T V, C P = T ( ) ( S = T P ( ) ) H T P

9 Hauptsätze der Thermodynamik U(S, V, N) ist thermodynamisches Potential enthält alle th.-d. Informationen Aber: Dies gilt nur für seine natürlichen Variablen S,V,N! Übergang zu U(T, V, N) Informationsverlust, kein th.-d. Potential Wie bekommt man ein th.-d. Potential mit anderen natürlichen Variablen? Legendre-Transformation: Wir haben Y = Y (x 1, x 2, ) und ersetzen x 1 durch a 1 := ( Y x 1 ){x i 1 } neue Funktion: Ỹ = Y a 1 x 1 (Legendre-Transformation) mit Ỹ = Ỹ (a 1, x 2, )

10 Hauptsätze der Thermodynamik Beispiel: U(S, V, N) ist Funktion von S. ( ) U T = F := U TS mit F = F (T, V, N) S V,N denn: df = du d(ts) = TdS pdv + µdn TdS SdT = SdT pdv + µdn ( ) F S = T V,N ( ) F, p = V T,N, µ = ( ) F N T,V F nennt man die (Helmholtzsche) freie Energie F enthält die komplette thermodynamische Information in Abhängigkeit von T,V,N

11 Hauptsätze der Thermodynamik Man kann nun weitere thermodynamische Potentiale definieren: Potential Variablen Differential Freie Energie F = U TS T, V, N df = SdT pdv + µdn Enthalpie H = U + PV S, p, N dh = TdS + Vdp + µdn Freie Enthalpie G = U TS + PV T, p, N dg = SdT + Vdp + µdn Großkanonisches Potential Φ = U TS µn T, V, µ dφ = SdT pdv Ndµ

12 Maxwell-Relationen Thermodynamik Hauptsätze der Thermodynamik Bei zweiten Ableitungen (eines th.d. Potentials) kann man die Reihenfolge der Ableitungen vertauschen (Satz von Schwarz). Beispiel: Innere Energie Allgemein: ( ) T = V S V ( ) U = S S ( ) U = V dl = Xdx + Ydy + Zdz X y = Y x Maxwell Relation ( ) p S V

13 Thermodynamik Ziel: Herleitung der (makroskopischen) thermodynamischen Größen aus mikroskopischen Eigenschaften mikroskopisch: Kenntnis von Ort und Impuls jedes Teilchens (klassisch) bzw. aller Quantenzahlen (quantenmechanisch) makroskopisch: Kenntnis der thermodynamischen Zustandsgrößen Wir wollen dies formalisieren...

14 Phasenraum und Mikrozustände Definition: Phasenraum Der Phasenraum für N Teilchen wird von den 6N Orts- und Impulskoodinaten der Teilchen {q i, p i } aufgespannt. d.h. der Phasenraum enthält alle möglichen Impulse und Ortskoordinaten. Definition: Mikrozustand (klassisch) Ein Mikrozustand des System entspricht einem Punkt im Phasenraum. d.h. in der klassischen Statistik ist ein Mikrozustand ein Satz von Ortsund Impulswerten. Bemerkung: In der Quantenstatistik ist ein Mikrozustand durch den quantenmechanischen Zustand des Systems gegeben.

15 Mikrozustände und Makrozustände Definition: Makrozustand Ein Makrozustand eines Systems wird durch die Angabe unabhängiger thermodynamischer Zustandsgrößen festgelegt. z.b. durch E,V,N. Offensichtlich können viele Mikrozustände zum gleichen Makrozustand führen: Beispiel: klassisches (ideales) Gas hat im th.-d. Gleichgewicht festen Makrozustand: Temperatur, Druck, etc. Mikrozustand ändert sich ständig: Teilchen ändern ihren Ort und Impuls (durch Stöße)

16 Statistische Ensembles Thermodynamik Definition: Statistisches Ensemble Ein statistisches Ensemble ist die Gesamtheit aller Mikrozustände, die den gleichen Makrozustand beschreiben. Welche Mikrozustände treten mit welcher Wahrscheinlichkeit auf? ρ(q α, p α, t)dγ ist Wahrscheinlichkeitsdichte, ein Ensemblemitglied im Phasenraumelement dγ = 1 h 3N N! 3N α=1 dq α dp α zu finden. Wir betrachten stationäre Ensembles ρ t = 0.

17 Statistische Ensembles Thermodynamik In einem quantenstatistischen System ist die Wahrscheinlichkeitsverteilung der Mikrozustände durch die Dichtematrix gegeben: ˆρ = p(e n ) ψ n ψ n n Der Erwartungswert eine Observable A: A = A(q α, p α )ρ(q α, p α )dγ klassisch Inbesondere ist die Entropie definiert als: bzw. ( ) A = Sp ˆρ quantenstatistisch S = k B ln ρ (statistische Definition der Entropie)

18 Betrachte abgeschlossenes System, festes E, V, N Wir fordern von unserem Ensemble: Es tragen nur Mikrozustände im Energieinverall [E, E + E] bei Alle Mikrozustände im Energieintervall [E, E + E] sind gleich wahrscheinlich E,V,N ρ MK = { 1 Ω, E H(q α, p α ) E + E 0, sonst E 0 ρ MK (q α, p α ) = 1 Ω δ(h(q α, p α ) E) Dies ist das mikrokanonische Ensemble.

19 Aus Normierung ρdγ = 1 folgt Ω = 1 h 3N N! δ(h E)d 3N qd 3N p Bemerkungen: Ω entspricht der Anzahl der möglichen Mikrozustände mit Energie E d.h. quantenstatistisch ist Ω die Anzahl der quantenmechanischen Zustände mit Gesamtenergie E Aus Ω lassen sich alle th.d. Zustandsgrößen bestimmen alle Mikrozustände gleich wahrscheinlich Entropie maximal Die Entropie des mikrokanonischen Ensembles ergibt sich als: S = k B ln ρ = = k B ln Ω

20 Beispiel: Ideales Gas im mikrokanonischen Ensemble Beispiel: Ideales Gas in einem endlichen Volumen L x, y, z L: Ω = 1 h 3N N! δ ( N i=1 p 2 i 2m E H = ) = 1 ( ) h 3N d 3 x 1 d 3 x n N! V }{{} =V N N i=1 p 2 i 2m d 3 x 1 d 3 x n d 3 p 1 d 3 p n ( ( N 2m δ p i 2 ) ) 2mE 2 d 3 p 1 d 3 p n i=1 }{{} Oberfläche einer 3N-dim. Kugel mit Radius 2mE

21 Beispiel: Ideales Gas im mikrokanonischen Ensemble Oberfläche einer n-dimensionalen Kugel mit Radius R: O n (R) = 2π n 2 R n 1 Γ( n 2 ) ( Ω = V N ( N ) ) h 3N 2m δ p i 2 2mE d 3 p 1 d 3 p n N! i=1 ( ) = V N 3N 2π 2 (2mE) 3N 1 2 h 3N 2m N! Γ( 3N 2 ) [ ] V S = k B ln Ω = Nk B (ln h 3N N! (2πmE) N ln [ ]) [ 1 k B ln Γ E ( )] 3N 2

22 Beispiel: Ideales Gas im mikrokanonischen Ensemble Im thermodynamischen Limes N können wir mithilfe der Stirling-Formel ln (Γ(ν)) ν ln ν ν die Entropie des idealen Gases finden als: ( [ 5 S = Nk B 2 + ln V Nh 3 ( 4πmE 3N ) 3 ]) 2 (Entropie ideales Gas) Damit: p T = 1 T = ( ) S V ( ) S E E,N V,N = 3 2 = Nk b V Nk b E pv = Nk B T thermische Zustandsgleichung des idealen Gases E = 3 2 Nk BT kalorische Zustandsgleichung des idealen Gases

23 Thermodynamik Jetzt: Austausch von Energie mit der Umgebung (Wärmebad) möglich, feste Größen T,V,N Mikrozustände haben nun verschiedene Energien {E i } mittlere Energie vorgegeben i p ie i = E Wärmebad T,V,N ρ = 1 Z e βh(qα,pα), β = 1 k B T Der Normierungsfaktor heißt Zustandssumme: Z = Sp { e βh} = i e βe i (quantenstatistisch)

24 Thermodynamik Klassisch gilt dann analog zum mikrokanonischen Ensemble: Z = 1 h 3N N! e βh d 3N qd 3N p Bemerkung: Das kanonische Ensemble maximiert die Entropie mit fest vorgegebener mittlerer Energie (Zwangsbedingung). Thermodynamisches Potential aus der Zustandssumme: F = k B T ln Z (freie Energie) Innere Energie: U = F + TS = β ln Z

25 Großanonisches Ensemble Nun auch Teilchenaustausch mit Umgebung, feste Größen T,V,µ Wärmebad T,V,µ großkanonische Zustandssumme: ( Z G = Sp e β(h µn)) = ρ = 1 Z G e β(h µn) Sp ( e βh) e βµn = Z N e βµn N=0 N=0 mit Z N kanonischer Zustandssumme für ein Ensemble mit N Teilchen

26 Großkanonisches Potential: Übersicht: Φ = k B T ln Z G Ensemble mikrokanonisch kanonisch großkanonisch Dichtematrix ρ Ω 1 δ(h E) Z 1 e βh Z 1 G e β(h µn) Ω = Z = Normierung Sp {δ(h E)} Sp { e βh} Z G = Sp { e β(h µn)} unabhängige E,V,N T,V,N T,V,µ Variablen Thermodynamisches S F Φ Potential

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Notizen zur statistischen Physik

Notizen zur statistischen Physik Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:

Mehr

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................

Mehr

Statistische Physik I

Statistische Physik I Statistische Physik I 136.020 SS 2010 Vortragende: C. Lemell, S. YoshidaS http://dollywood.itp.tuwien.ac.at/~statmech Übersicht (vorläufig) 1) Wiederholung Begriffsbestimmung Eulergleichung 2) Phänomenologische

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Thermoynamik un Statistische Physik (Kompenium Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 14. Februar 2009 1 Inhaltsverzeichnis Statistische Operatoren 3 Zustäne 3 Darstellung

Mehr

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?

Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =? Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels

Mehr

Übungen zu Theoretische Physik IV

Übungen zu Theoretische Physik IV Physikalisches Institut Übungsblatt 4 Universität Bonn 02. November 2012 Theoretische Physik WS 12/13 Übungen zu Theoretische Physik IV Priv.-Doz. Dr. Stefan Förste http://www.th.physik.uni-bonn.de/people/forste/exercises/ws1213/tp4

Mehr

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik

Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

Klausur zur Statistischen Physik SS 2013

Klausur zur Statistischen Physik SS 2013 Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0

E = w + q. kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff) de = dw + dq de = 0 Thermodynamik: 1. Hauptsatz Energieerhaltung: Arbeit plus Wärmeentwicklung gleich Änderung der inneren Energie E = w + q kein Perpetuum Mobile der 1. Art (also: keine Maschine verrichtet Arbeit ohne Brennstoff)

Mehr

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich)

Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 2016 Prof. Dr. A. Shnirman Blatt 2 Dr. B. Narozhny, Dipl.-Phys. P. Schad Lösungsvorschlag

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

Kapitel 8. Statistik von Quantensystemen. 8.1 Statistischer Operator

Kapitel 8. Statistik von Quantensystemen. 8.1 Statistischer Operator Kapitel 8 Statistik von Quantensystemen Einige Vorbemerkungen sollen dazu dienen, die Statistik eines Quantensystems besser zu durchdringen. Insbesondere verdient die statistische Interpretation der Quantenmechanik

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Dr. Andres Collinucci Vorlesung T4, WS10/11 Klausur am 16. Februar 2011 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag

Mehr

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie

Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie 30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid

Mehr

Lernhilfe zur Diplomprüfung Thermodynamik

Lernhilfe zur Diplomprüfung Thermodynamik Lernhilfe zur Diplomprüfung Thermodynamik Diese Zusammenfassung wurde für die Vorbereitung auf meine Diplomprüfung erstellt. Bei Fehlern bitte ich um Korrekturhinweise. Inhaltsverzeichnis I Thermodynamik

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Theoretische Physik F: Zwischenklausur SS 12

Theoretische Physik F: Zwischenklausur SS 12 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:

Mehr

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen

Kapitel 3. Statistische Definition der Entropie. 3.1 Ensemble aus vielen Teilchen Kapitel 3 Statistische Definition der Entropie 3.1 Ensemble aus vielen Teilchen Die Überlegungen dieses Abschnitts werden für klassische Teilchen formuliert, gelten sinngemäß aber genauso auch für Quantensysteme.

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

Statistik und Thermodynamik

Statistik und Thermodynamik Klaus Goeke Statistik und Thermodynamik Eine Einführung für Bachelor und Master STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Grundlagen der Statistik und Thermodynamik 1 1 Einleitung 3 2 Grundlagen der

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Thermodynamik. Christian Britz

Thermodynamik. Christian Britz Hauptsätze der Klassische nanoskaliger Systeme 04.02.2013 Inhalt Einleitung Hauptsätze der Klassische nanoskaliger Systeme 1 Einleitung 2 Hauptsätze der 3 4 Klassische 5 6 7 nanoskaliger Systeme 8 Hauptsätze

Mehr

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich) Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Übungen zur Theoretischen Physik F SS 08. ds + dv + dn = TdS pdv + µdn. w α ln(w α )

Übungen zur Theoretischen Physik F SS 08. ds + dv + dn = TdS pdv + µdn. w α ln(w α ) Universität Karlsruhe Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physi F SS 08 Prof. Dr. P. Wölfle Musterlösung Dr. M. Greiter Blatt 12 1. Alle thermodynamischen Zustandgrössen,

Mehr

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik

STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik STATISTISCHE PHYSIK Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik Zusammenfassung und Stichwort-Sammlung April 2003 Teil I Thermodynamik 1 Grundbegriffe

Mehr

8 Entropie und Unbestimmtheit

8 Entropie und Unbestimmtheit 8 Entropie und Unbestimmtheit 8.1 Makrozustand und Mikrozustände Um die Funktion S(U, V, n mikroskopisch zu berechnen, betrachten wir als Beispiel eine gewisse Stoffmenge n einer chemisch reinen Substanz,

Mehr

Theoretische Physik 6: Thermodynamik und Statistik

Theoretische Physik 6: Thermodynamik und Statistik Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

V5: Klassische statistische Mechanik thermodynamische Ensembles

V5: Klassische statistische Mechanik thermodynamische Ensembles V5: Klassische statistische Mechanik thermodynamische Ensembles Die statistische Mechanik behandelt Systeme mit vielen (im Grunde unendlich vielen) Freiheitsgraden. Diese sollen durch wenige Makrovariablen

Mehr

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013

Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Prof. Dr. U. Schollwöck Sommersemester 2013 Theoretische Physik 25. Juli 2013 Thermodynamik und statistische Physik (T4) Klausur Prof. Dr. U. Schollwöck Sommersemester 2013 Matrikelnummer: Aufgabe 1 2 3 4 5 6 Summe Punkte Note: WICHTIG! Schreiben

Mehr

3. Thermodynamik Thermodynamik für Flüssigkeiten Thermodynamik für magnetische Systeme

3. Thermodynamik Thermodynamik für Flüssigkeiten Thermodynamik für magnetische Systeme 3. hermodynamik 1 3.1 hermodynamik für Flüssigkeiten 2 3.2 hermodynamik für magnetische Systeme 3 3.3 Koexistenzbedingungen, Phasenregel von Gibbs 4 3.4 hermodynamische Relationen 5 3.5 heorie von Lee

Mehr

Repetition Carnot-Prozess

Repetition Carnot-Prozess Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6

Mehr

Klausur Thermodynamik E2/E2p SoSe 2019 Braun. Formelsammlung Thermodynamik

Klausur Thermodynamik E2/E2p SoSe 2019 Braun. Formelsammlung Thermodynamik Klausur Thermodynamik E2/E2p SoSe 2019 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10

Karlsruher Institut für Technologie Festkörperphysik. Übungen zur Theoretischen Physik F SS 10 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Theoretischen Physik F SS 10 Prof. Dr. G. Schön Lösungsvorschlag zu Blatt 2 Dr. J. Cole 30.04.2010 1. Van-der-Waals

Mehr

Inhalt. Vorwort v. Liste der wichtigsten verwendeten Symbole und Abkürzungen xiii. Einleitung 1

Inhalt. Vorwort v. Liste der wichtigsten verwendeten Symbole und Abkürzungen xiii. Einleitung 1 Inhalt Vorwort v Liste der wichtigsten verwendeten Symbole und Abkürzungen xiii Einleitung 1 1 Grundlagen der Statistischen Physik 5 1.1 Zustände in der Quantenmechanik 5 1.1.1 Zustände, Observable, Erwartungswerte

Mehr

Theoretische Physik 5. Statistische Physik

Theoretische Physik 5. Statistische Physik Sommersemester 2016, Stand: 12. Juli 2016 Theoretische Physik 5 Statistische Physik Kurz-Zusammenfassungen der zentralen Begriffe und Resultate Thorsten Feldmann Theoretische Physik 1, Department Physik,

Mehr

Übersicht. Rückblick: klassische Mechanik

Übersicht. Rückblick: klassische Mechanik 61 Übersicht 1) Makroskopische k (phänomenologische) h Thermodynamik Terminologie Hauptsätze der Thermodynamik Kreisprozesse Maxwell Viereck response Funktionen Phasenübergänge 2) Statistische i Mechanik

Mehr

Thermodynamik und Statistische Physik

Thermodynamik und Statistische Physik Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Erinnerung: Intensive, extensive Größen

Erinnerung: Intensive, extensive Größen Erinnerung: Intensive, extensive Größen Man unterscheidet intensive und extensive Größen: Vorgehen: Man denke sich ein thermodynamisches ystem in zwei eile geteilt: Untersystem Untersystem Extensive Größen

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Response-Funktionen Bisher haben wir vorwiegend Eigenschaften des thermodynamischen Gleichgewichts untersucht. Diese stellen aber nur einen beschränkten Ausschnitt der interessierenden Phänomene dar. Zur

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 9. Vorlesung 20.01.2017 Was bisher geschah Thermodynamik Thermodynamische Systeme und Zustandsgrößen Gleichgewichtszustand

Mehr

Ab-initio Thermodynamik

Ab-initio Thermodynamik Institut für Theoretische Physik Technische Universität Clausthal 4. Dezember 2004 Hintergrund Für kommende Transistorgenerationen ( 2013) müssen Oxide (z.b: Ba x Sr 1 x TiO 3 ) epitaktisch auf Halbleitern

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Kompressible Gasdynamik

Kompressible Gasdynamik Hauptseminar Lineare und Nichtlineare Wellenphänomene 14. Januar 2013 Inhaltsverzeichnis 1 Thermodynamische Grundlagen 2 Bewegungsgleichungen 3 Konstruktion der Charakteristiken Allgemeine Konstruktion

Mehr

Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt 9, Ausgabe , abzugeben bis

Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt 9, Ausgabe , abzugeben bis UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Matthias Fuchs Raum P 907, Tel. (07531)88-4678 E-mail: matthias.fuchs@uni-konstanz.de Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Inhaltsverzeichnis Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik Inhaltsverzeichnis. Grundbegriffe. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 844-906 J. W. Gibbs (89 90) 2 Einführung in die statistische Mechanik Gas in einem

Mehr

Formelsammlung Theoretische Physik IV: Statistische Physik

Formelsammlung Theoretische Physik IV: Statistische Physik Formelsammlung Theoretische Physik IV: Statistische Physik Stand: 21.07.2006 - Version: 0.0.13 Erhältlich unter http://privat.macrolab.de Diese Formelsammlung basiert auf der

Mehr

Statistische Physik. Vorlesungsskript zum Modul P21. Prof. Dr. Jan Plefka. Quantenfeld- und Stringtheorie Institut für Physik

Statistische Physik. Vorlesungsskript zum Modul P21. Prof. Dr. Jan Plefka. Quantenfeld- und Stringtheorie Institut für Physik Statistische Physik Vorlesungsskript zum Modul P Prof. Dr. Jan Plefka Quantenfeld- und Stringtheorie Institut für Physik Version 5. Oktober 07 Inhaltsverzeichnis I Grundlagen...........................................

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

E 3. Ergänzungen zu Kapitel 3

E 3. Ergänzungen zu Kapitel 3 E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach

Mehr

Moderne Theoretische Physik III

Moderne Theoretische Physik III Moderne Theoretische Physik III Statistische Physik Alexander Mirlin SS 205 Inhaltsverzeichnis Übersicht vi Inhalt............................................ vi Literatur..........................................

Mehr

Theoretische Physik 5. Statistische Physik

Theoretische Physik 5. Statistische Physik Sommersemester 2017, Stand: 20. Juli 2017 Theoretische Physik 5 Statistische Physik Kurz-Zusammenfassungen der zentralen Begriffe und Resultate Thorsten Feldmann Theoretische Physik 1, Department Physik,

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 2013/2014 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 14.01.2014 1 Molekulare Bioinformatik - Vorlesung 11 Wiederholung Wir

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

Statistische Physik. Beruhend auf Quantentheorie. Eine Einführung. von Hermann Schulz. 1. Auflage

Statistische Physik. Beruhend auf Quantentheorie. Eine Einführung. von Hermann Schulz. 1. Auflage Statistische Physik Beruhend auf Quantentheorie. Eine Einführung von Hermann Schulz 1. Auflage Statistische Physik Schulz schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Harri Deutsch

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

2 Die mikrokanonische Gesamtheit

2 Die mikrokanonische Gesamtheit 2 Die mikrokanonische Gesamtheit Für ein isoliertes makroskopisches System mit der Gesamtenergie E können wir die Werte von makroskopischen Observablen in einem Gleichgewichtsszustand nach unserer Grundannahme

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 02. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 02. 07. 2007 Inhaltsverzeichnis

Mehr

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Drei Beschreibungsebenen der Thermodynamik

Drei Beschreibungsebenen der Thermodynamik F. Herrmann Drei Beschreibungsebenen der Thermodynamik 1 1. Molekularkinetische Ebene 2. Statistische Ebene geeignet, wenn alle Teilchen dasselbe machen 3. Phänomenologische Ebene 4. Folgerungen 2 1. Molekularkinetische

Mehr

8 Das klassische ideale Gas

8 Das klassische ideale Gas 8 Das klassische ideale Gas 8.1 Unterscheidbare Atome Gleichartige Atome (etwa zwei He-Atome) sind in der Quantenmechanik grundsätzlich nicht unterscheidbar. Wir wollen dies jedoch zunächst ignorieren,

Mehr

Thermodynamik. Kapitel 4. Nicolas Thomas

Thermodynamik. Kapitel 4. Nicolas Thomas Thermodynamik Kapitel 4 Arbeit und Wärme Länge, x F Kolben Länge, x F Der Kolben wird sehr langsam um die Distanz -dx verschoben. dx Kolben Wieviel Arbeit mussten wir leisten, um den Kolben zu bewegen?

Mehr

8. Thermodynamik zur Metallphysik 8.1 Thermodynamische Grundlagen

8. Thermodynamik zur Metallphysik 8.1 Thermodynamische Grundlagen 8. hermodynamik zur Metallphysik 8.1 hermodynamische Grundlagen Bedeutung der hermodynamik in der Metallphysik: Reale Systeme sind makroskopische Systeme mit sehr vielen Einzelteichen 1 Mol = N L 10 23

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

6.1 Gleichgewichts- und Stabilitätsbedingungen

6.1 Gleichgewichts- und Stabilitätsbedingungen 4. Woche 6.1 Gleichgewichts- und Stabilitätsbedingungen 6.1.1 Extremaleigenschaften der Potentiale Die Hauptsätze der Thermodynamik lauten du δq pdv (das Erste) und (das Zweite). Da (für dn 0) δq TdS gilt

Mehr

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ), 2. Dezember 2015

Seminarvortrag Hamiltonsches Chaos. Daniel Lahrmann ( ),   2. Dezember 2015 Seminarvortrag Hamiltonsches Chaos 404 204, E-Mail: d_lahr01@wwu.de 2. Dezember 2015 1 Inhaltsverzeichnis 1 Hamiltonsche Systeme 3 1.1 Allgemeines.................................................. 3 1.2

Mehr

Klausur-Musterlösungen

Klausur-Musterlösungen Klausur-Musterlösungen 9.7.4 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay. Der in Abb. dargestellte Kreisprozess wird mit einem elektromagnetischen Feld ausgeführt. Abb..

Mehr