Origamics Gefaltete Mathematik
|
|
|
- Harald Schneider
- vor 9 Jahren
- Abrufe
Transkript
1 Hans-Wolfgang Henn Origamics Gefaltete Mathematik Braunschweig,
2 Winter sche Grunderfahrungen Heinrich Winter (1995): (GE 1) Erscheinungen der Welt um uns, die uns alle angehen oder angehen sollten, aus Natur, Gesellschaft und Kultur, in einer spezifischen Art wahrzunehmen und zu verstehen, (GE 2) mathematische Gegenstände und Sachverhalte, repräsentiert in Sprache, Symbolen, Bildern und Formeln, als geistige Schöpfungen, als eine deduktiv geordnete Welt eigener Art kennen zu lernen und zu begreifen, (GE 3) in der Auseinandersetzung mit Aufgaben Problemlösefähigkeiten (heuristische Fähigkeiten), die über die Mathematik hinaus gehen, zu erwerben.
3 GE 3
4 GE 1
5
6 Schwerpunkt in diesem Vortrag: GE 2 Origami in der Mathematik Konstruierbare und faltbare Zahlen Die klassischen unlösbaren Probleme
7 Konstruierbare Zahlen Mit Zirkel und Lineal kann man quadratische Gleichungen lösen (Satzgruppe des Pythagoras)
8 Konstruierbare Zahlen Mit Zirkel und Lineal kann man quadratische Gleichungen lösen (Satzgruppe des Pythagoras) Höhensatz 2 a 1 h, also h a Mit einer Zahl a kann man auch ihre Quadratwurzel konstruieren
9 Damit kann man mit Zirkel und Lineal alle rationale Zahlen und alle irrationale Zahlen, die durch sukzessives Quadratwurzelziehen aus rationalen Zahlen entstehen, konstruieren. Beispiele: Konstruierbare Zahlen ( ) 11 5
10 Konstruierbare Zahlen Dies sind alle Zahlen aus algebraischen Körpererweiterungen K von Q mit (K:Q) = 2 n und K K K... K K n Von Schritt i zu Schritt i+1 kommen die Nullstellen einer quadratischen Gleichung mit Koeffizienten aus K i hinzu.
11 Faltbare Zahlen Nur wenn wir mehr Zahlen falten als mit Zirkel und Lineal konstruieren können, haben wir etwas gewonnen!! Wir vergleichen Falten mit den ZuL-Konstruktionen. Dabei entsprechen Geraden den Faltlinien und Punkte den Schnitten von Faltlinien.
12
13 Die folgende Faltoperation hat aber kein Äquivalent bei den Konstruktionen mit Zirkel und Lineal. Damit können wir, wie wir sehen werden, weitere irrationale Zahlen konstruieren und die klassischen Probleme der alten Griechen durch Falten lösen!
14 Genauer kann man alle Zahlen falten, die in einer algebraischen Körpererweiterung K von Q liegen mit (K: Q) = 2 n 3 m und der entsprechenden Zwischenkörperkette vom Relativgrad 2 bzw. 3.
15 Die klassischen unlösbare Probleme Das Deli sche Problem der Würfelverdoppelung Die Dreiteilung des Winkels Die Konstruktion der regelmäßigen n-ecke: Unlösbar für n = 7
16 Das Deli sche Problem der Würfelverdoppelung 3 2
17 Das Deli sche Problem der Würfelverdoppelung 3 2 Ausgangswürfel: Kantenlänge 1 Gesuchter Würfel hat Volumen 2, also gilt für seine Kantenlänge z 3 = 2. Damit müssten wir eine dritte Wurzel z = konstruieren, was unmöglich ist. 3 2 Das Delische Problem ist also mit ZuL nicht lösbar!
18 Berühmter Hilfssatz: Der Satz von Haga: Dritteln einer Strecke durch Papierfalten
19 Berühmter Hilfssatz: Der Satz von Haga: Dritteln einer Strecke durch Papierfalten Und wie kann man eine Strecke in n gleiche Teile falten?
20
21 Lösung des Deli schen Problems mit Origami
22
23 Die Winkeldrittelung
24 Die Winkeldrittelung Pierre Laurent Wantzel ( ):
25 Die Winkeldrittelung Pierre Laurent Wantzel ( ):
26
27
28 Die Konstruktion von regelmäßigen n-ecken
29
30
31 Euklid v. Chr. Konstruktion des regelmäßigen 3-, 4-, 5-, 6-Eck und davon abgeleitete n-ecke gescheitert am 7-Eck
32 farbige Euklid-Ausgabe von Oliver Byrne London 1847
33 Casanova Liebhaber der Frauen und der Mathematik!
34 Carl Friedrich Gauß ( ) Disquisitiones Arithmeticae 1801 Theorie der Kreisteilungskörper
35 regelmäßiges n-eck im Einheitskreis o 360 n
36 regelmäßiges n-eck im Einheitskreis o 360 n n-te Einheitswurzel n = cos( ) + i sin( ) (Q( n ):Q)? n ist Nullstelle des Polynoms x n 1. Für 2 < n = p = Primzahl ist p x 1 p 1 p 2 f (x) x x... x 1 x 1 das Minimalpolynom von p
37 regelmäßiges n-eck im Einheitskreis o 360 n n-te Einheitswurzel n = cos( ) + i sin( ) (Q( n ):Q)? n ist Nullstelle des Polynoms x n 1. Für 2 < n = p = Primzahl ist p x 1 p 1 p 2 f (x) x x... x 1 x 1 f hat den Grad p - 1 das Minimalpolynom von p
38 Aus dem Ergebnis über konstruierbare Zahlen und der Tatsache, dass der Kreisteilungskörper galois sch über Q ist, folgt: p 1 muss Zweierpotenz sein, also m 2 p 2 1 Fermat 'sche Pr imzahl
39 Aus dem Ergebnis über konstruierbare Zahlen und der Tatsache, dass der Kreisteilungskörper galois sch über Q ist, folgt: p 1 muss Zweierpotenz sein, also m 2 p 2 1 Fermat 'sche Pr imzahl Fermat-Primzahlen 3, 5, 17, 257, Eck ist das erste nicht mit Z&L konstruierbare n-eck.
40 Aus dem Ergebnis über konstruierbare Zahlen und der Tatsache, dass der Kreisteilungskörper galois sch über Q ist, folgt: p 1 muss Zweierpotenz sein, also m 2 p 2 1 Fermat 'sche Pr imzahl Fermat-Primzahlen 3, 5, 17, 257, Eck ist das erste nicht mit Z&L konstruierbare n-eck. 17-Eck: C. F. Gauß Intelligenzblatt der allgemeinen Literaturzeitung (Leipzig)
41 Gauß-Denkmal in Braunschweig
42 Aus dem Ergebnis über konstruierbare Zahlen und der Tatsache, dass der Kreisteilungskörper galois sch über Q ist, folgt: p 1 muss Zweierpotenz sein, also m 2 p 2 1 Fermat 'sche Pr imzahl Fermat-Primzahlen 3, 5, 17, 257, Eck ist das erste nicht mit Z&L konstruierbare n-eck. 17-Eck: C. F. Gauß Intelligenzblatt der allgemeinen Literaturzeitung (Leipzig) 257-Eck: F. J. Richelot Eck: J. G. Hermes 1889
43
44 Das 7-Eck war das erste nicht mit Z&L konstruierbare n- Eck; sein Minimalpolynom hat den Grad 6. Faltbar sind Zahlen aus Erweiterungskörpern von K mit (K: Q) = 2 n 3 m Wegen 6 = 2 3 ist das 7-Eck faltbar! Allerdings ist die Faltung etwas komplizierter:
45 Gleichseitiges Dreieck
46 Falten eines Quadrats
47 Der Fünfteck-Knoten
48 Der Fünfteck-Knoten
49 Eine exakte Faltkonstruktion des regelmäßigen Siebenecks
50
51
52
53
54
55 Schlusswort Es gibt noch viel zu falten viel Spaß dabei!
Origamics Gefaltete Mathematik
Hans-Wolfgang Henn Origamics Gefaltete Mathematik Karlsruhe, 29.3.2014 Origami als kreatives Spiel Origami in der Technik Origami- Faltkunst für Tragwerke Modell Landesmuseum für Technik Mannheim Türfüllungen
Die Konstruktion regulärer n-ecke
Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären
Literatur zu geometrischen Konstruktionen
Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.
3 Die klassischen griechischen Konstruktionsprobleme
Kombinatorische Geometrie SS 2000 Dr. Elsholtz 3 Die klassischen griechischen Konstruktionsprobleme Aus der griechischen Antike sind folgende geometrische Konstruktionsprobleme überliefert. Wie teilt man
π und die Quadratur des Kreises
π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 27 Konstruierbare Einheitswurzeln Definition 27.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar
Würfelverdopplung. Michael Schmitz
www.mathegami.de März 2010 Würfelverdopplung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Verdopplung eines Würfels mit Hilfe von Zirkel und Lineal. Da eine solche Konstruktion nicht
Die Klassischen Probleme der Algebra. JProf.-Dr. Christoph Wockel 10. April 2012
Die Klassischen Probleme der Algebra JProf.-Dr. Christoph Wockel 10. April 2012 1 Die Algebra wurde in ihrer Entstehung von der Suche nach einer Lösung der folgenden Probleme maßgeblich beeinflusst: Konstruierbarkeit
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar
Literatur zu geometrischen Konstruktionen
Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.
Konstruktionen mit Zirkel und Lineal II
Konstruktionen mit Zirkel und Lineal II Andreas Scheuss & Claudio Müller 27. Mai 2009 1 Klassische Konstruktionsaufgaben Gegenstand der heutigen Sitzung sind klassische geometrische Probleme, an denen
Origamics: Gefaltete Mathematik
32-37Henn8_RZx:Layout 1 17.06.14 21:12 Seite 32 Origamics: Gefaltete Mathematik Papierflieger, Dampfschiffe oder Spitzhüte hat wohl jeder schon einmal gefaltet. Origami, die Kunst des Papierfaltens, eignet
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07. Zirkel und Zahlen
Protokoll der Projektgruppe Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07 Zirkel und Zahlen Team: Nancy Seckel, Hans Christian Döring, Eugenio Buzzoni, Anna Thurmayer, Maximilian
Konstruierbarkeit des Siebzehnecks
Konstruierbarkeit des Siebzehnecks Der Kinofilm Die Vermessung der Welt war Anstoß, sich mit der Konstruktion des regelmäßigen Siebzehnecks und damit den Gedankengängen des berühmten Mathematikgenies Carl
Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal
1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Vorlesungskript. Algebra
Vorlesungskript Algebra SS 2018 Christian Sevenheck Fakultät für Mathematik TU Chemnitz vorläufige Fassung, 11. April 2018 Fehler und Bemerkungen bitte an : [email protected]
Das Delische Problem. von Peter Franzke in Berlin
Das Delische Problem von Peter Franzke in Berlin Das Delische Problem (auch duplicatio cubi oder Würfelvolumenverdopplung genannt) gehört neben der Dreiteilung des Winkels und der Quadratur des Kreises
9. Geometrische Konstruktionen und Geometrische Zahlen.
9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes
Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung
Internat. Math. Nachrichten Nr. 219 (2012), 25 43 Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung Hans Humenberger Universität Wien Die sogenannten vier griechischen
Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen
1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal
Die Konstruktion des regelmäÿigen n-ecks mit Zirkel und Lineal Für welche natürliche Zahlen n 3 kann man das regelmäÿige n-eck mit Zirkel und Lineal konstruieren? Wir haben in der Vorlesung gesehen, dass
(Max Bill) . Gilt A 0 A 4 A 2
19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:
Berichte der Gruppen. Mathematisches Papierfalten. Teilnehmer: mit tatkräftiger Unterstützung durch: Gruppenleiter:
Berichte der Gruppen Mathematisches Papierfalten Teilnehmer: Tran Nu Bao Chau Milena Djatchkova Anja Dücker Katharina Graf Marian Hauser Emil Jensen Dale Nows Pauline Peters Soninbayar Purevsuren Lisa
Modul 206 Regelmäßige Vielecke!
Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck
1. Körper und Körpererweiterungen
. Körper und Körpererweiterungen 7. Körper und Körpererweiterungen Wir beginnen nun mit dem eigentlichen Studium von Gruppen, Ringen und Körpern. Die in der Einleitung vorgestellten Probleme haben dabei
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel
Seminar Galoistheorie
Seminar Galoistheorie Prof. M. Brodmann Konstruktion mit Zirkel und Lineal Judith Keller und Vesna Nikolic 20.Mai 2009 1 Einleitung Im letzen Teil des Seminars zur Galoistheorie geht es um die Lösbarkeit
Übungsblatt 6 zur Algebra I
Universität Augsburg Sommersemester 2013 Lehrstuhl für Algebra und Zahlentheorie Ingo Blechschmidt Prof. Marc Nieper-Wißkirchen Robert Gelb Übungsblatt 6 zur Algebra I Abgabe bis 27. Mai 2013, 17:00 Uhr
Jürgen Roth Didaktik der Zahlbereichserweiterungen
Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 1: Ziele und Inhalte 1.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Proseminar Algebra und diskrete Mathematik. SS 2017
Proseminar Algebra und diskrete Mathematik. SS 2017 Bachelorstudium Lehramt Sekundarstufe (Allgemeinbildung) Lehramtsstudium Unterrichtsfach Mathematik Ganze Zahlen: 1. Zeigen Sie folgende Teibarkeiten
Anwendung: Konstruktionen mit Zirkel und Lineal:
Anwendung: Konstruktionen mit Zirkel und Lineal: Frage: (Euklid) Welche geometrischen Objekten sind allein mit Zirkel und Lineal konstruierbar? Regeln (zuerst nichtformal; auf übernächster Folie sind sie
ORIGAMICS PAPIERFALTEN MIT MATHEMATISCHEM SPÜRSINN 1. 1 Origami die japanische Papierfaltkunst
1 ORIGAMICS PAPIERFALTEN MIT MATHEMATISCHEM SPÜRSINN 1 Hans-Wolfgang Henn IEEM, FB Mathematik Universität Dortmund Email: [email protected] 1 Origami die japanische Papierfaltkunst Sicher
Geometrieunterricht in der Sek I
Geometrieunterricht in der Sek I Inhalte, Ziele, Standards 13. Oktober 2009 Vertr. Prof. Dr. Katja Krüger Universität Paderborn Didaktik der Geometrie II (Klasse 7-10) 1 Inhalt Inhalte des Geometrieunterrichts
Im Bsp. vorher haben wir die Zahl 8 7
Im Bsp. vorher haben wir die Zahl 8 7 2 2 (1 + 2 2 ) 3 betrachtet. Die Zahl liegt in einer iterierten ( zweifachen ) quadratischen Erweiterung von Q, nämlich in Q( 2)( 3). Diese Erweiterung ist aber in
Spiegelungen und einige Anwendungen Natalie Mangels Ulrike Beelitz
Spiegelungen und einige Anwendungen 30.10.2014 Natalie Mangels Ulrike Beelitz Allg. Kompetenzen im Geometrieunterricht Ebene und räumliche Figuren werden analysiert, klassifiziert und durch Skizzen, Konstruktionen,
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Hans Walser: Modul 206, Regelmäßige Vielecke ii Inhalt 1 Regelmäßige Vielecke... 1 2 Das regelmäßige Dreieck... 1 2.1 Parkette...
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 26 Einheitswurzeln Definition 26.1. Es sei K ein Körper und n N +. Dann heißen die Nullstellen des Polynoms X n 1 in K die n-ten
Die Quadratur des Kreises
Die Quadratur des Kreises Häufig hört man Leute sagen, vor allem wenn sie vor großen Schwierigkeiten stehen, so was wie hier wird die Quadratur des Kreises versucht. Was ist mit dieser Redewendung gemeint?
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 24 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
Allgemeine Ziele des Mathematikunterrichts in der Sek 1
Allgemeine Ziele des Mathematikunterrichts in der Sek 1 Nach Heinrich WINTER, 1996: 1) Erscheinungen der Welt um uns, die uns alle angehen, aus Natur, Gesellschaft und Kultur in einer spezifischen Art
Winkeldreiteilung. Michael Schmitz
www.mathegami.de Februar 2010 Winkeldreiteilung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Dreiteilung eines beliebigen Winkels mit Hilfe von Zirkel und Lineal. Da eine solche
DIPLOMARBEIT. Titel der Diplomarbeit. Unmöglich möglich? Die drei klassischen Konstruktionsprobleme und mögliche Lösungen.
DIPLOMARBEIT Titel der Diplomarbeit Unmöglich möglich? Die drei klassischen Konstruktionsprobleme und mögliche Lösungen Verfasser Matthias Sebastian Konzett angestrebter akademischer Grad Magister der
5. Galoisgruppen. 5. Galoisgruppen 45
5. Galoisgruppen 45 5. Galoisgruppen Nach dem Studium von Zerfällungskörpern im letzten Kapitel wollen wir nun wieder zu unseren Problemen aus der Einleitung zurückkehren. Dazu erinnern wir uns zunächst
2. Der Grad von Körpererweiterungen
2. Der Grad von Körpererweiterungen 15 2. Der Grad von Körpererweiterungen Wenn wir untersuchen wollen, ob eine gegebene Konstruktion in der Ebene mit Zirkel und Lineal durchführbar ist, haben wir im vorigen
f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.
Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und
1 Zahlen. 1.1 Die Quadratwurzel. 1.2 Rechnen mit Quadratwurzeln. Grundwissen Mathematik 9
Zahlen. Die Quadratwurzel Die Quadratwurzel a ist die nicht negative Lösung der Gleichung x a. a 0 0 0 a heißt Radikand Ein Teil der Quadratwurzeln sind rationale Zahlen (z.b. 9, 0,0 oder ), 9 andere dagegen
1. die ganzen Zahlen, denn 7= 1. a ist diejenige nicht negative Zahl, die quadriert a ergibt: 16 = 4; 0 = = 36 = 25 = e) Grundwissen 9.
Grundwissen 9. Klasse Quadratwurzel a ist diejenige nicht negative Zahl, die quadriert a ergibt: ( a ) a Die Zahl a unter der Wurzel heißt Radikand. Es gibt keine Quadratwurzel aus einer negativen Zahl.
M 9.1. Quadratwurzeln. Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: Carina Mittermayer (2010)
M 9.1 Quadratwurzeln Wie wird definiert? Wie bezeichnet man die Zahl unter der Wurzel? Für welche Zahlen ist die Wurzel definiert? Berechne: M 9.2 Reelle Zahlen Was sind irrationale Zahlen? Nenne vier
INHALTSVERZEICHNIS XII
Inhaltsverzeichnis I Gruppen 1 1 Halbgruppen, Gruppen und Untergruppen... 1 1.1 Innere Verknüpfungen und Halbgruppen... 1 1.2 Beispiele... 2 1.3 Definition einer Gruppe... 4 1.4 Abschwächung der Gruppenaxiome...
Irrationalzahlen. Freiburger Mathematik Tage vom Dieter Wolke
Irrationalzahlen Freiburger Mathematik Tage vom 30.09. 0.0.2005 Dieter Wolke. Die rationalen Zahlen, das heißt die gekürzten Brüche r a n mit n N {, 2, 3,...}, a Z {0, ±, ±,...} und a und n teilerfremd,
Tag der Mathematik 2015
Tag der Mathematik 2015 Einzelwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden Taschenrechner sind nicht zugelassen Teamnummer Die folgende Tabelle
Grundwissen Jahrgangsstufe 9. Lösungen. Berechne ohne Taschenrechner: a) 2, a) = -1, b) = = = 4000
Grundwissen Jahrgangsstufe 9 Berechne ohne Taschenrechner: a),5 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) -x² = -5 c) x² + 50 = 0 Sind folgende
Quadratwurzeln. Reelle Zahlen
M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 1 Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 1. Ziele und Grundpositionen
4 Das Vollständigkeitsaxiom und irrationale Zahlen
4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit
3. Die pythagoräische Geometrie.
II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen
15 Auflösbarkeit durch Radikale
Chr.Nelius: Algebra (SS 2006) 1 15 Auflösbarkeit durch Radikale f [T] sei ein normiertes Polynom vom Grade 1. Wir wollen die Frage untersuchen, ob sich die Nullstellen von f formelmäßig berechnen lassen.
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 1 Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 1. Ziele und Grundpositionen
Galoissche Theorie. 20i (4i + 3) 4 20i (10i 5) 4 20i )
Galoissche Theorie ζ 11 = 1 2143588810 ζ 5 = 1 100 ((1965ζ 3 5 8664ζ 2 5 + 7600ζ 5 + 6840) 10 21615ζ 3 5 53625ζ2 5 61985ζ 5 + 116919 9 + (51821ζ 3 5 + 28402ζ 2 5 22ζ 5 + 18348) 10 21615ζ 3 5 53625ζ2 5
Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,
Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind
11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16
11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p
mathematik und informatik
Dr. Silke Hartlieb, Prof. Dr. Luise Unger Kurs 01320 Algebra und ihre Anwendungen LESEPROBE mathematik und informatik Das Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere
Die komplexen Zahlen
Die komplexen Zahlen Wir haben gesehen, dass die Menge R der reellen Zahlen einen angeordneten Körper bildet und dass für die Menge Q der rationalen Zahlen entsprechendes gilt. In beiden Körpern sind Gleichungen
Kodieranweisung (1) 2. Welcher Term besitzt den Wert 25? (1) 3 Dreiecke müssen gefärbt sein (1)
Teil 1 Kurzform Kodieranweisung Zu erreichende Punktzahl: 4 1. Mit welcher Zahl geht die Zahlenreihe...5, 4, 8, 7, 14 weiter? 1 8 15 9. Welcher Term besitzt den Wert 5? 50 5 50 + 5 17 8 5 + 50. Färbe 10
Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen
Konstruierbarkeit mit Origami im Vergleich zu Zirkel und Lineal mit Winkeldreiteilung
Konstruierbarkeit mit Origami im Vergleich zu Zirkel und Lineal mit Winkeldreiteilung Und Torsionspunkte der Ordnung n und n auf elliptischen Kurven als Anwendung der Konstruierbarkeit mit Origami Bachelor-Thesis
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Der Satz des Pythagoras: a 2 + b 2 = c 2
Der Satz des Pythagoras: a 2 + b 2 = c 2 Beweise: Mathematiker versuchen ihre Behauptungen durch Beweise zu untermauern. Die Suche nach absolut wasserdichten Argumenten ist eine der treibenden Kräfte der
Jürgen Roth. Didaktik der Algebra. Modul 5. Jürgen Roth Didaktik der Algebra
Jürgen Roth Didaktik der Algebra Modul 5 1.1 FundaMINT Lehramtsstipendium 1.2 Materialien zur Veranstaltung Internetseite zur Veranstaltung und Skript www.juergen-roth.de/lehre/did_algebra/ Material Textdatenbank
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016
Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Anzahl der schriftlichen Arbeiten: 4, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe Anlage,
Spielen mit Zahlen Seminarleiter: Dieter Bauke
Spielen mit Zahlen Seminarleiter: Dieter Bauke EINLEITUNG Was ist Mathematik? Geometrie und Arithmetik: Untersuchung von Figuren und Zahlen. Wir kombinieren Arithmetik und Geometrie mittels figurierter
Zahlentheorie und Geometrie
1 Zahlentheorie und Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin Herbsttagung der Mathematischen Gesellschaft in Hamburg 15. November 2014 Zahlentheorie
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik 2: Geschichte: Antike Dirk Frettlöh Technische Fakultät 9.4.2015 Bei den alten Griechen: erstmals Beweise (nicht nur Rechenanleitungen = Algorithmen). Themen: Geometrie
Rechnen mit Quadratwurzeln
9. Grundwissen Mathematik Algebra Klasse 9 Rechnen mit Quadratwurzeln Die Quadratwurzel aus a ist diejenige nichtnegative Zahl aus R, deren Quadrat wieder a ergibt. a nennt man Radikand. Man schreibt dafür
Polynome Teil VI: Die Potenzsummenformeln von NEWTON
Die WURZEL Werkstatt Mathematik Polynome Teil VI: Die Potenzsummenformeln von NEWTON In der letzten Ausgabe der Werkstatt haben wir gesehen, dass sich Potenzsummen, etwa die symmetrischen Funktionen p
Brückenkurs Mathematik ( )
Fachhochschule Hannover Fachbereich Elektrotechnik Dr. Gerhard Merziger Brückenkurs Mathematik 4.9. 5.9.006) Montag 4.9.06 Zahlen: IN, Z, Q, IR 0) Bruchrechnung:... Rechnen mit rationalen Zahlen Bruchrechnung)
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium
Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
