Chemie mit. Christoph E. Düllmann
|
|
|
- Matilde Schuler
- vor 9 Jahren
- Abrufe
Transkript
1 Chemie mit einem Atom Christoph E. Düllmann Johannes Gutenberg-Universiät Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt Helmholtz-Institut Mainz Physik am Samstagmorgen MPI für Kernphysik, Heidelberg, 14. Januar 2012
2 Was ist Chemie?
3 Was ist Chemie? Duden: Lehre von den Stoffen und ihren Verbindungen. Wikipedia: Die Chemie ist eine Naturwissenschaft, in der der Aufbau, die Eigenschaften und die Umwandlung von Substanzen (d.h. Elemente und Verbindungen) untersucht werden. Insbesondere werden in der Chemie Vorgänge untersucht, die in der Elektronenhülle von Atomen stattfinden. Mortimer (Lehrbuch der Chemie): Chemie ist die Wissenschaft, die sich mit der Charakterisierung, Zusammensetzung und Umwandlung von Stoffen befasst.
4 Das Periodensystem der Elemente H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn " Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn --- (Fl) --- (Lv) * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu " Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
5 Das Periodensystem der Elemente H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn " Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn --- (Fl) --- (Lv) * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu " Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
6 Der Aufbau der Atome Proton Neutron Elektron Kern Elektronenhülle Protonenzahl (Ordnungszahl): Z Neutronenzahl: N In Wirklichkeit: Kern ~10 000x kleiner Massezahl: N+Z A als das ganze Atom!
7 Der Aufbau der Atome Proton Neutron Elektron Kern Elektronenhülle Chemie Protonenzahl (Ordnungszahl): Z Neutronenzahl: N In Wirklichkeit: Kern ~10 000x kleiner Massezahl: N+Z A als das ganze Atom!
8 Das Periodensystem der Elemente H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Superschwere Elemente ( 104) * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn " Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn --- (Fl) --- (Lv) * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu " Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Alle künstlichen Elemente zerfallen: Die Atomkerne ihrer Atome sind instabil / radioaktiv
9 Halbwertszeiten der langlebigsten bekannten Isotope der Elemente mit Z 90 1 Mio. a ] T /2 [s 1/ 1 a 1 d 1 s Superschwere Elemente ( 104) Z Beispiel: Element 114 Je schwerer die Atome, desto kurzlebiger sind sie. Elemente jenseits des Urans (Z=92) existieren nicht in der Natur
10 Künstliche Produktion schwerer Elemente Beispiel: Ca Pu n 48 Ca 244 Pu FUSION * Projektile auf Target Atom
11 "Elementsyntese" auf YouTube
12 Wo kann man superschwere ere Elemente produzieren?
13 GSI Helmholtzzentrum für Schwerionenforschung Mitarbeiter: Externe Wissenschaftler: 1000 Großgeräte: Beschleuniger und Experimente
14 Schwerionenbeschleuniger bei GSI UNIversal Linear ACcelerator UNILAC Ionenquelle Terminal Nord MEVVA or MUCIS Ionenquelle Terminal Süd PIG
15 Der Linearbeschleuniger Beschleunigungsprinzip g p _ GSI Öffentlichkeitsarbeit
16 Rc
17 Rc 1505; 2f18
18 Rc 259; 2f11
19 GSI heute UNILAC SIS 18 FAIR SIS 100/300 ESR CBM Super HESR FRS 100 m RES RCR PP / AP NES R FLAIR FAIR: Höhere Energie Höhere Intensität Antiprotonen GSI Helmholtzzentrum für Schwerionenforschung mbh Facility for Antiproton and Ion Research...
20 Schwerelementeforschung an der GSI ECR + UNILAC Stabile Targets SHIP SHIPTRAP Strahl Actiniden Targets TASCA TASISpec Chemie Chemie Theorie
21 Produktion und Isolation von Element 114 Strahl Gas: He+Ar TASCA TransActinide Separator and Chemistry Apparatus Target Zur Chemieapparatur COMPACT
22 ...
23 ... Targetkammer Seitenansicht 48Ca-Strahl Ch.E. Düllmann Superheavy element research at GSI TAN'11 Sochi, Russia September 05-11, 2011
24 ... Targetkammer Seitenansicht 48Ca-Strahl Ch.E. Düllmann Superheavy element research at GSI TAN'11 Sochi, Russia September 05-11, 2011
25 Wie untersucht man chemische Eigenschaften eines einzelnen Atoms?
26 Trends im Periodensystem us Ato omradi Ionisationsenergie H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn " Fr Ra Ac Rf Db Sg Bh Hs Cn Mt Ds Rg * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu " Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Atomradius nergie Ionisa ationse
27 Alkalimetalle Trends im Periodensystem 14. Gruppe Edelgase H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn " Fr Ra Ac Rf Db Sg Bh Hs Cn Mt Ds Rg * Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu " Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Grundprinzip: p Elemente in derselben Gruppe zeigen ähnliches chemisches Verhalten
28 Trends im Periodensystem Flüchtigkeit: Die Sublimationsenhalpie Sublimationsenthalpie B. Eichler, Kernenergie 19 (1976) 307 Element 114 sollte sehr leichtflüchtig sein! Ist es noch metallisch, oder schon edelgasähnlich?
29 Chemisches Gleichgewicht zwischen zwei Zuständen Makromenge 10 ~20 Atome Mikromenge 1 Atom Konz. 1 klein Konz. 2 gross K C [X] [X] 1 2 Konz. 1 0 oder 1 Konz. 2 1 oder 0
30 Chemie mit einzelnen Atomen Mikromenge 1 Atom W'keit. Konz. 1 0 klein oder 1 W'keit. Konz. 2 1 gross oder 0 J.P. Guillaumont et al., Radiochim. Acta 46 (1989) 169: 'Kinetic and thermodynamic aspects of tracer- scale and single atom chemistry' Konzentrationen Wahrscheinlichkeiten ist korrekt!
31 Chromatographische Methoden: Gasphasenchemie Laminarer Gasfluss Chromatographiekolonne Molekül in Zustand 1 (adsorbiert) Molekül in Zustand 2 (Gasphase) kein Transport Transport "Sitzzeit" an Oberfläche bestimmt Flugzeit durch Kolonne Verweildauer hängt ab von: Flüchtigkeit und Kolonnentemperatur
32 Gaschemie: Messen der Bindungsstärke 'Atom Oberfläche' Tempera atur [ C] Gasfluss Kolonnenlänge [cm] Temperat tur [ C] Gasfluss Kolonnenlänge lä [cm] Bei starker T a Wechselwirkung: Atom "sitzt" auf Oberfläche und zerfällt dort hoch Temperatur [ C] tief Rel. Ausbe eute [%]
33 TransActinide Separator and Chemistry Apparatus TASCA TASCA COMPACT 2 Konfiguration für das Studium der Chemie von Element 114 Element 114 Trajectory
34 TransActinide Separator and Chemistry Apparatus TASCA TASCA COMPACT 2 Konfiguration für das Studium der Chemie von Element 114 Element 114 Trajectory COMPACT I Isotherme Chromatographie (IC) Metalle (z.b. Pb; Hg) +21 C COMPACT II Thermochromatographie (TC) Cn Rn C -162 C
35 Experimenteller Aufbau: IC + TC COMPACT TASCA RTC COMPACT I (@ room temp) COMPACT COMPACT II (+21 to 160 C) A. Yakushev, 2010
36 Aktuelle theoretische Vorhersagen: Element 114 auf Goldoberfläche Cluster M n Au Top Hohlraum Eingebettete Cluster MAu n Au m Ad-atom Cluster Umgebung n=14 n=9 Brücke n = 16 n = m = 156 Vergrössern des Au-Clusters, bis das Ergebnis nicht mehr von der Grösse abhängt Vorhersage: Element 114 bildet Metallbindungen! Ist kein Edelgas! V. Pershina, "Electronic Structure and Chemistry of the Heaviest Elements" in Relativistic Methods for Chemists; Eds: Leszczynski/Ishikawa; Springer (2010) 451
37 TASCA Die Element 114 Chemie-Kollaboration TU Munich (D) A. Yakushev (Sprecher) J.M. Gates, A. Gorshkov, R. Graeger, A. Türler GSI Darmstadt (D) D. Ackermann, M. Block, W. Brüchle, Ch.E. Düllmann, H. Essel, J.M. Gates, W. Hartmann, F.P. Heßberger, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, B. Lommel, J. Runke, M. Schädel, B. Schausten, E. Schimpf, J. Steiner Univ. Mainz (D) HIM Mainz (D) Univ. Liverpool (UK) Ch.E. Düllmann, K. Eberhardt, M. Eibach, J. Even, D. Hild, J.V. Kratz, L.J. Niewisch, P. Thörle-Pospiech, N. Wiehl Ch.E. Düllmann, F.P. Heßberger L.-L. Andersson, R.-D. Herzberg, E. Parr LBNL/UC Berkeley (USA) J. Dvorak, H. Nitsche Univ. Lund (S) Univ. Oslo (N) IMP Lanzhou (PRC) U Jyväskylä ITE Warsaw (PL) U. Forsberg, D. Rudolph J.P. Omtvedt, A. Semchenkov Z. Qin J. Uusitalo M. Wegrzecki
38 Produktion von Element Pu( 48 Ca,3-4n) SF s s s s s Ds 277 Ds Cn 281 Cn 0.1 s Cn Cn 0.1ms 279 Ds 283 Cn 3.8 s SF 0.1 s 281 Ds Ds 6 ms 0.2 s 13 s SF N 29 s Signatur für Element 114: -SF - -SF Ketten
39 Das Experiment an der GSI -Dauer: 34 Tage (Rund um die Uhr) Ca-Ionen vom Beschleuniger auf das Target -Publikation mit 46 Coautoren aus 12 Forschungs- zentren in 8 Ländern in Vorbereitung Resultat: Beobachtung von 2 Atomen von Element 114 Experiment erfolgreich!
40 Ausblick der nächste Schritt für 114 Chemie Trennung von Pb und Hg with COMPACT 3 Ist E114 reaktiv genug, um auf SiO 2 (Quarz) zu adsorbieren? E114? E114? (falls reaktiv mit SiO 2 ) (falls nicht reaktiv mit SiO 2 ) Pb Hg Cn Rn SiO 2 Raumtemperatur (IC) Gold Raumtemperatur (IC) Gold Temperaturgradient bis C C(TC)
41 Zusammenfassung Elemente jenseits des Urans können künstlich erzeugt werden Sind radioaktiv, werden immer kurzlebiger, je grösser Z Superschwere Elemente: nur einzelne Atome Chemieexperimente: Gaschromatographie Element 114: Vorhersagen für Metall Edelgas Experiment (1 Monat): Beobachtung von 2 Atomen Resultat: Element 114 ist metallisch Offene Frage: eher Quecksilber- oder Blei-ähnlich?
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 92 Grundlagen der Allgemeinen und Anorganischen Chemie 3. Das Periodensystem der Elemente 93
Periodensystem. Physik und Chemie. Sprachkompendium und einfache Regeln
Periodensystem Physik und Chemie Sprachkompendium und einfache Regeln 1 Begriffe Das (neutrale) Wasserstoffatom kann völlig durchgerechnet werden. Alle anderen Atome nicht; ein dermaßen komplexes System
Trace Analysis of Surfaces
Trace Analysis of Surfaces Metall-Spurenanalyse auf Oberflächen mittels VPD- Verfahren Babett Viete-Wünsche 2 Das Unternehmen Unser Serviceportofolio Die VPD-Analyse 3 Das Unternehmen: 4 Einige unserer
5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5.
5. Periodensystem der Elemente 5.1. Aufbauprinzip 5.2. Geschichte des Periodensystems 5.3. Ionisierungsenergie 5.4. Elektronenaffinität 5.5. Atomradien 5.6. Atomvolumina 5.7. Dichte der Elemente 5.8. Schmelzpunkte
Periodensystem der Elemente
Periodensystem der Elemente 1829: Döbereiner, Dreiergruppen von Elementen mit ähnlichen Eigenschaften & Zusammenhang bei Atomgewicht Gesetz der Triaden 1863: Newlands, Ordnung der Elemente nach steigender
H Wasserstoff. O Sauerstoff
He Helium Ordnungszahl 2 Atommasse 31,8 268,9 269,7 0,126 1,25 H Wasserstoff Ordnungszahl 1 Atommasse 14,1 252,7 259,2 2,1 7,14 1 3,45 1,38 Li Lithium Ordnungszahl 3 Atommasse 13,1 1330 180,5 1,0 0,53
zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe
BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemeines Voraussetzungen
zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 Voraussetzungen für die Freigabe
BGBl. II - Ausgegeben am 22. Mai 2006 - Nr. 191 1 von 148 Anlage 1 zu 6 Abs. 1, 8 Abs. 1, 19 Abs. 1, 61 Abs. 1 und 4, 62 Abs. 6, 63 Abs. 3, 64 Abs. 1 sowie 79 Abs. 1 und 2 A. Allgemees Voraussetzungen
PC III Aufbau der Materie
07.07.2015 PC III Aufbau der Materie (1) 1 PC III Aufbau der Materie Kapitel 5 Das Periodensystem der Elemente Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen
Fakultät Mathematik und Naturwissenschaften, Anorganische Chemie Professur AC I. TU Dresden, 2017 Seminar zum Brückenkurs 2016 Folie 1
TU Dresden, 2017 Seminar zum Brückenkurs 2016 Folie 1 Seminar zum Brückenkurs Chemie 2017 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 18.09.2017 1. Aufbau des Atomkerns und radioaktiver
Atombau, Periodensystem der Elemente
Seminar zum Brückenkurs Chemie 2015 Atombau, Periodensystem der Elemente Dr. Jürgen Getzschmann Dresden, 21.09.2015 1. Aufbau des Atomkerns und radioaktiver Zerfall - Erläutern Sie den Aufbau der Atomkerne
Chrom(VI)-Ersatz auf Zink
Ulmer Gepräch 1 Chrom(VI)-Eratz auf Zink Nachbehandlungverfahren in der Praxi Dr. Rolf Janen und Patricia Preikchat,, D-64673 Zwingenberg Themen: l Wonach wird geucht? Eigenchaften echwertiger Paivierungen
7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) Analytische Anwendungen (Radiometrische Titration)
7) Anwendungen radioaktiver Strahlung in Wissenschaft und Technik (1) (Radiometrische Titration) Der radioaktive Stoff dient als Indikator Fällungsreaktionen Komplexbildungsreaktionen Prinzip einer Fällungstitration:
Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier)
1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55
Quarkorbitale und Quark Orbital Kombinationen
Naturwissenschaft Clemens Wett Quarkorbitale und Quark Orbital Kombinationen Quantenalgebra der Isotopen Tabelle Wissenschaftliche Studie Quark Orbitale und Quark Orbital Kombinationen Verwendete Literatur
Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02
Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der
Mangangruppe: Elemente der siebten Nebengruppe
Hermann Sicius Mangangruppe: Elemente der siebten Nebengruppe Eine Reise durch das Periodensystem essentials essentials liefern aktuelles Wissen in konzentrierter Form. Die Essenz dessen, worauf es als
Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869)
1.2 Periodensystem der Elemente Anordnung der Elemente nach aufsteigender Atommasse, Gesetz der Periodizität (Lothar Meyer, Dmitri Mendelejew, 1869) Periode I a b 1 H 1,0 2 Li 6,9 3 Na 23,0 4 5 6 K 39,1
Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente
Das Periodensystem der Elemente Das Periodensystem: Entdeckung der Elemente 1 Das Periodensystem: Biologisch wichtige Elemente Das Periodensystem: Einteilung nach Reaktionen Bildung von Kationen und Anionen
Das Periodensystem der Elemente
Das Periodensystem der Elemente 1 Das Periodensystem: Entdeckung der Elemente 2 Das Periodensystem: Biologisch wichtige Elemente 3 Das Periodensystem: Einteilung nach Reaktionen Bildung von Kationen und
MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol, Wasserstoffbrückenbindungen
Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen VI Molkülorbitaltheorie II MO-Theorie: Molekülorbitale, Bindungsordnung, Molekülorbitaldiagramme von F 2, O 2, N 2, H 2 O, Benzol,
Rohstoffe für die Energiewende Verfügbarkeit knapper Ressourcen und der Beitrag des Recyclings
Rohstoffe für die Energiewende Verfügbarkeit knapper Ressourcen und der Beitrag des Recyclings Prof. Dr.-Ing. Daniel Goldmann IFAD Rohstoffaufbereitung und Recycling TU Clausthal Veränderungen in Rohstoffauswahl
Thema: Chemische Bindungen Wasserstoffbrückenbindungen
Wiederholung der letzten Vorlesungsstunde: Thema: Chemische Bindungen Wasserstoffbrückenbindungen Wasserstoffbrückenbindungen, polare H-X-Bindungen, Wasser, Eigenschaften des Wassers, andere Vbg. mit H-Brücken
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 284 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer
Typische Eigenschaften von Metallen
Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls
Note:
Klausur zur Vorlesung AC1 (Anorganische Experimentalchemie) am 12.03.2018 1 1 2 3 4 5 6 7 8 9 10 10 10 14 6 10 10 10 10 14 6 100 Note: Vorname: Nachname: Matr.-Nr.: BITTE DEUTLICH SCHREIBEN! Studiengang:
Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen. Didaktikpool
Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Periodensystem der Elemente für blinde und hochgradig sehgeschädigte Laptop-Benutzer Reinhard Apelt 2008 Technische
Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester
Kugelpackungen Kubisch dichte Kugelpackung Lehramt 1a Sommersemester 2010 1 Kugelpackungen: kubisch dichte Packung (kdp, ccp) C B A A C B A C B A C Lehramt 1a Sommersemester 2010 2 Kugelpackungen Atome
Formelsammlung Chemie
Formelsammlung Chemie Inhaltsverzeichnis SÄURE-BASE-REAKTIONEN 3 Säure-Base-Begriffe: 3 Ionenprodukt des Wassers 3 ph-wert einer schwachen Säure 3 poh-wert einer schwachen Base 3 Zusammenhang für konjugiertes
3. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002
ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 3. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002
7 3= - 2 J G0(r) ~ a " I N dr
Finally, for CH3C the collision frequency ratio 7mw was been determined from nonresonant microwave absorption 9. The comparison is given in Table 3. The agreement is reasonable, but far from 9 L. FRENKEL,
K L A U S U R D E C K B L A T T Name der Prüfung: Klausur Chemie für Chemieingenieure und Physiker
K L A U S U R D E C K B L A T T Name der Prüfung: Klausur Chemie für Chemieingenieure und Physiker Datum und Uhrzeit: 09.04.2015 10:00 Institut: Theoretische Chemie Vom Prüfungsteilnehmer LESERLICH auszufüllen:
Periodensystem der Elemente (PSE) Z = Ordnungszahl, von 1 bis 112 (hier) woher kommen Zeilen und Spalten?
1 1.0079 H 3 Li 6.941 19 39.098 K 23 50.942 V 27 58.933 Co 73 180.95 Ta 78 195.08 Pt 82 207.2 Pb 21 44.956 Sc 25 54.938 Mn 29 63.546 Cu 33 74.922 As 7 14.007 N 75 186.21 Re 80 200.59 Hg 84 208.98 Po* 55
Anorganische Chemie 1 Version 1.5b Thema:
Lösliche Gruppe: NH 4 +, Na +, Mg 2+, K + (Quelle: Qualitative Anorganische Analyse, Eberhard Gerdes) Anorganische Chemie 1 Version 1.5b Thema: 1. Säurestärke Allgemein gesprochen existieren Neutralsäuren,
Kleine Formelsammlung
Karl Schwister Kleine Formelsammlung Chemie 4. Auflage Allgemeine Grundlagen Struktur dermaterie Zustandsformen der Materie Thermodynamik Chemische Reaktionen und Gleichgewichte Elektrochemie Kinetik Grenzflächengleichgewichte
Vom Standardmodell zur dunklen Materie
Vom Standardmodell zur dunklen Materie Atomismus, die Bausteine der Materie Wechselwirkungen und Kräfte Der heilige Gral der Teilchenphysik Offene Fragen Prof. Ch. Berger RWTH Aachen Teilchenphysik und
Lösungsvorschlag 7: Grundlagen ICP-MS
Lösungsvorschlag 7: Grundlagen ICP-MS 1. Was ist ein Plasma? Ein Plasma ist der sogenannte. Zustand der Materie, ein angeregtes, teilweise ionisiertes und nach Aussen neutrales Gas. In ihm liegen sowohl
6. Seminar. Prof. Dr. Christoph Janiak. Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002
ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG 6. Seminar Prof. Dr. Christoph Janiak Literatur: Jander,Blasius, Lehrb. d. analyt. u. präp. anorg. Chemie, 15. Aufl., 2002 Riedel, Anorganische Chemie, 5. Aufl., 2002
Seite 1. Online-Code 27b2dq (auf ins Suchfeld eingeben)
Seite Online-Code bdq (auf www.klett.de ins Suchfeld eingeben),0,8 H, H 8 PSE Das Periodensystem der Elemente in drei Ebenen 9 Wasserstoff Mittlere Atommasse in u (radioaktive Elemente: Nukleonenzahl des
Koordinationschemie der Übergangsmetalle
Koordinationschemie der Übergangsmetalle adia C. Mösch-Zanetti Institut für Anorganische Chemie der Universität Göttingen Empfohlene Lehrbücher Anorganische Chemie 5. Aufl. S. 672-704 und Moderne Anorganische
B* Note: (*nur für Lehramt)
1 2 3 4 5 6 7 8 9 10 B* 10 10 10 12 10 10 10 10 8 10 100 Note: (*nur für Lehramt) 1 Vorname: Matr.-Nr.: Nachname: Studiengang: Chemie und Biochemie Lehramt Chemie vertieft Musterlösung! Bitte beachten:
Einführungskurs 7. Seminar
ABERT-UDWIGS- UNIVERSITÄT FREIBURG Einführungskurs 7. Seminar Prof. Dr. Christoph Janiak iteratur: Riedel, Anorganische Chemie,. Aufl., 00 Kapitel.8.0 und Jander,Blasius, ehrb. d. analyt. u. präp. anorg.
Aluminium. Eisen. Gold. Lithium. Platin. Neodym
Fe Eisen Al Aluminium Li Lithium Au Gold Pt Platin Nd Neodym Zn Zink Sn Zinn Ni Nickel Cr Chrom Mo Molybdän V Vanadium Co Cobalt In Indium Ta Tantal Mg Magnesium Ti Titan Os Osmium Pb Blei Ag Silber
Superschwere Elemente
Superschwere Elemente Die Reise zur Insel der Stabilität Steffen Therre Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg 13. Juni 2014 Präzisionsexperimente der Teilchenphysik
3) Natürliche und künstliche Radioaktivität (1)
3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf
Lösungsbeispiel Oberflächenspannung. Schwimmende Büroklammer
Lösungsbeispiel Oberflächenspannung Schwimmende Büroklammer Svens Klasse geht einmal im Monat in ein Schülerlabor, um Versuche zu Themen durchzuführen, die im Unterricht theoretisch behandelt wurden. Im
Wiederholung der letzten Vorlesungsstunde:
Wiederholung der letzten Vorlesungsstunde: Stern-Gerlach-Versuch, Orbitalmodell, Heisenberg sche Unschärferelation, Schrödinger Gleichung, Zustände der Elektronen sind Orbitale, die durch 4 Quantenzahlen
Orbitale, 4 Quantenzahlen, Hauptquantenzahl, Nebenquantenzahl, magnetische Quantenzahl, Spinquantenzahl
Wiederholung der letzten Vorlesungsstunde: Das (wellen-)quantenchemische Atommodell Orbitalmodell Orbitale, 4 Quantenzahlen, Hauptquantenzahl, Nebenquantenzahl, magnetische Quantenzahl, Spinquantenzahl
Christine Peetz (OStRin B/C) Seite 1
Ist Wasser ein DipolMolekül? Mit einem einfachen kann man untersuchen, ob eine Flüssigkeit ein Dipol ist. Es liegen nachfolgende Flüssigkeiten vor. Definition: Moleküle, bei denen die positiven und negativen
4. Aufbau der Elektronenhülle 4.1. Grundlagen 4.2. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5.
4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches Atommodell 4.3. Grundlagen der Quantenmechanik 4.4. Quantenzahlen 4.5. Atomorbitale 4. Aufbau der Elektronenhülle 4.. Grundlagen 4.. Bohrsches
Chemie I für Ingenieure TU Harburg
Chemie I für Ingenieure TU Harburg Bücher D. Forst, M. Kolb, H. Roßwag Chemie für Ingenieure F.A. Cotton, G. Wilkinson Basic Inorganic Chemistry E. Lindner Chemie für Ingenieure G. Hölzel Einführung in
Chemie für Ingenieure Lernziele und Musteraufgaben
1 Aufgabe 1: Chemie für Ingenieure Lernziele und Musteraufgaben Kenntnisse der Elementarteilchen als Bausteine von Atomen und Molekülen Aufbau der Atome Schalenstruktur der Elektronenhülle 32 Wie viele
Tendenzen im Periodensystem
Tendenzen im Periodensystem Stand: 09.08.2017 Jahrgangsstufen Fach/Fächer Vorklasse Chemie Übergreifende Bildungsund Erziehungsziele Zeitrahmen 35 min Benötigtes Material Kompetenzerwartungen Diese Aufgabe
Relative Atommassen. Stefan Pudritzki Göttingen. 8. September 2007
Relative Atommassen Stefan Pudritzki Göttingen 8. September 2007 Berechnung der relativen Atommassen Nach dem derzeitigen Kenntnisstand können die relativen Atommassen der chemischen Elemente mit einem
Unwanted. TRITON Error correction sheet ICP-OES V1.1 !!! !!!!!!!! TRITON GmbH Rather Broich Düsseldorf (Germany)
Unwanted TRITON Error correction sheet ICP-OES V1.1 1 Unerwünschte Schwermetalle Quecksilber zu hoch 4x 15% wöchentlicher Wasserwechsel mit Hg Selen zu hoch 4x 15% wöchentlicher Wasserwechsel mit Se Cadmium
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Atombau und PSE. Das komplette Material finden Sie hier: School-Scout.
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Atombau und PSE Das komplette Material finden Sie hier: School-Scout.de Chemiekonzept Pro Unterrichtsreihen Sekundarstufe I Band 11
Strahlenschutzverordnung
Strahlenschutzverordnung (StSV) Änderung vom 15. November 2000 Der Schweizerische Bundesrat verordnet: I Die Strahlenschutzverordnung vom 22. Juni 1994 1 wird wie folgt geändert: Art. 9 Kommission für
Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 3s 2 3p 6. Geben Sie isoelektronische Ionen zu den folgenden Atomen an
Übung 05.11.13 Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 Ne / F - / O 2- / N 3- / Na + / Mg 2+ / Al 3+. Welches Element / Ion hat die Elektronenkonfiguration 1s 2 2s 2 2p 6 3s
Wasserstoff. Helium. Bor. Kohlenstoff. Standort: Name: Ordnungszahl: Standort: Name: Ordnungszahl: 18. Gruppe. Standort: Ordnungszahl: Name:
H Wasserstoff 1 1. Gruppe 1. Periode He Helium 2 18. Gruppe 1. Periode B Bor 5 13. Gruppe C Kohlenstoff 6 14. Gruppe N Stickstoff 7 15. Gruppe O Sauerstoff 8 16. Gruppe Ne Neon 10 18. Gruppe Na Natrium
F Das Periodensystem. Allgemeine Chemie 26
Allgemeine Chemie 6 F Das Periodensystem Aufgestellt von Mendelejew und Meyer 1869 (rein empirisch!) Perioden in Zeilen: mit jeder Periode erhöht sich die auptquantenzahl der äußeren Schale (s-rbital)
E i n b a u-b a c k o f e n O I M 2 2 3 0 1 B i t t e z u e r s t d i e s e B e d i e n u n g s a n l e i t u n g l e s e n! S e h r g e e h r t e K u n d i n, s e h r g e e h r t e r K u n d e, v i e
Lösungen zu den Übungen zur Experimentalvorlesung AC
Lösungen zu den Übungen zur Experimentalvorlesung AC 1. Stöchiometrisches Rechnen 1.1. n (S = mol n (S 8 = 0,5 mol 1.. n (P = 8 mol n (P = mol 1.3. m (P =,8 g m (P =,8 g m (P = 1, g 1.. m (1/3 As 3+ =
41. Kerne. 34. Lektion. Kernzerfälle
41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität
Labor für Radiochemie (LRC)
WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Prof. Dr. Andreas Türler :: Laborleiter LRC :: Paul Scherrer Institut Labor für Radiochemie (LRC) NES präsentiert: Kompetenzen und Highlights Organigramm Labor für
Vo r d ä c h e r-ca r p o r t s. Vo r d ä c h e r-ca r p o r t s a u s Sta h l Ed e l s ta h l u n d. Gl a s. En g i n e e r i n g
a u s Sta h l Ed e l s ta h l u n d Gl a s 2 Ve r z i n k t e Sta h l k o n s t r u k t i o n m i t g e k l e bt e n Ec h t g l a s- s c h e i b e n Da c h ü b e r s p a n n t d i e Fr ü h s t ü c k s
Zeichnen von Valenzstrichformeln
Zeichnen von Valenzstrichformeln ür anorganische Salze werden keine Valenzstrichformeln gezeichnet, da hier eine ionische Bindung vorliegt. Die Elektronen werden vollständig übertragen und die Ionen bilden
Enthalpie, Entropie und Temperatur des Phasenübergangs flüssig-gasförmig. eine Analyse von Elementen und chemischen Verbindungen
Bayerisches Zentrum für Angewandte Energieforschung e.v. Enthalpie, Entropie und Temperatur des Phasenübergangs flüssiggasförmig eine Analyse von Elementen und chemischen Verbindungen Harald Mehling Berater
Übung zu den Vorlesungen Organische und Anorganische Chemie
Übung zu den Vorlesungen Organische und Anorganische Chemie für Biologen und Humanbiologen 12.11.08 1. Stellen sie die Reaktionsgleichung für die Herstellung von Natriumsulfid aus den Elementen auf. Wieviel
Chemische Bindung. Ue Mol 1. fh-pw
Ue Mol 1 Chemische Bindung Periodensystem - Atome - Moleküle Periodensystem(e) 3 Nichtmetalle - Metalloide 5 Eigenschaften der Elemente 6 Bindungstypen 7 Ionenbindung 8 Kovalente, homöopolare Bindung 10
Produktion superschwerer Elemente
Produktion superschwerer Elemente Schlüsselexperimente der Teilchenphysik Mathias Wegner 25.06.2010 Mathias Wegner Produktion superschwerer Elemente 1/ 39 Schaubild: Das Periodensystem Mathias Wegner Produktion
Grundlagen Chemie. Dipl.-Lab. Chem. Stephan Klotz. Freiwill ige Feuerwehr Rosenheim
Grundlagen Dipl.-Lab. Chem. Stephan Klotz Freiwill ige Feuerwehr Rosenheim Einführung Lernziele Einfache chemische Vorgänge, die Bedeutung für die Feuerwehrpraxis haben, erklären. Chemische Grundlagen
Wo die Elektronen wohnen Magnetische Eigenschaften
Wo die Elektronen wohnen Magnetische Eigenschaften Manche Stoffe werden von Magneten angezogen, andere nicht. Eine faszinierende Eigenschaft, die wir, wie viele andere, mit Hilfe des Periodensystems erklären
2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung
2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung Supraleitung Anwendung der Supraleitung in Methoden der Bildgebung in der Hirnforschung (f)mri: Erzeugung sehr stabiler, sehr hoher statischer
Besetzung der Orbitale
Frage Beim Wiederholen des Stoffes bin ich auf die Rechnung zur Energie gestoßen. Warum und zu welchem Zweck haben wir das gemacht? Was kann man daran jetzt erkennen? Was beschreibt die Formel zu E(n),
1.4. Aufgaben zum Atombau
1.4. Aufgaben zum Atombau Aufgabe 1: Elementarteilchen a) Nenne die drei klassischen Elementarteilchen und vergleiche ihre Massen und Ladungen. b) Wie kann man Elektronen nachweisen? c) Welche Rolle spielen
Kritische Rohstoffe und Ressourceneffizienz
Kritische Rohstoffe und Ressourceneffizienz Dr. Patrick Wäger Technology & Society Lab Lerchenfeldstrasse 5 CH-9014 St. Gallen [email protected] Kritische Rohstoffe und Ressourceneffizienz Seltene
Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die
Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die
Maßnahmen bei radioaktiver Kontamination der Haut
Strahlenschutzkommission Geschäftsstelle der Strahlenschutzkommission Postfach 12 06 29 D-53048 Bonn http://www.ssk.de Maßnahmen bei radioaktiver Kontamination der Haut Empfehlung der Strahlenschutzkommission
B* Note: (*nur für Biologie)
1 2 3 4 5 6 7 8 9 10 B* 10 10 10 12 10 10 10 10 8 10 100 Note: (*nur für Biologie) 1 Vorname: Matr.-Nr.: Nachname: Studiengang: Chemie und Biochemie Lehramt Chemie vertieft Musterlösung! Bitte beachten:
Übersicht über die systematischen Hauptgruppen
Ü ü H 1-9: A G 1 B 2 Nw 3 F 4 A T 5 I I A (D, M, H) 6 Z (w.) 7 Z ( w S), Z 10-19: W W 10 S G W 11 G Gw, G 12 G Gw G, 13 G Gw G, N, Lä 14 G Gw G, N, Lä 15 O Gw 16 B, A M 17 G Pä / G U / L S G 20-29: U E
[ ] 1. Stoffe und Reaktionen (Kartei 8.8, 8.10 und 8.13) Stoffe + - Moleküle aus gleichen Atomen. Ionen. Moleküle aus verschiedenen Atomen
1. Stoffe und Reaktionen (Kartei 8.8, 8.10 und 8.13) Stoffe Gemische Reinstoffe Elemente Verbindungen gleiche Atome Moleküle aus gleichen Atomen Moleküle aus verschiedenen Atomen Ionen + Kation Anion z.b.
Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS. Welche Kombinationen führen zu hohen Oxidationsstufen?
HSAB-Prinzip Wie kommen Metalle vor? CaO, MgO, Al 2 O 3, CaCO 3, CaSO 4 vs. Cu 2 S, HgS, PbS Welche Kombinationen führen zu hohen Oxidationsstufen? XeO 6 4, ClO 4, MnO 4, MnS 4, ClS 4 Warum entsteht der
Brückenkurse Chemie Wintersemester 2015/2016
Fakultät Mathemathik/Naturwissenschaftensname, Professur für Anorganische Chemie I Brückenkurse Chemie Wintersemester 2015/2016 Atombau und chemische Bindung Was kann Chemie heute leisten? Kampf gegen
Vorlesung Allgemeine Chemie: Chemische Bindung
Vorlesung Allgemeine Chemie: Chemische Bindung Inhalte Gruppentendenzen: Alkalimetalle, Halogene, Reaktion mit H 2 und H 2 O, basische und saure Oxide, Ionenbindung, Gitterenergie, Tendenzen in Abhängigkeit
Eigenschaften der Metalle
Eigenschaften der Metalle hohe Festigkeit, gute plastische Verformbarkeit gute elektrische Leiter geringer Paramagnetismus oder Ferromagnetismus gute thermische Leiter metallischer Glanz, hohe Reflektivität
Wie sind Atome aufgebaut Welche Informationen enthält das Periodensystem?
2. DIE KLEINSTEN TEILCHEN ARBEITSBLATT 2.1 DER ATOMAUFBAU FRAGE Wie sind Atome aufgebaut Welche Informationen enthält das Periodensystem? Bausteine der Atome Ladung (+, -, 0) Masse (hoch, sehr gering)
BUNDESANSTALT FÜR MATERIALFORSCHUNG UND -PRÜFUNG (BAM) VEREIN DEUTSCHER EISENHÜTTENLEUTE (VDEh)
BUNDESANSTALT FÜR MATERIALFORSCHUNG UND -PRÜFUNG (BAM) VEREIN DEUTSCHER EISENHÜTTENLEUTE (VDEh) Arbeitskreis"Primärsubstanzen zur Kalibrierung" Zertifiziertes Referenzmaterial Reinstoff Nr. Calciumcarbonat
SwissChO 2016 Erste Runde
Erste Runde Information Die Prüfung sollte innerhalb von einer Stunde gelöst werden. Die einzigen erlaubten Hilfsmittel sind Bücher und ein Taschenrechner. Übertrage die Antworten auf das separate Antwortblatt.
1 Dorn Bader Physik der Struktur der Materie
1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß
Grundlagen des Periodensystems der Elemente
Aus der regelmäßigen Wiederholung ähnlicher Eigenschaften der Elemente leitete Mendelejew das Gesetz der Periodizität ab. Diese Periodizität liegt im Aufbau der Atomhülle begründet. Atomradius Als Atomradius
Moderne Experimente der Kernphysik
Moderne Experimente der Kernphysik Wintersemester 2011/12 Vorlesung 21 06.02.2012 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung 21 06.02.2012 1 Superschwere Elemente (SHE) Strutinsky-
1.6. Die Ionenbindung
1.6. Die Ionenbindung 1.6.1. Die Edelgasregel Die Edelgase gehen kaum Verbindungen ein und zeigen in ihrer Periode jeweils die höchsten Ionisierungsenergien. Ihre Elektronenkonfiguration mit jeweils Außenelektronen
Enthalpie, Entropie und Temperatur des Phasenübergangs fest-flüssig. eine Analyse von Elementen und chemischen Verbindungen
BAYERISCHES ZENTRUM FÜR ANGEWANDTE ENERGIEFORSCHUNG E.V. Enthalpie, Entropie und Temperatur des Phasenübergangs fest-flüssig eine Analyse von Elementen und chemischen Verbindungen Dr. Harald Mehling ZAE
P As Sb. S Se Te. Si Ge Sn. Cl Br I. Al Ga In. Ar Kr Xe. Normalvalente & nicht-normalvalente* Verbindungen. Radioaktiv. nur normalvalente Verbindungen
Normalvalente & nicht-normalvalente* Verbindungen 1 B C N Ne nur normalvalente Verbindungen Al Ga In Si Ge Sn P As Sb S Se Te Cl Br I Ar Kr Xe normalvalente Verbindungen befolgen die (8-N) Regel (N = Anzahl
