Panorama der Mathematik und Informatik
|
|
|
- Stefanie Schulze
- vor 9 Jahren
- Abrufe
Transkript
1 Panorama der Mathematik und Informatik 0: Übersicht, Organisatorisches / 1. Anfänge Dirk Frettlöh Technische Fakultät
2 Idee: Gesamtbild zeichnen. Dazu: Geschichte, Methoden, Meilensteine, Persönlichkeiten, aktuelle Forschung... Plan: Geschichte: Antike, Mittelalter, Renaissance, Klassik, Moderne. Werk von Leibniz, Gödel, Turing, Knuth... Methoden: Im Laufe der Geschichte, heute Literatur, Publikationswesen, Recherche, L A TEX, wikipedia Meilensteine: ein paar ausgewählte Themen (google, jpeg, RSA, erzeugende Funktionen...) Aktuelle Forschungsthemen (auch) aus Bielefeld Mathe, Informatik und Kunst (Disclaimer: alles meine persönliche Sicht)
3 Anrechnung: Strukturierte Ergänzung, oder individuelle Ergänzung. 10 Leistungspunkte gibt s für Übungen: 50% sinnvoll bearbeiten, aktiv an Übungen teilnehmen, Lösungen präsentieren und Prüfung: mündlich (20-30 min) Übungen: alles ist erlaubt, google, wikipedia, brute-force Berechnungen,... Lösungen dürfen ergoogelt werden, sollen aber voll verstanden sein. Abgaben allein oder in Zweiergruppen. Prüfung: Idealerweise ein kenntnisreicher Dialog über hier behandelte Themen (Vorlesung und Übung) Prüfungsthemen: Folien, Verweise auf den Folien und Übungen, Videoaufzeichung Termine Tutorium.
4 Literatur: Hans Wußing: 6000 Jahre Mathematik (online über Unibib) Steven Levy: Hackers AK Dewdney: Computer-Kurzweil Andreas Loos, Günter M. Ziegler: Panorama der Mathematik (ab 2015) alles von Ian Stewart Wikipedia: deutsche und englische Seiten
5 1. Geschichte: Wie alles begann... Zählen: Notation für hohe Zahlen, Buchhaltung, Handel Geometrie: Messen, Bauen, Dekorieren Astronomie: Kalender, Ortsbestimmung Ägypten: Ganze Zahlen: Also etwa 335 =
6 Brüche: immer als 1 n (Teile eines Auges: ) Allgemeiner: Also z.b.
7 Ein Zeichen für nichts : Zusf. (Wußing, 6000 Jahre Mathematik ) Mathematische Methoden entstehen aus praktischen Bedürfnissen: Landvermessung, Bau von Pyramiden, Tempeln, Speichern, Bewässerungsanlagen, Abrechnungen von Lohn, Material, Abgaben. Die Methoden wurden als Handlungsanweisungen [Algorithmen!] anhand konkreter Beispiele mit Proben von staatlichen Schreibern ohne Begründung oder Beweis beschrieben. Arithmetik: Addition und Subtraktion, Multiplikation durch sukzessive Verdopplung des Multiplikanden, Division durch Verdopplung des Divisors; arithmetische Reihen: a + (a + b) + (a + 2b) +, endliche geometrische Reihen: a + a 2 + a 3 +
8 Algebra: Lineare Gleichungen: x + 4 = 10, rein quadratische Gleichungen: x 2 = a, Näherungen für Quadratwurzeln. Geometrie: Flächeninhalte von Rechteck, Dreieck und Trapez, Näherung für die Kreisfläche gemäß F = (8/9 d) 2 mit Durchmesser d; Volumina von Würfel, Quader und Zylinder, korrekte Formel für den Inhalt eines Pyramidenstumpfes. Ein paar erhaltene Papyrusschriften dienen als Quellen ( Rhind-Papyrus ) PR: 6000 Jahre Mathematik: Kap. 3 Kästen S. 121 und 142 wikipedia: ägyptische Zahlschrift
9 Mesopotamien: Algorithmen durch Beispiel Keilschrifttafel aus dem British Museum in London Ursprünglich 24 Probleme (einige zerstört) 2000 bis 1600 v. Chr. 11,7 cm 19,4 cm
10 Mesopotamien: Algorithmen durch Beispiel Tablet 13901, Problem 1 Ich habe die Fläche und eine Seite eines Quadrates addiert. 3 4 x 2 + x = 3 4 Nimm die Einheit 1. Teile sie in zwei; 1 2. Du multiplizierst 1 2 mit 1 2 ; 1 4. Du addierst 1 4 zu 3 4 ; 1. Das ist das Quadrat von 1. Du subtrahierst 1 2, das du multipliziert hast, von 1; 1 2, die Seite des Quadrates. ax 2 + bx = c b b 2 ( ) b 2 ( 2 c + b ) 2 2 c + ( ) b 2 2 c + ( ) b 2 2 b 2
11 Antikes Griechenland: die ersten Beweise Proclus Diadochus ( ) schreibt, Eudemus von Rhodos ( v.chr., Schüler von Aristoteles) schreibe, Thales von Milet ( v.chr.) habe folgendes gezeigt: Ein Kreis wird von seinem Durchmesser in zwei Hälften geteilt. Die Basiswinkel eines gleichschenkligen Dreiecks sind gleich. Die Winkel zwischen zwei sich schneidenden geraden Linien sind gleich. Zwei Dreiecke sind kongruent, wenn sie zwei gleiche Winkel und eine gleiche Seite besitzen.
12 Beweise: Geometrische Aussagen ( in allen Fällen gilt... s.o.) Aussagen über ganze Zahlen (s. unten, Übung 3) Korrektheit eines Algorithmus (Euklidischer Algor., s.u.) Existenzsätze (irrationale Zahlen, Dodekaeder) (s. Wußing Kap. 5) Beispiele: zu 1: Satz des Pythagoras, oder: in jedem Dreieck schneiden sich die Winkelhalbierenden in einem Punkt. Zu 2.: Reguläres n-eck für n = 4, 5, 6, 15, Winkelhalbierung, Winkeldrittelung (?!) Zu 3.: Eindeutige Primfaktorzerlegung, oder Existenz unendlich vieler Primzahlen Zu 4:? Zu 5.:
13 Satz: In einem regulären Fünfeck ist das Verhältnis der Längen der Seiten und der Diagonalen irrational. irrational: nicht von der Form p q, wobei p und q irgendwelche ganzen Zahlen sind. regulär: alle Seiten gleich lang, alle Innenwinkel gleich. b a
14 Wir brauchen: (Vereinbarung: Vollwinkel = 1) (A) Außenwinkel eines regulären n-ecks ist n (B) β α (B) α + β = 1 2 (C) (Winkelsumme im Dreieck) α + β + γ = 1 2 (D) a = b α = β (Thales!) (E) α = β a = b (F) Haben zwei Dreiecke die gleichen Seitenlängen, dann auch die gleichen Winkel. (C) β (D) & (E) a β α γ b α
15 1/5 3/10 2:(B) 1:(A) zu 2: 1 ( ) = 3 10
16 b 1/5 3/10 b 1/10 1/10 3 3:(C)&(D) 3: 10 +?+? = 1 2, also? = 1 10.
17 b 1/10 1/5 5 4:(F) b 1/10 1/10 4: Regelmäßiges Fünfeck, also Dreiecke gleich (F). 3 5: = 2 10 = 1 5.
18 b 1/5 1/10 b 1/10 1/5 1/10 7:(E) b 6:(C) c 8 1 6: ? = 1 2? = 1 5 8: c:=a-b
19 b b 9 d c 1/10 9: d:=b-c 10: Fünfeck regulär, also wie 3. 1/10 10
20 b b d c c 1/10 Und jetzt... 1/10
21 Angenommen, a b ist rational. Also können a und b als ganze Zahlen gewählt werden. In der Mitte des großen regulären Fünfecks ist nun ein kleines reguläres Fünfeck. Dessen Diagonale ist c, dessen Seite d. Also: a b = c d. Wir sahen: c = a b und d = b c. Also sind auch c und d ganze (positive!) Zahlen. Wir können das Spiel von oben beliebig oft wiederholen, mit immer kleineren und kleineren Fünfecken. Das liefert immer kleinere und kleinere Zahlen a > b > c > d > e > f > g > h > 0. Da alles ganze Zahlen sind, ist das unmöglich. Also muss unsere Annahme: a b ist rational falsch sein. Also ist a b irrational!
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik 2: Geschichte: Antike Dirk Frettlöh Technische Fakultät 9.4.2015 Bei den alten Griechen: erstmals Beweise (nicht nur Rechenanleitungen = Algorithmen). Themen: Geometrie
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen
Schularbeitsstoff zur 2. Schularbeit am
Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen
JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag
Bundestag Daniel hat für ein Politikreferat im Internet nach der Sitzverteilung im aktuellen 16. Bundestag recherchiert. Zurzeit regiert eine Koalition aus CDU/CSU und SPD. Vor der Wahl hat im 15. Bundestag
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Zahlen 25 = = 0.08
2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10
Klasse Mathematische Inhalte Kompetenzen Zeitvorgaben 5 1. Zahlen und Größen
auf der Basis des Kernlehrplans für das Fach an Lehrwerk: Lambacher Schweizer, für Gymnasien 5 1. Zahlen und Größen Darstellen - Strichlisten- Säulendiagramme - Große Zahlen - Größen messen und schätzen
Geometrie Satz des Pythagoras
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe:
Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist
7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d
1. Daten und Diagramme Beispiele / Veranschaulichung
1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Der Satz von Pythagoras
Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung
7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a
Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
Grundlagen Mathematik 7. Jahrgangsstufe
ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe
Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe
Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6
Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE LÖSUNGEN 1. a) L = { 9; 7; 7}, denn: x 2 49 = 0 oder x + 9 = 0 x 2 = 49 oder x = 9 b) L = {... ; 9; 8; 6; 5;... ; 5; 6; 8;...}, denn: x 2 49 >
Geschichte von Pythagoras
Satz von Pythagoras Inhalt Geschichte von Pythagoras Entdeckung des Satzes von Pythagoras Plimpton 322 Lehrsatz Beweise Kathetensatz und Höhensatz Pythagoreische Tripel Kosinussatz Anwendungen des Satzes
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:
Das Jahr der Mathematik
Das Jahr der Mathematik Eine mathematische Sammlung - kinderleicht Thomas Ferber Forschung und Lehre Sun Microsystems GmbH Die Themen 1 2 Sind die Zahlen universell? π-day 3 Die Eine Million $-Frage 4
Symmetrien und Winkel
Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild
Schulcurriculum Ludwig-Uhland-Gymnasium Mathematik Klasse 7 u. 8 Seite 1 von 5
Schulcurriculum Ludwig-Uhland-Gymnasium Mathematik 7 u. 8 Seite 1 von 5 Kapitel 7.1a: Mathematik in der Praxis: Prozentrechnen Dauer: ca. 15 h 7 Prozentrechnung Vertiefendes Üben Modellieren b Kapitel
Themenbereich: Besondere Dreiecke Seite 1 von 6
Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik 2: Geschichte: Antike Dirk Frettlöh Technische Fakultät Recall: Bei den alten Griechen: erstmals Beweise (nicht nur Rechenanleitungen = Algorithmen). Themen: Geometrie
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2010/2011 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L = { 1; 0; 1}, denn: x 2 < 36 25 5 6 < x < 6 5 b) L = {... ; 3; 2; 1}, denn: 1 4 x(9 25x2 ) > 0 Fall 1: x > 0 und (9 25x 2 ) >
Minimalziele Mathematik
Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen
Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik
Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen
π und die Quadratur des Kreises
π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am
Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei
Panorama der Mathematik und Informatik
Panorama der Mathematik und Informatik : Hilberts Probleme Dirk Frettlöh Technische Fakultät 8/60 : Hilberts Probleme Panorama der Mathematik und Informatik Eine sehr kurze Geschichte der Mathematik (aus:
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15
Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen
1 Längen (km m dm cm mm) umrechnen Längen (mm - µm nm) Zeitspannen (d h min s) umrechnen Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen Rauminhalte (m³ dm³ cm³ mm³) umrechnen Gewichte (t kg g mg) umrechnen
Gleichungen -- Textaufgaben Seite 1
Gleichungen -- Textaufgaben Seite 1 Beim Lösen von Textaufgaben dieser Art ist es sehr wichtig, den Textinhalt der Aufgabe richtig in Terme zu übersetzen. Teilweise ist es hilfreich, sich eine Skizze oder
Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17
Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:
Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7
Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse
8.5.1 Real Geometrie Viereck, Dreieck
8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Irrationale Zahlen. Drei einfache Beweise für die Irrationalität von Zahlen
Astrophysikalisches Institut Neunhof Mitteilung sd01311, Februar 2010 1 Irrationale Zahlen Drei einfache Beweise für die Irrationalität von Zahlen Übersicht Nach einer kurzen Überlegung im Abschnitt 1
Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q
Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen
Helmuth Gericke MATHEMATIK IN ANTIKE UND ORIENT. marixveriag
Helmuth Gericke MATHEMATIK IN ANTIKE UND ORIENT marixveriag Inhaltsverzeichnis 1. Vorgriechische Mathematik 1 1.1 Prähistorische Mathematik 1 1.1.1 Rechensteine 1 1.1.2 Geometrie 2 1.2 Darstellung der
Grundwissen. 5. Jahrgangsstufe. Mathematik
Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000
Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand
Heinrich-Mann-Gymnasium schulinterner Lehrplan Stand 04.09.2013 Mathematik Klasse 5 (Lehrbuch: Lambacher Schweizer, ausgehend von vier Wochenstunden, kursiv optional, Übungsmaterial kann aus den Servicebänden
ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein
Argumentieren/Kommunizieren
4 Wochen Geometrie Erfassen Grundbegriffe, Kreisfläche, Kreislinie, Radius, Mittelpunkt, Durchmesser kennen, benennen und differenzieren Benennungen beim Winkel, Scheitel, Beschriftungen Neben, Scheitel,
Inhalt. Vorwort Transzendente Zahlen Die geheimnisvollste Zahl Grenzwerte Wie viele transzendente Zahlen gibt es?
Inhalt Vorwort 7 1. Natürliche Zahlen 9 1.1 Zählen 9 1.2 Eigenschaften von Zahlen 11 1.3 Magische Quadrate 16 1.4 Primzahlen 19 1.5 Von Pythagoras zu Fermat 23 1.6 Was sind natürliche Zahlen? 27 1.7 Anwendung:
Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6
Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse
Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze
Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen
GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]
GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
(3r) r 2 =? xy 3y a + 6b 14. ( xy
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Neue Aufgabenformen in der Mathematik. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Neue Aufgabenformen in der Mathematik Das komplette Material finden Sie hier: School-Scout.de Thema: Neue Aufgabenformen in der Mathematik
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung
Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Lösungsvorschlag 2006/I,2: 1. Erläutern Sie die Beziehung zwischen gewöhnlichen Brüchen und Dezimalbrüchen. 2. Beschreiben
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Grundlagen für die Mittelstufe 7 1. SYMBOLE UND ZEICHEN DIE NATÜRLICHEN ZAHLEN N...19
Grundlagen für die Mittelstufe 7 Inhaltsverzeichnis 1. SYMBOLE UND ZEICHEN...17 2. DIE NATÜRLICHEN ZAHLEN N...19 2.1. Ziffernsysteme...19 2.1.1. Dekadisches Zehnersystem...19 2.1.1.1. Darstellung am Zahlenstrahl...20
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:
9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene
J Quadratwurzeln Reelle Zahlen
J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,
Die Konstruktion regulärer n-ecke
Die Konstruktion regulärer n-ecke Axel Schüler Grimma, 14. September 2007 Gliederung I. Die Quadratur des Kreises und das Delische Problem II. Die zwei Konstruktionsaufgaben III. Geschichtliches zum regulären
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
Mathematik Klasse 5/6 Lehrbuch: LOGO 5 und LOGO 6, C.C. Buchner Verlag, 1. Auflage, 2010
Im Mathematik-Bereich von Serlo findest du zusätzlich zu den nachfolgenden Links 930 Artikel, 20 Online-Kurse, 105 Videos und 5.000 mit Musterlösungen zu Schulmathematik komplett kostenlos: https://de.serlo.org/mathe
Passerelle Mathematik Frühling 2005 bis Herbst 2006
Passerelle Mathematik Frühling 2005 bis Herbst 2006 www.mathenachhilfe.ch [email protected] 079 703 72 08 Inhaltsverzeichnis 1 Algebra 3 1.1 Termumformungen..................................... 3
Brückenkurs Mathematik. Mittwoch Freitag
Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE
I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen
Fach Mathematik. Themen und Inhalte der Jahrgangsstufe 5 am Gymnasium Laurentianum
Fach Mathematik und der Jahrgangsstufe 5 am Gymnasium Natürliche Zahlen und Größen Rechnen mit natürlichen Zahlen Körper und Figuren Flächen- und Rauminhalte Anteile - Brüche Stellentafel; Zweiersystem;
Aufwärmübung 1 Lösungen
Aufwärmübung 1 1) Die Tabellen gehören zu direkt proportionalen Zuordnungen. Ergänze die fehlenden Werte. a) b) Weg in km Zeit in h Menge in kg Preis in 20 1 1_ 4 4 1_ 4 60 120 12 24 2) Vereinfache. (n
Mathematik für die Berufsfachschule
Didaktische Jahresplanung: Schule: Schnittpunkt Mathematik für die Berufsfachschule Lehrkraft: Klasse : Schuljahr: Bildungsplan für die Berufsfachschule in Baden-Württemberg; Zweijährige zur Prüfung der
Serie W1 Klasse 9 RS. 3. 5% von ,5 h = min. 1 und. 8. Stelle die Formel nach der Größe in der Klammer um. V = A G h (A g )
Serie W1 Klasse 9 RS 1. 1 1 + 2. -14(-3 + 5) 3 5 3. 5% von 600 4. 4,5 h = min 5. 4³ 6. Runde auf Tausender. 56508 7. Vergleiche (). 1 und 5 1 4 8. Stelle die Formel nach der Größe in der Klammer
Schulcurriculum für das Fach Mathematik
Evangelisches Gymnasium Siegen Schulcurriculum für das Fach Mathematik Unterrichtsinhalte der Jahrgangsstufe 5 1. Zahlen (Kapitel 1) Runden und Schätzen Große Zahlen Zahlen in Bildern 2. Größen (Kapitel
Geometrie Stereometrie
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.7 Geometrie Stereometrie Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausgabe: Juni 2009
Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1
Unterrichtsinhalte in der Jahrgangsstufe 5 Seite 1 Natürliche Zahlen o Zahlen sammeln und Darstellen (erstellen & lesen von Diagrammen) o Rechnen mit natürlichen Zahlen o Umgang mit Größen Symmetrie o
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
