Praktikum Schaltungen & Systeme
|
|
|
- Frauke Otto
- vor 9 Jahren
- Abrufe
Transkript
1 Fachhochschule Düsseldorf Fachbereich Elektrotechnik Praktikum Schaltungen & Systeme Versuch 4: Aufbau eines Gilbert-Modulators und Simulation im Betrieb als Down-Converter Prof. Dr. P. Pogatzki Dipl.-Ing. D. Spengler Name: Matr.-Nr.: Testat:
2 2. Einleitung Ergänzend zur Vorlesung soll in diesem Praktikumsversuch die Funktionsweise eines Gilbert- Modulators untersucht werden. Ziel dieses Versuches ist es, einige Eigenschaften eines selbst entworfenen Down-Converters mit Hilfe der Harmonic Balance Simulation für den Einsatz im DECT-Band (,8GHz) zu bestimmen. Diese Untersuchungen werden mittels des Simulations-Tools Advanced Design System, ADS, der Firma Agilent Technologies durchgeführt. In diesem Versuch werden sowohl DCals auch nichtlineare Harmonic-Balance Simulationen durchgeführt. Die Eingabe der Schaltung erfolgt grafisch mittels Schematic-Entry. Ein Ausschnitt eines derartigen Schaltplans ist im folgenden Bild dargestellt. Ausschnitt eines Schematic-Entry für Stromspiegel Um die grundlegenden Eigenschaften des Down-Converters untersuchen zu können, sind verschiedene Elemente für die Schaltungsbeschreibung notwendig. Die folgende Liste gibt eine sinnvolle Auswahl an Elementen für diese Aufgabe an. Eine genaue Beschreibung der einzelnen Elemente ist dem Online-Help von ADS zu entnehmen. 2
3 3 Name Schematic-Symbol Resistor Transformer Transformer BJT BJT-Model 3
4 4 Capacitor Port DC Simulation Harmonic-Balance Simulation V-DC I-nTone 4
5 5 Measurement Equation I-Probe Var 2. Versuchsvorbereitung Aufgabe: Entwerfen Sie eine Stromspiegelschaltung, die als Konstantstromquelle arbeiten soll. Die Speisespannung betrage 5 V bei einem Nennstrom von 2mA. Wie groß muß der Widerstand gewählt werden? Hinweis: Lesen Sie Kapitel 5. und 5.2 des Vorlesungsumdrucks! 3. Versuchsdurchführung 3. Aufbau des Stromspiegels Machen Sie sich mit der Benutzeroberfläche von ADS vertraut und geben Sie die Stromspiegelschaltung in ADS ein. Überprüfen Sie Ihren Entwurf, in dem Sie die Ströme durch die einzelnen Transistoren messen. Testen Sie die Schaltung für verschiedene Werte von R mittels eines Parametersweeps während einer DC-Simulation. Stellen Sie den Strom als Funktion des Widerstandes dar. Plotten Sie das Ergebnis! Falls Sie mit Ihrem Entwurf nicht zufrieden sind, optimieren Sie den Widerstand mit Hilfe der zuvor durchgeführten Simulationsergebnisse. Testen Sie die Funktionsweise der optimierten 5
6 6 Schaltung, in dem Sie nun die Kollektorspannung an dem Transistor variieren, der als Stromquelle wirken soll. Plotten Sie das Ergebnis. Welche Aussteuergrenzen ergeben sich? 3.2 Aufbau des Gilbert-Modulators Der Gilbert-Modulator besteht aus mehreren Differenzverstärkern. Das Schaltbild eines Differenzverstärkers ist unten dargestellt. I_Probe IC I_Probe IC2 SRC Vdc=Vb SRC3 Vdc=Vdiff/2 Q VAR VAR Vb =5 V VD =0.7 V Q2 I_DC SRC2 Idc=2*Io SRC4 Vdc= -Vdiff/2 Prinzip des Differenzverstärkers mit Bipolar-Transistoren und idealer Stromquelle mit 2*I 0 =2 ma Die Theorie des einfachen Differenzverstärkers finden Sie in Kapitel 6. der Vorlesung. Nachdem Sie nun mit ADS vertraut sind, können Sie beginnen, den Modulator zu entwerfen. Erweitern Sie den Stromspiegel um die 6 Transistoren des Mischers und verwenden Sie Lastwiderstände von jeweils 2500Ω. Der Mischer soll ebenfalls eine Speisespannung von 5V haben. Die Theorie des Gilbert-Modulators finden Sie in Kapitel 6.4 der Vorlesung. Welche Werte für die Basisspannungen ergeben sich dann sinnvollerweise mit den Erkenntnisse aus Unterpunkt 3.? Realisieren Sie die Basisspannungen mit geeigneten idealen Elementen von ADS und messen Sie die einzelnen Kollektorströme sowie Kollektorspannungen. 6
7 7 SRC Vdc=Ub V R R R=2500 Ohm R R2 R=2500 Ohm BJT_NPN BJT3 BJT_NPN BJT4 BJT_NPN BJT5 BJT_NPN BJT6 Port Uz Num=2 SRC4 Vdc=((Ux/2)+) V I_Probe IC I_Probe IC2 SRC6 Vdc=(-(Ux/2)+) V BJT_NPN BJT BJT_NPN BJT2 SRC3 Vdc=(Uy/2) V Stromspiegel aus UP3. SRC5 Vdc=(-Uy/2) V BJT_Model BJTM VAR VAR Ub =5 Ux=0 Uy=0 DC DC SweepVar="Ux" Start=-0. Stop=0. Step=0.00 Schaltbild eines (Gilbert-Modulator) bestehend aus 6 Transistoren, Ansteuerung des unteren Differenzverstärkers (BJT und BJT2) mit Uy, Ansteuerung der oberen Differenzverstärker (BJT3,BJT4 bzw. BJT5, BJT6) mit Ux, Ausgangssignal Zu 7
8 8 3.3 Gleichstromverhalten des Gilbert-Modulators Variieren Sie nun mittels eines Parametersweeps die Basisspannungen der beiden unteren Transistoren gegensinnig und führen Sie wieder die Messungen der Ströme und Spannungen durch. Stellen Sie nun wieder die Ausgangswerte für die Basisspannungen ein und variieren Sie mittels eines Parametersweeps die Basisspannungen der vier oberen Transistoren gegensinnig und führen Sie wieder die Messungen der Ströme und Spannungen durch. Welche Ergebnisse stellen sich ein? Erklären Sie die Resultate! Antwort: 3.4 Wechselstromverhalten des Mischers Erweitern Sie Ihre Schaltung derart, daß 2 Wechselsignale (oberer und unterer Zweig) mit Hilfe von Transformatoren eingespeist und das Ausgangssignal ausgekoppelt werden kann. Die Arbeitspunkte sollen nicht verändert werden. Versehen Sie Ihre Schaltung mit Ports (LO, RF und IF für den Ausgang) und speichern Sie die Schaltung unter dem Namen GilbertMischer ab. Generieren Sie nun ein eigenes Symbol für den GilbertMischer. Dazu gehen Sie über den Menu-Punkt View Create/Edit Schematic Symbol in den entsprechenden Editor und bestätigen die Vorgaben von ADS! 8
9 9 Aufruf des Symbol-Editors Sie erhalten nun automatisch das neue Symbol für Ihren Mischer. Mittels View Create/Edit Schematic Symbol gelangen Sie zurück ins Schematic! Automatisch generiertes Symbol im Symbol-Editor und Rückkehr in den Schematic-Editor Deaktivieren Sie nun das DC-Item im Schematic und speichern Sie die Schaltung ab. Öffnen Sie ein neues Schematic und laden Sie mittels Library-Component ihren Mischer. 9
10 0 Automatisch generiertes Symbol im Symbol-Editor und Rückkehr in den Schematic-Editor Beschalten Sie jetzt die Eingänge des Mischers mit Quellen unterschiedlicher Frequenz (890 MHz und 880 MHz) und Amplitude. Beschalten Sie den Ausgang des Mischers mit einem Lastwiderstand von 50 Ω und führen Sie eine Harmonic-Balance-Simulation durch (siehe übernächstes Bild). Die Harmonic-Balance ist ein spezielles Verfahren zur Berechnung nichtlinearer Schaltungen im Frequenzbereich. Dabei wird das Netzwerk in einen rein linearen Teil und in einen nichtlinearen Teil zerlegt. Mittels einer Fourier-Transformation (genauer: Entwicklung der unbekannten Ströme in eine Fourier-Reihe) werden die Ströme im nichtlinearen Schaltungsteil iterativ berechnet. Dazu müssen die Ordnung der Fourier-Reihe sowie die Grundfrequenzen der Eingangsignale vom Benutzer angegeben werden. Diese geschieht mit Hilfe des Harmonic-Balance-Items! 0
11 FFT Frequenzbereich Zeitbereich Lineares Netzwerk Transform. Quellen Virtuelle Quellen Nichtlineares Netzwerk (Y) I NL i NL (t) R C U_DC I x Diode V_Tone I Freq=*f 0 I 0 Freq=0 U x U =U r +ju i Freq=*f 0 V_Tone u NL (t) U 2 =U 2r +ju 2i Freq=2*f 0 V_Tone U n_harm =U n_harmr +ju n_harm Freq=n_harm*f V l ( 0) V 0 Prinzipschaltbild der Harmonic Balance Messen Sie das Spektrum am Ausgang des Mischers. Welche Amplitude hat das gewünschte Ausgangssignal, wenn beide Eingangssignale einen Wert von 0 dbm haben? Welche Komponenten entstehen noch? Stellen Sie dazu das Spektrum in Tabellenform dar! Führen Sie einen ParameterSweep durch, in dem Sie das Signal am Port RF von 40dBm bis -0 dbm in 2 db-schritten gemäß dem folgenden Bild variieren. Beachten Sie den Pegel des LO-Signals.
12 2 2 P_Tone PORT Num= Z=50 Ohm P=polar(dbmtow(P_LO),0) Freq=f_LO MHz 2 2 LO LO 3 RF IF RF IF P_Tone GilbertMischer PORT2 X Num=2 Z=50 Ohm P=polar(dbmtow(P_RF),0) Freq=f_RF MHz IF_out 2 R R R=50 Ohm HarmonicBalance HB Freq[]=f_LO MHz Freq[2]=f_RF MHz Order[]=4 Order[2]=4 HARMONIC Var Eqn VAR VAR f_rf=880 f_lo=890 P_RF=-0 P_LO=-0 Schematic für Harmonic-Balance-Simulation 2
13 3 2 P_Tone PORT Num= Z=50 Ohm P=polar(dbmtow(P_LO),0) Freq=f_LO MHz 2 LO RF 2 P_Tone GilbertMischer PORT2 X Num=2 Z=50 Ohm P=polar(dbmtow(P_RF),0) Freq=f_RF MHz LO RF IF 3 IF IF_out 2 R R R=50 Ohm HarmonicBalance HB Freq[]=f_LO MHz Freq[2]=f_RF MHz Order[]=4 Order[2]=4 HARMONIC PARAMETER ParamSweep Sweep SweepVar="P_RF" SimInstanceName[]="HB" SimInstanceName[2]= SimInstanceName[3]= SimInstanceName[4]= SimInstanceName[5]= SimInstanceName[6]= Start=-40 Stop=-0 Step=2 Var Eqn VAR VAR f_rf=880 f_lo=890 P_RF=-20 P_LO=0 Schematic für Harmonic-Balance-Simulation mit ParameterSweep Untersuchen Sie den Verlauf verschiedener Komponenten des Spektrums des Ausgangssignals! Verwenden Sie dazu die nachstehende Syntax! dbm(if_out[::,]) dbm(if_out[::,0]) dbm(if_out[::,]) m Element der Frequenzliste, nulltes Element=DC 0. Element der Frequenzliste Auswahl der Frequenzkomponenten. Element der Frequenzliste Was ist zu beobachten? Welche Steigungen haben die einzelnen Komponenten? 3
Praktikum Schaltungen & Systeme
Fachhochschule Düsseldorf Fachbereich Elektrotechnik Praktikum Schaltungen & Systeme Versuch 2: Untersuchung von Quarz-Oszillatoren mit ADS Prof. Dr. P. Pogatzki Dipl.-Ing. D. Spengler Name: Matr.-Nr.:
Fachhochschule Düsseldorf. Simulation der Eigenschaften eines CDMA- Systems mittels ADS
Fachhochschule Düsseldorf Fachbereich Elektrotechnik Simulation der Eigenschaften eines CDMA- Systems mittels ADS Prof. Dr. P. Pogatzki Name: Matr.-Nr.: Testat: 2 Einleitung Ziel dieses Versuches ist es,
Fachprüfung. Schaltungen & Systeme
Fachprüfung Schaltungen & Systeme 10. März 2011 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Name: Vorname: Matr.-Nr.: Unterschrift: Viel Erfolg!!! Punkte Aufgabe.1.2.3.4.5.6.7 Summe 1. 2.
Simulation eines Klasse-C-Verstärkers mittels ADS
University of Applied Sciences FH Aachen FB5 Elektrotechnik und Informationstechnik Mikrowellentechnik Simulation eines Klasse-C-Verstärkers mittels ADS 17. Januar 2011 Lehrgebiet Hoch- und Höchstfrequenztechnik
MWT Versuch 3. ADS-Simulation Verstärker F-Betrieb. von. Heinz Schuster
MWT Versuch 3 ADS-Simulation Verstärker F-Betrieb von Heinz Schuster Aachen, den 07.01.2012 1 VERSUCHSAUSWERTUNG In diesem Versuch werden mit Hilfe der Software Advanced Design System (ADS) Agilent die
Dioden Gleichrichtung und Stabilisierung
Fachbereich Elektrotechnik und Informatik Praktikum für Messtechnik u. Elektronik Semester: Prof. Dr.-Ing. Heckmann Name: Gruppe: Fach: BME, MME Matr. Nr.: Datum: Versuch 2 Testat: Dioden Gleichrichtung
Vortrag über die Bachelorarbeit
Vortrag über die Bachelorarbeit angefertigt von Mohamed Ahmed bei Prof. Dr.-Ing. K. Solbach Fachgebiet Hochfrequenztechnik an der Universität Duisburg-Essen Thema: Begrenzverstärker mit Polyphasen- Phasenschieber
HSD FB E I. Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik. Datum: WS/SS Gruppe: S Q. Teilnehmer Name Matr.-Nr.
HSD FB E I Hochschule Düsseldorf Fachbereich Elektro- und Informationstechnik Schaltungs-Praktikum bistabiler Multivibrator Datum: WS/SS 201.. Gruppe: S Teilnehmer Name Matr.-Nr. 1 2 3 Testat R verwendete
Labor Elektronik. Laborbericht zu Versuch: Transistorverstärker. Teilnehmer: ... (Author) Tong Cha (Mat.-Nr:...)
Labor Elektronik Laborbericht zu Versuch: Transistorverstärker Teilnehmer:... (Author) Tong Cha (Mat.-Nr:...) Datum der Simulation: 09.12.2008 Datum der Messung: 23.12.2008 Allgemeines: Labor Elektronik,...,
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Transistor- und Operationsverstärkerschaltungen
Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild
Messen mit dem Spektrumanalysator
ZHAW, EASP1 FS2012, 1 Messen mit dem Spektrumanalysator Einleitung Jedes periodische Signal lässt sich als Fourier-Reihe darstellen. Mit dem Spektrumanalyzer kann man die entsprechenden, einseitigen Amplitudenspektren
UNIVERSITÄT DUISBURG-ESSEN FAKULTÄT FÜR INGENIEURWISSENSCHAFTEN ABTEILUNG ELETROTECHNIK UND INFORMATIONSTECHNIK LEHRSTUHL FÜR HOCHFREQUENZTECHNIK
UNIVERSITÄT DUISBURG-ESSEN FAKULTÄT FÜR INGENIEURWISSENSCHAFTEN ABTEILUNG ELETROTECHNIK UND INFORMATIONSTECHNIK LEHRSTUHL FÜR HOCHFREQUENZTECHNIK Diplomarbeit Thema: DC Conversion Student: Minghui Wei
Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten
Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung
Simulation einer Mikrostreifenleitung mit Tiefpasscharakteristik. Khaoula Guennoun Torsten Finger Jan-Frederic Overbeck
Fachhochschule Aachen Master Telekommunikationstechnik Elektrotechnik und Informationstechnik Lehrgebiet: Hoch- und Höchstfrequenztechnik Prof. Dr. Ing. H. Heuermann Simulation einer Mikrostreifenleitung
Aufgaben zur Analogen Schaltungstechnik!
Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt Aufgaben Analoge Schaltungstechnik Prof. Dr. D. Ehrhardt 26.4.2017 Seite 1 Aufgaben zur Analogen Schaltungstechnik! Prof. Dr. D. Ehrhardt
5 Simulation analoger Schaltungen
Grundgebiete der Elektronik I, Bohn, Arndt 5.2-1 5 Simulation analoger Schaltungen 5.1 Aufgabe Bestimmung des Verhaltens analoger Schaltungen vor der teuren Umsetzung in Hardware. Werkzeuge: EDA-Tools
Grundlagen der Elektrotechnik 3. Übungsaufgaben
Campus Duisburg Grundlagen der Elektrotechnik 3 Nachrichtentechnische Systeme Prof. Dr.-Ing. Ingolf Willms Version Juli 08 Aufgabe 1: Man bestimme die Fourier-Reihenentwicklung für die folgende periodische
Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?
Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker
Übungen zur Elektrodynamik und Optik Übung 2: Der Differenzverstärker Oliver Neumann Sebastian Wilken 10. Mai 2006 Inhaltsverzeichnis 1 Eigenschaften des Differenzverstärkers 2 2 Verschiedene Verstärkerschaltungen
Prüfungsklausur. Elektronik II Halbleiterbauelemente , Uhr. Matrikel-Nummer:
niversität des Saarlandes Naturwissenschaftlich-Technische Fakultät II - Physik und Mechatronik - Lehrstuhl für Elektronik und Schaltungstechnik niv.-prof. Dr. A. Blum Prüfungsklausur Elektronik II Halbleiterbauelemente
Leitfaden für Transformator-Simulation mit LTSpice
Leitfaden für Transformator-Simulation mit LTSpice 1. Laden Sie die LTspice-Software herunter LTspiceXVII. 2. Die Software wird im Verzeichnis C: gespeichert. Sie können auch einen anderen Pfad wählen,
Der ideale Op-Amp 2. Roland Küng, 2009
Der ideale Op-Amp 2 Roland Küng, 2009 Reiew Reiew o f(, 2 ) L: o /2 + 2 Strom-Spannungswandler Photodiode liefert Strom proportional zur Lichtmenge Einfachstes Ersatzbild: Stromquelle V out -R 2 i in Anwendung:
HiFi-Leistungsverstärker
Universität des Saarlandes Lehrstuhl für Elektronik und Schaltungstechnik Mechatronisches Praktikum HiFi-Leistungsverstärker Skriptum zum mechatronischen Praktikum Sommersemester 2016 Saarbrücken, 2016
Praktikum: Schaltungstechnik II Vorlesung: Prof. Dr.-Ing. Matthias Viehmann
Fachbereich Ingenieurwissenschaften Institut für Informatik, Automatisierung und Elektronik Praktikum: Schaltungstechnik II Vorlesung: Prof. Dr.-Ing. Matthias Viehmann Versuch: ST II-3, 90 min Thema: Anwendungen
PROTOKOLL ZUM VERSUCH TRANSISTOR
PROTOKOLL ZUM VERSUCH TRANSISTOR CHRISTIAN PELTZ Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 1 2. Versuchsdurchführung 3 2.1. Transistorverstärker (bipolar) 3 2.2. Verstärker
Geschrieben von: Volker Lange-Janson Freitag, den 06. März 2015 um 16:26 Uhr - Aktualisiert Sonntag, den 08. März 2015 um 08:12 Uhr
Konstantstromquelle mit einem NPN-Transistor Diese Schaltung liefert einen konstanten Strom Ikonst, welcher durch RL fließt. Dabei spielt es in gewissen Grenzen keine Rolle, wie groß RL ist. Der Konstantstrom
Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten
Diplomprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Maschinenbau Zugelassene Hilfsmittel: alle eigenen Diplomprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Matr.-Nr.: Name, Vorname:
Experiment 4.1: Übertragungsfunktion eines Bandpasses
Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal
Versuch 3: Amplituden-Frequenzgang
Versuch 3: Amplituden-Frequenzgang Versuchsbeschreibung: Das Digitale Audio Analyse System DAAS 4 erlaubt es, mit nur zwei Messungen den Frequenzgang von Lautsprechern, Verstärkern oder Frequenzweichen
2.5.3 Innenwiderstand der Stromquelle
6 V UA(UE) 0. 1. 2. U E Abbildung 2.4: Kennlinie zu den Messwerten in Tabelle 2.1. 2.5.3 Innenwiderstand der Stromquelle Die LED des Optokopplers wird mittels Jumper kurzgeschlossen. Dadurch muss der Phototransistor
Analoge CMOS-Schaltungen. OTA -ein OpAmp für Kondensatorlast 1. Teil. Roland Pfeiffer 5. Vorlesung
Analoge CMOS-Schaltungen OTA -ein OpAmp für Kondensatorlast 1. Teil 5. Vorlesung Versorgung von Analogschaltungen Rückblick: Differenzverstärker Überführung in Differenzverstärker (genau: differentieller
AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG...
- 1 Inhaltsverzeichnis 1. EINFÜHRUNG...2 1.1 BESTIMMUNG DES MODULATIONSGRADS...3 1.1.1 Synchronisation auf die Modulationsfrequenz...4 1.1.2 Synchronisation auf die Trägerfrequenz...4 1.1.3 Das Modulationstrapez...4
Load-Pull-Messplatz zur Charakterisierung von Hochfrequenz- Bauteilen
Load-Pull-Messplatz zur Charakterisierung von Hochfrequenz- Bauteilen 1 Einführung Ein Load-Pull-Messplatz ermöglicht die Charakterisierung von Hochfrequenz-Bauteilen, die nicht an die Standard-Impedanz
Schaltungssimulation
Simulation von digitalen Schaltungen und Netzlisten 6. Digitale Analysen 7. Netzlisten 6.1 Bauteile in PSpice 6.2 Hybrid-Schaltungen 6.3 Digitale Signalquellen 6.4 Digitale Simulationen (Schaltungen, Darstellung,
Versuch 5.1a: Transistorverstärker und digitale Bauelemente
Versuch 5.1a: Transistorverstärker und digitale Bauelemente Ziel des Versuchs: Im ersten Teil des Versuchs wird eine einfache Spannungsverstärkerschaltung untersucht. Die Frequenzabhängigkeit der Spannungsverstärkung
Der Bipolar-Transistor und die Emitterschaltung Gruppe B412
TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch
Elektronischer Mischer
Elektronischer Mischer Hussein Sharaf Addin 3.11.2009 Überblick Einleitung Mischungsarten Verwendungsbereich Aufbau und Funktion (Additiver Mischer) Zusammenfassung Quellen Projektlabor 2 Einleitung Was
PSpice 1. Versuch 9 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik
Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme PSpice 1 Versuch 9 im Informationselektronischen Praktikum Studiengang
Kapitel 1. Kleinsignalparameter
Kapitel 1 Kleinsignalparameter Der Name analoge Schaltung drückt aus, dass das Ausgangssignal dieser Schaltung immer stufenlos dem Eingangssignal folgt, d. h. in irgendeiner Form eine Proportionalität
Prof. Dr.-Ing. Rainer Ose Elektrotechnik für Ingenieure Grundlagen 4. Auflage, Lösung der Übungsaufgabe ÜA_1_6.4.B:
Prof. Dr.-ng. Rainer Ose Elektrotechnik für ngenieure Grundlagen 4. Auflage, 2008 Fachhochschule Braunschweig/Wolfenbüttel -niversity of Applied Sciences- Lösung der Übungsaufgabe ÜA_1_6.4.B: Für die Glühlampe
RC - Breitbandverstärker
Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 5 RC - Breitbandverstärker Protokollant: Jens Bernheiden Gruppe: 2 Aufgabe durchgeführt: 30.04.1997 Protokoll
Bipolartransistoren. Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 2
Versuch 2 Bipolartransistoren 1. Einleitung In diesem Versuch werden zunächst die elementaren Eigenschaften bipolarer Transistoren untersucht. Anschließend erfolgt ihr Einsatz in einigen Verstärker- Grundschaltungen.
3. Laboreinheit - Hardwarepraktikum SS 2003
3. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Operationsverstärker als Nichtinvertierender Verstärker Stellen Sie die Gleichungen zur Berechnung der Widerstände in der dargestellten Schaltung
Digitaltechnik Laborversuch 1. Bitmustererkennung. Wichtige Informationen
Digitaltechnik Laborversuch Bitmustererkennung Name: vereinbarter Termin ter Termin 3ter Termin (Ausnahme) Nachgespräch Matr.-Nr.: Datum Test Versuchsdurchführung Anmerkung Unterschrift Wichtige Informationen
Unterschrift: Hörsaal: Platz-Nr.:
FH München FK 3 Maschinenbau Diplomprüfung Elektronik SS 8 Mittwoch 6.7.8 Prof. Dr. Höcht Zugelassene Hilfsmittel: Alle eigenen Dauer der Prüfung: 9 Minuten Name: Vorname: Sem.: nterschrift: Hörsaal: Platz-Nr.:
Anleitung Laborpraktikum VLSI-Technik: Versuch 3 / Verhalten des realen IC
Anleitung Laborpraktikum VLSI-Technik: Versuch 3 / Verhalten des realen IC Inhalt 1. Einleitung... 1 2. Erstellen eines Inverters... 1 3. Erstellen eines Blockes / Modules... 14 4. Bau eines komplexen
Elektrotechnik-Grundlagen Teil 2 Messtechnik
Version 1.0 2005 Christoph Neuß Inhalt 1. ZIEL DER VORLESUNG...3 2. ALLGEMEINE HINWEISE ZU MESSAUFBAUTEN...3 3. MESSUNG ELEMENTARER GRÖßEN...3 3.1 GLEICHSTROMMESSUNG...3 3.2 WECHSELSTROMMESSUNG...4 4.
Transistor BJT I. Roland Küng, 2009
Transistor BJT I Roland Küng, 2009 Aufbau-Bezeichnungen Typ NPN Typ PNP Aufbau Praktisch Typ NPN B Schicht dünn E Schicht hoch dotiert (viel Phosphor bei n, Bor bei p) B E C Funktionsweise I E hoch dotiert
DV Anwendungen WS 2013/14
Klausur DV Anwendungen WS 2013/14 Name: Vorname: Matrikelnr.: Account: Aufgabe 1 2 3 4 5 Summe Mögliche Punkte 10 10 10 10 10 50 Erreichte Punkte Note Hinweise: Klausurdauer: ca. 60 Minuten Erlaubte Hilfsmittel:
W2000A Huckepackplatine v1.0
W2000A Huckepackplatine v1.0 Nach anfänglichen Schwierigkeiten die Huckepack-Platine in Betrieb zu nehmen (Schwingungen auf der +1.25V Spannungsversorgung), gelangen die nachfolgenden Messungen am 14.03.2010.
NANO III. Operationen-Verstärker 1. Eigenschaften Schaltungen verstehen Anwendungen
NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = 0 Maschenregel Σ ( ) = 0 Ersatzquellen Überlagerungsprinzip
Sommersemester Elektronik / Mikroprozessortechnik Dauer: 90 Minuten
Diplomprüfung im Studiengang MB Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen Sommersemester 2013 Elektronik / Mikroprozessortechnik Dauer: 90 Minuten Matr.-Nr.: Name,
Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten.
1. Beispiel: Kleinsignalschalter/Diodenarbeitspunkt (33Punkte) Die gegebene Schaltung kann dazu verwendet werden um kleine Wechselspannungen zu schalten. Gegeben: Boltzmann-Konstante: k=1.38*10-23 J/K
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
18.2.08 PHYSIKALISHES PRAKTIKM FÜR ANFÄNGER LGyGe Versuch: E 8 - Transistor 1. Grundlagen pnp- bzw. npn-übergang; Ströme im und Spannungen am Transistor, insbesondere Strom- und Spannungsverstärkung; Grundschaltungen,
PSpice 2. Versuch 10 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik
Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme PSpice Versuch 10 im Informationselektronischen Praktikum Studiengang
Vordiplomprüfung Grundlagen der Elektrotechnik III
Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung
Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten
Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter
Analoge CMOS-Schaltungen
Analoge CMOS-Schaltungen Von dem Großsignalschaltbild (Transienten-Analyse) zum Kleinsignalersatzschaltbild (AC-Analyse) 2. Vorlesung Schaltungen: analog Schaltungen: analog Analoge (Verstärker-)Schaltungen
3. Schaltungsentwicklung - Beispiel Taschenlichtorgel
3. - Beispiel Taschenlichtorgel Anforderungen: Drei farbige LEDs, Mikrofoneingang, Empfindlichkeitseinstellung, kleines Format, geringe Betriebsspannung und Leistung, geringster Material- und Arbeitsaufwand.
Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren
PraktikantIn 1 Matrikelnr: PraktikantIn 2 Matrikelnr: Datum: Aufgabe 2 durchgeführt: Aufgabe 3 durchgeführt: Aufgabe 4a durchgeführt: Aufgabe 4b durchgeführt: Aufgabe 4c durchgeführt: Aufgabe 4d durchgeführt:
Analoge CMOS-Schaltungen. Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil. Roland Pfeiffer 7. Vorlesung
Analoge CMOS-Schaltungen Miller Operationsverstärker -ein OpAmp für Widerstandslast 1. Teil 7. Vorlesung Operational Transconductance Amplifier OTA Rückblick: Differenzverstärker OTA (genau: OTA mit NMOS-Eingangsstufe
Analoge CMOS-Schaltungen
Analoge CMOS-Schaltungen PSPICE: Optimizer zur Schaltungs-Optimierung 21. Vorlesung Was ist "Optimizer"? -Schaltungs-Optimierungsprogramm -einer oder mehrere Ziel(Goal)-Funktionen -einer oder mehrere Parameter
REFERAT. AppCAD. Marouane Hilal 24.januar 2007
REFERAT AppCAD Marouane Hilal 24.januar 2007 Was ist AppCAD? -AppCAD ist ein bedienungsfreundliches Programm, das Sie mit einer einzigartigen Reihen der Rf Designwerkzeuge und der automatisierten Anwendung
Versuch 7 Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digital-Oszilloskop (Direct I/O)
Fachhochschule Merseburg FB Informatik und Angewandte Naturwissenschaften Praktikum Messtechnik Versuch 7 Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digital-Oszilloskop (Direct I/O) Agilent
Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski. Transistor. Eigenschaften einstufiger Transistor-Grundschaltungen
Mathias Arbeiter 28. April 2006 Betreuer: Herr Bojarski Transistor Eigenschaften einstufiger Transistor-Grundschaltungen Inhaltsverzeichnis 1 Transistorverstärker - Bipolar 3 1.1 Dimensionierung / Einstellung
Signal- und Rauschanalyse mit Quellenverschiebung
Albrecht Zwick Jochen Zwick Xuan Phuc Nguyen Signal- und Rauschanalyse mit Quellenverschiebung Elektronische Schaltungen grafisch gelöst ^ Springer Vi eweg Inhaltsverzeichnis 1 Rauschen in elektronischen
Mathias Arbeiter 09. Juni 2006 Betreuer: Herr Bojarski. Regelschaltungen. Sprungantwort und Verhalten von Regelstrecken
Mathias Arbeiter 09. Juni 2006 Betreuer: Herr Bojarski Regelschaltungen Sprungantwort und Verhalten von Regelstrecken Inhaltsverzeichnis 1 Sprungantwort von Reglern 3 1.1 Reglertypen............................................
Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker
Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss
Diplomarbeit. FIR-Filter für Ultra Wide Bandwidth Beamformer
Diplomarbeit FIR-Filter für Ultra Wide Bandwidth Beamformer Guido Joormann Universität Duisburg-Essen - Hochfrequenztechnik Prof. Dr.-Ing. K. Solbach G. Joormann FIR-Filter für Ultra Wide Bandwidth Beamformer,
Praktikum Grundlagen der Elektrotechnik
Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Lehrgruppe Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1. Versuchsbezeichnung GET 10: Fourieranalyse
Elektrotechnik Protokoll - Nichtlineare Widerstände
Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine
Verstärker in Kollektor-Schaltung
Verstärker in Kollektor-Schaltung Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 16.12.2002 Samuel Benz Inhaltsverzeichnis
4. Analysearten, grafische Darstellung der Ergebnisse
4. Analysearten, grafische Darstellung der Ergebnisse AC-Sweep-Analysen (mit Druckern) AC-Sweep-Analysen (mit Probe) Unterschied: DC/AC/Transienten Analyse Transientenanalysen Spannungs- (Strom-) Quellen
Serie 5: Operationsverstärker 2 26./
Elektronikpraktikum - SS 204 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-43 (Anfängerpraktikum). Stock, Raum 430 Serie 5: Operationsverstärker 2 26./27.06.204 I. Ziel der Versuche Aufbau und
3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung
1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung
Klausur: TI I Grundlagen der Technischen Informatik
Klausur: TI I Grundlagen der Technischen Informatik Wintersemester 2007/2008 1.Bipolarer Transistor Die Verstärkerschaltung soll mit dem im Kennlinienfeld dargestellten Arbeitspunkt konfiguriert werden.
Operationsverstärker
Versuch 4 Operationsverstärker 1. Einleitung In diesem Versuch sollen Sie einige Anwendungen von Operationsverstärkern (OPV) untersuchen. Gleichzeitig sollen Sie erlernen, im Schaltungseinsatz ihre typischen
Verstärker in Emitter-Schaltung
Verstärker in Emitter-Schaltung Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 2.12.2002 Samuel Benz Inhaltsverzeichnis 1
Transistorkennlinien und -schaltungen
ELS-44-1 Transistorkennlinien und -schaltungen 1 Vorbereitung 1.1 Grundlagen der Halbleiterphysik Lit.: Anhang zu Versuch 27 1.2 p-n-gleichrichter Lit.: Kittel (14. Auflage), Einführung in die Festkörperphysik
Institut für Mikrosystemtechnik. Prof. Dr. D. Ehrhardt. Bauelemente und Schaltungstechnik,
Feldeffekttransistoren 1 JFET Sperrschicht - FET (Junction FET) Sperrschicht breitet sich mit Ansteuerung in den Kanal aus und sperrt diesen Es gibt zwei Arten n-kanal, p-kanal 2 JFET Schaltzeichen 3 Das
Funktionsgenerator. Amplitudenmodulation (AM), Frequenzmodulation (FM), Pulsmodulation (PM) und spannungsgesteuerter
Funktionsgenerator Zur Beschreibung von Signalquellen sind verschiedene Bezeichnungen gebräuchlich, z.b. Signalgenerator, Funktionsgenerator, Pulsgenerator oder Waveformgenerator. Durch diese Unterteilung
Komplexe Zahlen und ihre Anwendung in der Elektrotechnik
Praktikum für die Schüler der BOB Rosenheim im Rahmen des Workshops Komplexe Zahlen und ihre Anwendung in der Elektrotechnik SCHALTUNG 1 I ein Gegeben ist die Reihenschaltung eines Widerstandes R 10 k
Laborübung Gegentaktendstufe Teil 1
Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers
Praktikum Versuch Bauelemente. Versuch Bauelemente
1 Allgemeines Seite 1 1.1 Grundlagen 1.1.1 db-echnung Da in der Elektrotechnik häufig mit sehr großen oder sehr kleinen Werten gerechnet wird, benutzt man für diese vorzugsweise die logarithmische Darstellung.
ELEXBO A-Car-Engineering
1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben
0 bis. 62,5MHz 1. NQZ 2. NQZ 3. NQZ
Red Pitaya als SHF Nachsetzer oder als m Transceiver Bedingt durch die Abtastfrequenz des RP vonn 5MHz ergeben sich folgende f Nyquistzonen:. NQZ. NQZ. NQZ bis 6,5MHz 6,5 bis 5MHzz 5 bis 87,5MHz Der Frequenzbereich
Halbleiterbauelemente
Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................
Kennenlernen der Laborgeräte und des Experimentier-Boards
Kennenlernen der Laborgeräte und des Experimentier-Boards 1 Zielstellung des Versuches In diesem Praktikumsversuch werden Sie mit den eingesetzten Laborgeräten vertraut gemacht. Es werden verschiedene
Analoge CMOS-Schaltungen
Analoge CMOS-Schaltungen Versorgung von Analogschaltungen 4. Vorlesung Rückblick -Einfluß der Versorgungsspannung -Beispiel: MOS-R-Inverter -PSPICE-Simulationen -Lösung: differentieller Aufbau -zusätzliche
Einführungsveranstaltung Grundlagen der Praktika
Einführungsveranstaltung Grundlagen der Praktika Dipl.-Ing. (FH) Sven Slawinski, Dipl.-Ing. (FH) Denny Ehrler [email protected] Tel.: +49 (0) 375 536 1405 [email protected] Tel.: +49
P2-61: Operationsverstärker
Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Vorbereitung Matthias Ernst Matthias Faulhaber Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker (gleichstromgegengekoppelt)
Aufgabe E1: Aufgabe E2: Aufgabe E3: Fachhochschule Aachen Lehrgebiet Flugzeug- Elektrik und Elektronik Prof. Dr. G. Schmitz
Aufgabe E1: Gegeben sei eine Leuchtdiode (LED), die an einer Gleichspannung von 3V betrieben werden soll. Dabei soll sich ein Strom von 10mA einstellen. a) erechnen Sie den erforderlichen Vorwiderstand,
Gruppe: 1/10 Versuch: C PRAKTIKUM SCHALTUNGSTECHNIK VERSUCH C. Differenzverstärker. Versuchsdatum: Teilnehmer:
Gruppe: 1/10 Versuch: C PRAKTIKM SCHALTNGSTECHNIK VERSCH C Differenzverstärker Versuchsdatum: 14.06.2006 Teilnehmer: 1. Vorbereitung 1.1 Definitionen Grossignalverhalten des idealen Differenzverstärkers
