Origamics Gefaltete Mathematik
|
|
|
- Nelly Adenauer
- vor 8 Jahren
- Abrufe
Transkript
1 Hans-Wolfgang Henn Origamics Gefaltete Mathematik Karlsruhe,
2 Origami als kreatives Spiel
3
4
5
6 Origami in der Technik Origami- Faltkunst für Tragwerke Modell
7 Landesmuseum für Technik Mannheim
8
9 Türfüllungen Modellversuch dazu
10 Gefaltete Landkarten
11
12 Airbag
13 Sonnensegel
14 Heutiger Schwerpunkt: Origamics: Origami and Mathematics Die klassischen unlösbaren Probleme
15 Heutiger Schwerpunkt: Origamics: Origami and Mathematics Die klassischen unlösbaren Probleme Falten und normale geometrische Konstruktionen
16
17
18
19
20
21 Die folgende Faltoperation hat aber kein Äquivalent bei den Konstruktionen mit Zirkel und Lineal. Damit können wir die klassischen Probleme der alten Griechen durch Falten lösen!
22 Konstruierbare Zahlen Mit Zirkel und Lineal kann man quadratische Gleichungen lösen (Satzgruppe des Pythagoras) Höhensatz 2 a 1 h, also h a Mit einer Zahl a kann man auch ihre Quadratwurzel konstruieren
23 Die klassischen unlösbaren Probleme Die Konstruktion der regelmäßigen n-ecke: Unlösbar schon für n = 7 Das Deli sche Problem der Würfelverdoppelung Die Dreiteilung des Winkels
24 Die Konstruktion von regelmäßigen n-ecken
25
26 Euklid v. Chr. Konstruktion des regelmäßigen 3-, 4-, 5-, 6-Eck und davon abgeleitete n-ecke gescheitert am 7-Eck
27 Casanova Liebhaber der Frauen und der Mathematik!
28 Carl Friedrich Gauß ( ) Disquisitiones Arithmeticae 1801 Theorie der Kreisteilungskörper
29 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist.
30 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist. Das p-eck ist genau dann konstruierbar, wenn p 1 eine spezielle Zweierpotenz ist, nämlich von der Form m 2 p 2 1 Fermat 'sche Pr imzahl
31 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist. Das p-eck ist genau dann konstruierbar, wenn p 1 eine spezielle Zweierpotenz ist, nämlich von der Form m 2 p 2 1 Fermat 'sche Pr imzahl Bis heute kennt man nur die Fermat-Primzahlen 3, 5, 17, 257,
32 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist. Das p-eck ist genau dann konstruierbar, wenn p 1 eine spezielle Zweierpotenz ist, nämlich von der Form m 2 p 2 1 Fermat 'sche Pr imzahl Bis heute kennt man nur die Fermat-Primzahlen 3, 5, 17, 257, Konstruierbar, aber wie???
33 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist. Das p-eck ist genau dann konstruierbar, wenn p 1 eine spezielle Zweierpotenz ist, nämlich von der Form m 2 p 2 1 Fermat 'sche Pr imzahl Bis heute kennt man nur die Fermat-Primzahlen 3, 5, 17, 257, Konstruierbar, aber wie??? 7-Eck ist damit das erste nicht mit Z&L konstruierbare n-eck.
34 Ergebnis von Gauß: Es reicht, wenn man weiß, für welche Primzahlen p die zugehörigen p-ecke konstruierbar ist. Das p-eck ist genau dann konstruierbar, wenn p 1 eine spezielle Zweierpotenz ist, nämlich von der Form m 2 p 2 1 Fermat 'sche Pr imzahl Bis heute kennt man nur die Fermat-Primzahlen 3, 5, 17, 257, Konstruierbar, aber wie??? 7-Eck ist damit das erste nicht mit Z&L konstruierbare n-eck. Das 7-Eck lässt sich falten, was aber etwas kompliziert ist.
35 17-Eck: C. F. Gauß Intelligenzblatt der allgemeinen Literaturzeitung (Leipzig)
36 17-Eck: C. F. Gauß Intelligenzblatt der allgemeinen Literaturzeitung (Leipzig) Gauß-Denkmal in Braunschweig
37 257-Eck: F. J. Richelot 1830 Moderne GeoGebra-Konstruktion
38 Eck: J. G. Hermes 1889
39 Gleichseitiges Dreieck
40 Falten eines Quadrats
41 Falten eines Quadrats
42 Der Fünfeck-Knoten
43 Der Fünfeck-Knoten
44 Der Fünfeck-Knoten
45 Das Deli sche Problem der Würfelverdoppelung 3 2
46 Das Deli sche Problem der Würfelverdoppelung 3 2 Ausgangswürfel: Kantenlänge 1 Gesuchter Würfel hat Volumen 2, also gilt für seine Kantenlänge z 3 = 2. Damit müssten wir eine dritte Wurzel z = konstruieren, was unmöglich ist. 3 2 Das Deli sche Problem ist also mit ZuL nicht lösbar!
47 Berühmter Hilfssatz: Der Satz von Haga: Dritteln einer Strecke durch Papierfalten
48
49 Lösung des Deli schen Problems mit Origami
50
51 Die Winkeldrittelung
52 Die Winkeldrittelung Pierre Laurent Wantzel ( ):
53 Die Winkeldrittelung Pierre Laurent Wantzel ( ):
54
55
56 Es gibt noch viel zu falten viel Spaß dabei!
Origamics Gefaltete Mathematik
Hans-Wolfgang Henn Origamics Gefaltete Mathematik Braunschweig, 28.5.2013 Winter sche Grunderfahrungen Heinrich Winter (1995): (GE 1) Erscheinungen der Welt um uns, die uns alle angehen oder angehen sollten,
Die Konstruktion regulärer n-ecke
Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären
Origamics: Gefaltete Mathematik
32-37Henn8_RZx:Layout 1 17.06.14 21:12 Seite 32 Origamics: Gefaltete Mathematik Papierflieger, Dampfschiffe oder Spitzhüte hat wohl jeder schon einmal gefaltet. Origami, die Kunst des Papierfaltens, eignet
Würfelverdopplung. Michael Schmitz
www.mathegami.de März 2010 Würfelverdopplung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Verdopplung eines Würfels mit Hilfe von Zirkel und Lineal. Da eine solche Konstruktion nicht
(Max Bill) . Gilt A 0 A 4 A 2
19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 27 Konstruierbare Einheitswurzeln Definition 27.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar
3 Die klassischen griechischen Konstruktionsprobleme
Kombinatorische Geometrie SS 2000 Dr. Elsholtz 3 Die klassischen griechischen Konstruktionsprobleme Aus der griechischen Antike sind folgende geometrische Konstruktionsprobleme überliefert. Wie teilt man
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Literatur zu geometrischen Konstruktionen
Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 26 Konstruierbare Einheitswurzeln Definition 26.1. Sei n N +. Man sagt, dass das regelmäßige n-eck mit Zirkel und Lineal konstruierbar
π und die Quadratur des Kreises
π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
3. Die pythagoräische Geometrie.
II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen
ORIGAMICS PAPIERFALTEN MIT MATHEMATISCHEM SPÜRSINN 1. 1 Origami die japanische Papierfaltkunst
1 ORIGAMICS PAPIERFALTEN MIT MATHEMATISCHEM SPÜRSINN 1 Hans-Wolfgang Henn IEEM, FB Mathematik Universität Dortmund Email: [email protected] 1 Origami die japanische Papierfaltkunst Sicher
Konstruktionen mit Zirkel und Lineal II
Konstruktionen mit Zirkel und Lineal II Andreas Scheuss & Claudio Müller 27. Mai 2009 1 Klassische Konstruktionsaufgaben Gegenstand der heutigen Sitzung sind klassische geometrische Probleme, an denen
Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07. Zirkel und Zahlen
Protokoll der Projektgruppe Zirkel und Zahlen, Julius-Maximilians-Universität Würzburg, Juli 07 Zirkel und Zahlen Team: Nancy Seckel, Hans Christian Döring, Eugenio Buzzoni, Anna Thurmayer, Maximilian
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel
Primzahlen und Pseudoprimzahlen
1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen
Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung
Internat. Math. Nachrichten Nr. 219 (2012), 25 43 Elementarmathematische Betrachtungen zum Delischen Problem und zur Winkeldreiteilung Hans Humenberger Universität Wien Die sogenannten vier griechischen
3. Vorlesung. Die Existenz des Pentagons. (*)
3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,
Im Bsp. vorher haben wir die Zahl 8 7
Im Bsp. vorher haben wir die Zahl 8 7 2 2 (1 + 2 2 ) 3 betrachtet. Die Zahl liegt in einer iterierten ( zweifachen ) quadratischen Erweiterung von Q, nämlich in Q( 2)( 3). Diese Erweiterung ist aber in
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen
1 Grundwissen Pyramide
1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
ZahlenfolgenZahlenfolgen. Zahlenfolgen. Anna Rodenhausen. Wieviele Dreiecke, wieviele Trapeze?
Zahlenfolgen Anna Rodenhausen Wieviele Dreiecke, wieviele Trapeze? Wieviele Dreiecke, wieviele Trapeze? # Linien # Dreiecke # Trapeze 0 3 0 3 3 6 5 0 5 6 5 3 Wieviele Dreiecke, wieviele Trapeze? # Linien
Die Quadratur des Kreises
Die Quadratur des Kreises Häufig hört man Leute sagen, vor allem wenn sie vor großen Schwierigkeiten stehen, so was wie hier wird die Quadratur des Kreises versucht. Was ist mit dieser Redewendung gemeint?
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Die Klassischen Probleme der Algebra. JProf.-Dr. Christoph Wockel 10. April 2012
Die Klassischen Probleme der Algebra JProf.-Dr. Christoph Wockel 10. April 2012 1 Die Algebra wurde in ihrer Entstehung von der Suche nach einer Lösung der folgenden Probleme maßgeblich beeinflusst: Konstruierbarkeit
Mathematik Aufnahmeprüfung 2015
Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
Das Delische Problem. von Peter Franzke in Berlin
Das Delische Problem von Peter Franzke in Berlin Das Delische Problem (auch duplicatio cubi oder Würfelvolumenverdopplung genannt) gehört neben der Dreiteilung des Winkels und der Quadratur des Kreises
9. Geometrische Konstruktionen und Geometrische Zahlen.
9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes
Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.
38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich
Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal
1 Gleichungen dritten und vierten Grades und Konstruktionen mit mehr als Zirkel und Lineal Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
4 Das Vollständigkeitsaxiom und irrationale Zahlen
4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten
Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen
1 Gleichungen höheren Grades und Konstruktionen mit Zirkel und Lineal als Motivation für komplexe Zahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected]
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:
Der Satz von Pythagoras
Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung
/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras
Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND
Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium
Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen
1. Körper und Körpererweiterungen
. Körper und Körpererweiterungen 7. Körper und Körpererweiterungen Wir beginnen nun mit dem eigentlichen Studium von Gruppen, Ringen und Körpern. Die in der Einleitung vorgestellten Probleme haben dabei
Elemente der Algebra
Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 25 Auch Albrecht Dürer hatte Spaß an der Quadratur des Kreises Unter den drei klassischen Problemen der antiken Mathematik versteht
Übungsaufgaben Repetitionen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
Geometrie der Polygone Zirkel und Lineal Markus Wurster 1
Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft
(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte
Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,
Winkeldreiteilung. Michael Schmitz
www.mathegami.de Februar 2010 Winkeldreiteilung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Dreiteilung eines beliebigen Winkels mit Hilfe von Zirkel und Lineal. Da eine solche
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 23 Unter den drei klassischen Problemen der antiken Mathematik versteht man (1) die Quadratur des Kreises, (2) die Dreiteilung
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Das Falten-und-Schneiden Problem
Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit
Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.
Der Satz des Pythagoras: a 2 + b 2 = c 2
Der Satz des Pythagoras: a 2 + b 2 = c 2 Beweise: Mathematiker versuchen ihre Behauptungen durch Beweise zu untermauern. Die Suche nach absolut wasserdichten Argumenten ist eine der treibenden Kräfte der
Drei Kreise im Dreieck
Ein Problem von, 171-1807 9. Juli 006 Gegeben sei das Dreieck ABC. Zeichne drei Kreise k 1, k, k im nneren von ABC, von denen jeder zwei Dreieckseiten und mindestens einen der übrigen zwei Kreise berührt
Fit für den Mathematik-Lehrgang? Teste dich selbst!
Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner
So viel wie möglich Extremwertaufgaben aus Geometrie
So viel wie möglich Extremwertaufgaben aus Geometrie Andreas Ulovec 1 Einführung Die meisten Leute sind mit Extremwertaufgaben vertraut: Was ist das flächengrößte Dreieck, das man in einen Kreis einschreiben
Satz des Pythagoras Lösung von Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA
Satz des Pythagoras Lösung von Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Länge x der Hypotenuse: Ansatz: x² = 8² + 15² x = 17 cm b ) Beispiel für den Nachweis der Rechtwinkligkeit:
Der optimale Platz im Theater
Aufgabenblatt 51, März 005 Der Neubau des Theaters der Stadt Göttingen hat einen Zuschauerraum mit dem Grundriss eines gleichseitigen Dreiecks mit Seitenlänge 50 Meter. Die Bühne befindet sich in der Mitte
Lösungen des Mathematik-Basis-Tests
FACHMITTELSCHULE GLARUS AUFNAHMETEST / 1. TEIL SEPTEMBER 2015 Lösungen des Mathematik-Basis-Tests 1. Schreibe folgende Grössen mit der in der Klammer angegebenen Einheit: a) 3.71 10 g=37.1 t b) 860 cm
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Übungsaufgaben Repetitionen
TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut
14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45
Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Wie stark ist das System? - Zwei Betrachtungen zur Trisektion des Winkels
Wie stark ist das System? - Zwei Betrachtungen zur Trisektion des Winkels Armin P. Barth Wenigstens teilweise ist die Mathematik mit dem Lösen von Schachproblemen vergleichbar: Eine erlaubte, konsistente
Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA
Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.
HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)
Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.
DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften
Didaktik der Geometrie
Jürgen Roth Didaktik der Geometrie Modul 5: Fachdidaktische Bereiche 3.1 Inhalt Didaktik der Geometrie 1 Ziele und Inhalte 2 Begriffsbildung 3 Konstruieren 4 Argumentieren und Beweisen 5 Problemlösen 6
Tag der Mathematik 2006
Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
1. Runde Aufgaben und Lösungen. Bundeswettbewerb Mathematik
Bundeswettbewerb Mathematik Wissenschaftszentrum Postfach 0 14 48 53144 Bonn Fon: 08-9 59 15-0 Fax: 08-9 59 15-9 e-mail: [email protected] www.bundeswettbewerb-mathematik.de Korrekturkommission
17 gleiche Ecken und Kanten mit Zirkel und Lineal
90 17 gleiche Ecken und Kanten mit Zirkel und Lineal Hans Vollmayr Nach zwei Jahrtausenden griechischer Geometrie war der junge Carl Friedrich Gauß der erste, dem es gelang, mit Zirkel und Lineal etwas
Übungen zum Verbessern der Raumvorstellung. Josef Molnár
ROMOTE MSc UIT DESCRITOR MATHEMATIK 3 Titel der Einheit Stoffgebiet ame und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Übungen zum Verbessern der Raumvorstellung Geometrie Josef Molnár
Kölner Mathematikturnier 2011 Das Turnierlogo
Kölner Mathematikturnier 2011 Das Turnierlogo Was sind denn das für komische Punkte im Turnierlogo?, fragt Ihr Euch sicherlich. Unser Turnierlogo stellt einee Visualisierung der Primzahlen in den Gaußschen
Seminar Galoistheorie
Seminar Galoistheorie Prof. M. Brodmann Konstruktion mit Zirkel und Lineal Judith Keller und Vesna Nikolic 20.Mai 2009 1 Einleitung Im letzen Teil des Seminars zur Galoistheorie geht es um die Lösbarkeit
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
Aufgabe S1 (4 Punkte)
Aufgabe S1 (4 Punkte) Gegeben sei die Folge a 1 = 3, a 2 = 5, die für n 3 durch fortgesetzt wird Berechnen Sie a 2014 Wir setzen die Folge fort: a n = a n 1 a n 2 n = 1 2 3 4 5 6 7 8 9 a n = 3 5 2 3 5
Goldener Schnitt Was war das große Geheimnis der Pythagoräer?
Das Pentagramm Der Drudenfuß Das Pentagramm war das Zeichen des Geheimbundes der Pythagoräer, und diese geheimnisvolle Figur gilt schon seit alters her als magisches Symbol. So fand es z.b. in früherer
September 2009 Der Kolumbus-Würfel Michael Schmitz
www.erfolgreicheslernen.de September 2009 Der Kolumbus-Würfel Michael Schmitz Zusammenfassung In dieser kleinen Abhandlung wird gezeigt, wie ein Würfel mit einer eingestülpten Ecke aus Modulen gefaltet
Materialien zur Mathematik II
Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
Polyeder, Konvexität, Platonische und archimedische Körper
Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Lernumgebung Hans Walser: Modul 206, Regelmäßige Vielecke. Lernumgebung ii Modul 206 für die Lehrveranstaltung Mathematik für
GEOMETRIE 1 3. Wiederholungsaufgaben
GEOMETRIE 3 Wiederholungsaufgaben GEOMETRIE 3 Inhaltsverzeichnis 0 Wiederholungsaufgaben 0. Grundlagen der Geometrie......................... 0.2 Geometrische bbildungen......................... 2 0.3
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik 0: Übersicht, Organisatorisches / 1. Anfänge Dirk Frettlöh Technische Fakultät 7.4.2015 Idee: Gesamtbild zeichnen. Dazu: Geschichte, Methoden, Meilensteine, Persönlichkeiten,
Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/
14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale
Didaktik der Zahlbereichserweiterungen
Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 5: Reelle Zahlen R 5.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3 Ganze
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik 2: Geschichte: Antike Dirk Frettlöh Technische Fakultät Recall: Bei den alten Griechen: erstmals Beweise (nicht nur Rechenanleitungen = Algorithmen). Themen: Geometrie
Station Gleichdicks. Hilfestellungen
Station Gleichdicks Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Gleichdicks. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls
Arbeitskreis Anwendungsorientierter Mathematikunterricht. Nicht anwendungsorientierter Mathematikunterricht" - Was ist das?
Gymnasium Neureut Dienstag, 16.11.2010 Arbeitskreis Anwendungsorientierter Mathematikunterricht Vortrag zu Nicht anwendungsorientierter Mathematikunterricht" - Was ist das? 1 2 = 1 2 2 = 0,7071...... ist
Definition. Wichtige Beziehungen. Geometrische Konstruktion
Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge
