16. Minimale Spannbäume

Größe: px
Ab Seite anzeigen:

Download "16. Minimale Spannbäume"

Transkript

1 Dnton.:. Mnml Spnnäum. En wttr unrttr Grp (G,w) st n unrttr Grp G=(V,E) zusmmn mt nr Gwtsunkton w :E R.. Ist H=(U,F), U V,F E, n Tlrp von G, so st s Gwt w(h) von H nrt ls ( ) = w( ) w H F SS 00

2 Mnml Spnnäum - Dnton Dnton.:. En Tlrp H ns unrttn Grpn G sst Spnnum von G, wnn H n Bum u n Knotn von G st.. En Spnnum S ns wttn unrttn Grpn G sst mnmlr Spnnum von G, wnn S mnmls Gwt untr lln Spnnäumn von G stzt. SS 00

3 Illustrton von mnmln Spnnäumn () 3 3 Grp G=(V,E) Spnnum ür G (mnml) 3 3 Spnnum ür G (mnml) Spnnum ür G (nt mnml) SS 00 3

4 Illustrton von mnmln Spnnäumn () 0 SS 00

5 SS 00 Brnun mnmlr Spnnäum Zl: Gn n wttr unrttr Grp (G,w), G=(V,E). Wolln znt nn mnmln Spnnum von (G,w) nn. Vornsws: Erwtrn sukzssv n Kntnmn A E zu nm mnmln Spnnum. Zu Bnn A = { }.. Erstzn n jm Srtt A ur {( u,v )} wo ( u,v) n A-sr Knt st. 3. Soln s A = V Dnton.3: (,v) {( u,v )} A, u sst A-sr, wnn mt A u A zu nm mnmln Spnnum rwtrt wrn knn. 5

6 Gnrsr MST-Alortmus ( G,w ) Gnr MST A { } wl A st no kn Spnnum 3 o Fn n A - sr Knt A A { ( u,v) } 5 rturn A ( u,v) SS 00

7 Sntt n Grpn Dnton.:. En Sntt (C,V-C) n nm Grpn G=(V,E) st n Prtton r Knotnmn V s Grpn.. En Knt von G kruzt nn Sntt (C,V-C), wnn n Knotn r Knt n C un r nr Knotn n V-C lt. 3. En Sntt (C,V-C) st mt nr Tlmn A E vrträl, wnn kn Elmnt von A n Sntt kruzt.. En (C,V-C) kruzn Knt sst lt, wnn s n Knt mnmln Gwts untr n (C,V-C) kruznn Kntn st. SS 00

8 Sntt n nm Grpn () S V-S 0 S V-S Snttkntn SS 00

9 Crktrsrun srr Kntn Stz.5: S (G,w), G=(V,E) n wttr unrttr Grp. D Kntnmn A E s n nm mnmln Spnnum von (G,w) ntltn. Wtr s (C,V-C) n mt A vrträlr Sntt un ( u,v) s n lt (C,V-C) kruzn Knt. Dnn st ( u,v) n A-sr Knt. Korollr.: S (G,w), G=(V,E), n wttr unrttr Grp. D Kntnmn A E s n nm mnmln Spnnum von (G,w) ntltn. Ist ( u,v) n Knt mnmln Gwts, n Zusmmnnskomponnt C von G A = ( V,A) mt m Rst s Grpn G A vrnt, nn st ( u,v) n A-sr Knt. SS 00

10 Bws s Stzs - Illustrton x p y u Knotn n C Kntn n A v SS 00 0

11 Alortmus von Prm - I Zu jm Ztpunkt s Alortmus stt r Grp G A = ( V,A) us nm Bum T A un nr Mn von solrtn Knotn I A. En Knt mnmln Gwts, nn Knotn n I A mt T A vrnt, wr zu A nzuüt. D Knotn n I A sn n nm mn-hp ornsrt. D st r Slüssl ky[v] ns Knotn v IA n ur s mnml Gwt nr Knt, v mt T A vrnt. SS 00

12 Alortmus von Prm - Psuoo ( G,w,r ) Pr m MST or ll v V o ky[ v] 3 π[ v] NIL ky[ r] 0 5 Q Bul - Mn - Hp( V) wl Q { } o u Extrt - Mn Q or ll v Aj o v Q 0 tn π ky ( ) [ u] w ( u,v ) < ky [ v ] [ v] u [ v ] w ( u,v ) Hp - Drs - Ky( Q,v,ky[ v] ) SS 00

13 Hp-Drs-Ky Hp-Drs-Ky (,v,ky[ v] ) Slüssl von v ur nun Wrt ky [ v] H rstzt ktulln. D muss r nu Slüssl klnr ls r lt Slüssl sn. Knn nm Hp mt n Elmntn n Zt O ( lo( n) ) usürt wrn. SS 00 3

14 Alortmus von Prm Illustrton () 0 0 SS 00

15 Alortmus von Prm Illustrton () 0 0 SS 00 5

16 Alortmus von Prm Illustrton (3) 0 0 SS 00

17 Alortmus von Prm Illustrton () 0 0 SS 00

18 Alortmus von Prm Illustrton (5) 0 SS 00

19 Alortmus von Prm Luzt Zl pro Durlu O ( lo( V )), wr V -ml urlun. Zln - pro Durlu O ( lo( V )) (ür Hp- Drs-Ky). Zln - E -ml urlun, Größ llr Ajznzlstn zusmmn nu E. Stz.: Dr Alortmus von Prm rnt n Zt O ( V lo( V ) + E lo( V )) nn mnmln Spnnum ns wttn unrttn Grpn (G,w), G=(V,E). Mt Fon-Hps Vrssrun u O ( V lo( V ) + E ) möl. SS 00

d Beweis. Knoten 1 den Grad k hat.

d Beweis. Knoten 1 den Grad k hat. 4 Bäum un Mnmlrüst Dnton 4.. Es n G = (V, E n zusmmnännr Grp. H = (V, E ßt Grüst von G w. wnn H n Bum st un E E lt. Bmrkun 4.. En Grüst st lso n zusmmnännr, zyklnrr, uspnnnr Untrrp von G. Bspl 4.. Gr üst

Mehr

Das Minimum-Spanning-Tree Problem MST

Das Minimum-Spanning-Tree Problem MST Ds Mnmum-Spnnn-Tr Prolm MST D Prolmstllun Ds oln Bspl zt n spzll, r u typs Aunstllun mt rn Lösun wr uns sätn wolln: Gn sn n Punkt n r En zusmmn mt n prwsn Astänn. Wäl von n ( n ) Kntn zwsn n Punktn n Kntn

Mehr

1. Übung zu Computergraphik 3 Geometrie

1. Übung zu Computergraphik 3 Geometrie 1. Üung zu omputrgrpk Gomtr Jko ärz KOLNZ LNU ug 1: Frgzn Ggn: Mng zuällgr -Punkt ntsprn nzl zuällgr Frn Kgl znn Sptz u Punkt Hupts prlll zu z-s Sptz zgt zum trtr großr Rus un Hö Ortogrps Projkton Z-ur

Mehr

Algorithmen zur Visualisierung von Graphen Übung 4: Lagenlayouts

Algorithmen zur Visualisierung von Graphen Übung 4: Lagenlayouts Agorthmn zur Vsusrung von Grphn Üung 4: Lgnyouts INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tmr Mhz Bnjmn Nrmnn 11.01.2017 Lyr Lyout Gvn: rt grph D = (V, A) Fn: rwng o D tht mphsz th

Mehr

STECKER, GERÄTESTECKER UND PHASENWENDER sicher, robust, installationsfreundlich

STECKER, GERÄTESTECKER UND PHASENWENDER sicher, robust, installationsfreundlich 47 STECKER, GERÄTESTECKER UND PHASENWENDER sr, roust, nsttonsrun Wtwt nm, Psnwnr omptt on Srun n 4 un 5po, 16A un 2A Qu-Connt Ansusstn, ür n snn, srn un ontrortn Ltrnsuss Mut-Grp Kvrsruun, n Dr un s K

Mehr

Die sieben Worte Jesu Christi am Kreuz Heinrich Schütz ( )

Die sieben Worte Jesu Christi am Kreuz Heinrich Schütz ( ) Sopr Alt Tnor I Tnor II Bass Introitus Da Da Da Da Di sibn Wort su Christi am Kruz Kru Kru Kru Kru z z st. z z st st st ihm s Lich ihm ihm Hrich Schütz (15851672) s s nam Lich nam Lich nam 7 da vr vr Da

Mehr

Wie schön leuchtet der Morgenstern Johann Kuhnau ( ) 1.

Wie schön leuchtet der Morgenstern Johann Kuhnau ( ) 1. Wi schön luchtt dr Mornstrn Johann Kuhnau (10-1) 1. Contuo Viola II Viola I Viol II Viol I Horn II Horn I Soprano lto nor Bass I voll Mor Mor Mor Mor n strn strn strn strn n n n Gnad Gnad Gnad Gnad voll

Mehr

Aufgaben zu Kapitel 7

Aufgaben zu Kapitel 7 7.1 G W A B zu 7.1 zu 7.2 7.2 Ajznzmtrix: 000111 000111 000111 111000 111000 111000 G : W : : A : B : : A, B, A, B, A, B, G, W, G, W, G, W, s ist niht möglih, n Grphn ürshniungsfri zihnn. 7.3 Di Isomorphiilung

Mehr

Aufgabe 4: 7-Segmentanzeige

Aufgabe 4: 7-Segmentanzeige Au : 7-Smntnzi G. Kmnitz, C. Gismnn, TU Clusthl, Institut ür Inormtik 7. Juni 25 Di Vrsuhsurupp ht in -stlli 7-Smnt-Anzi mit vrunnn Kthonsinln un minsmr Ano j Zir, so ss zu jm Zitpunkt nur in Zir nzit

Mehr

Matrizenmultiplikation. Matrizenmultiplikation. Multiplikation nach Winograd. Multiplikation nach Winograd. Multiplikation nach Winograd

Matrizenmultiplikation. Matrizenmultiplikation. Multiplikation nach Winograd. Multiplikation nach Winograd. Multiplikation nach Winograd Iormt II Sommrsmstr Dr. Iv Ro Fol. Uvrstät Krlsru H Mtrzmultplto Wozu? Gomtr: Mtrx lr lu Mtrxprout Htrrusüru Grp: Mtrx zzmtrx Multplto z.. ür trstv Hüll Sl: Fltr Dsrt Fourr rsormto Iormt II Sommrsmstr

Mehr

Lektion 14 Test Lösungen

Lektion 14 Test Lösungen Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Lösungn X Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j X js jn jm Angymnsium gut ist? Wir kommn jr j js X jn jm Mont pünktlih unsr

Mehr

DOWNLOAD VORSCHAU. Vertretungsstunden Mathematik 30. zur Vollversion. 10. Klasse: Strahlensätze. Vertretungsstunden Mathematik 9./10.

DOWNLOAD VORSCHAU. Vertretungsstunden Mathematik 30. zur Vollversion. 10. Klasse: Strahlensätze. Vertretungsstunden Mathematik 9./10. DOWNLOAD Mro Bttnr/Erik Dins Vrtrtunsstunn Mtmtik 30 10. Klss: Strlnsätz Brorr Untrritsin Mro Bttnr/Erik Dins Downlouszu us m Oriinltitl: Vrtrtunsstunn Mtmtik 9./10. Klss Soort instzr lrplnorintirt sstmtis

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel

Erläuterungen zu Leitlinien zum Umgang mit Markt- und Gegenparteirisikopositionen in der Standardformel Erläutrungn zu Ltlnn zum Umgang mt Markt- und Ggnpartrskopostonn n dr Standardforml D nachfolgndn Ausführungn n dutschr Sprach solln d EIOPA- Ltlnn rläutrn. Währnd d Ltlnn auf Vranlassung von EIOPA n alln

Mehr

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten

Lektion 14 Test. Obwohl Herr Stuber gern in der Stadt arbeiten / er einen Bauernhof haben möchten Lktion 14 Grmmtik 1 Ws ist rihtig? Kruzn Si n. Lktion 14 Tst Bispil: Niht X jr j js jn jm Arzt möht Notrzt sin. Jr J Js Jn Jm Pilot ruht vil Erhrung. Glust u, ss jr j js jn jm Angymnsium gut ist? Wir kommn

Mehr

normal box Geometrie II Matthias Zinner Hallo Welt -Seminar - LS 2

normal box Geometrie II Matthias Zinner Hallo Welt -Seminar - LS 2 norm o Gomtr II Mtts Znnr 19.07.2017 Ho Wt -Smnr - LS 2 Ürck Koordntnkomprsson Brcssuc Cosst Pr Swp Ln Vorono-Dgrmm 19.07.2017 Mtts Znnr Ho Wt -Smnr - LS 2 Gomtr II 2 Koordntnkomprsson Großr Lösungsrum

Mehr

Da Dafrerte. Allegretto SOPRAN ALT TENOR BASS. I geh nim - mer, i geh nim - mer, nim- mer, nim- mer, nim- mer, i geh nim - mer, i geh nim - mer,

Da Dafrerte. Allegretto SOPRAN ALT TENOR BASS. I geh nim - mer, i geh nim - mer, nim- mer, nim- mer, nim- mer, i geh nim - mer, i geh nim - mer, SOPRAN ALT TENOR BASS Allegretto I g i g I g i D Drerte i g g i g Stz: Blduin Sulzer i g i g I g i g i g i g 6 I g i i g i g g mer us si ins V i g i i g dern sein g 10 Lus, es wchst nix und wird nix, is

Mehr

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an.

Lektion 11 Test. 2 Modalverben: Präsens oder Präteritum? Was ist richtig? Kreuzen Sie an. Lktion 11 Tst Lktion 11 Grmmtik 1 Prätritum r Molvrn: Eränzn Si. Bispil: Ih immr Stätrisn (mhn wolln). Ih _wollt immr Stätrisn _mhn_. Als Kin ih Tirplr (wrn wolln). u im Zoo i Bärn (üttrn ürn)? Von 2009

Mehr

Franziskusmesse. 1. Von Gott gerufen. Eingangslied. Text: Raymund Weber Musik: Klaus Wallrath 2012/13. q. = 72

Franziskusmesse. 1. Von Gott gerufen. Eingangslied. Text: Raymund Weber Musik: Klaus Wallrath 2012/13. q. = 72 Franzskusmss 1. Von Gott grun Tromt I (ad lb.) q. = 7 8 m Engangsld Txt: Raym Wbr Musk: Klaus Wallrath 01/1 Tromt II (ad lb.) 8 m Posaun I (ad lb.) 8 m Posaun II (ad lb.) 8 m Chor unsono q. = 7 8 m (SA)

Mehr

Moderne Mietwohnungen Zentral leben im Gallusviertel Frankfurt am Main

Moderne Mietwohnungen Zentral leben im Gallusviertel Frankfurt am Main Modrn Mtwohnungn Zntrl lbn m Gllusvrtl Frnkfurt m Mn Mn Frnkfurt, mn Gllus, Mn Zuhus. Enfch wundrbr Wohnn. 108 Mtwohnungn, provsonsfr 02/03 Wllkommn Hrzlch wllkommn Klyrstrß 39 43, Frnkfurt m Mn Mn FrnkFurt

Mehr

Herr laß deinen Segen fließen

Herr laß deinen Segen fließen = 122 sus2 1.rr 2.rr lss wir i bit rr lß inn Sgn flißn nn tn 7 S gn fli ßn, ic um i lung, 7 wi in wo Strom ins r wi S sus4 t l Txt un Mloi: Stpn Krnt Mr. wint. sus2 nn Lß wirst u ic spü rn wi i 7 r spi

Mehr

Vorschlag (Endstand) für Normentext zur Berechnung der Lüftungswärmeverluste in EN 12831 (deutsch)

Vorschlag (Endstand) für Normentext zur Berechnung der Lüftungswärmeverluste in EN 12831 (deutsch) Insttut für Tchnsch Gbäudausrüstung Drsdn Forschung und nwndung GmbH Prof. Oschat - Dr. Hartmann - Dr. Wrdn - Prof. Flsmann Vorschlag (Endstand) für Normntxt ur Brchnung dr Lüftungswärmvrlust n EN 12831

Mehr

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz

Inhalt. Beschreibung von DNA- Sequenzen als Markov-Ketten. DNA-Sequenz. Markov-Ketten. X: Stochastische Sequenz. P(X): Wahrscheinlichkeit der Sequenz shrbung von D- Sunzn ls Mrkov-Kttn En Enführung Inhlt Mrkov-Kttn für -Islnds Hddn Mrkov Modls HMM für - Islnds usblk Uw Mnzl Rudbk bortory Usl Unvrsty D-Sunz D Rhnfolg dr sn m D -Molkül bstmmt dn uln ns

Mehr

Musterlösung - Aufgabenblatt 4. Aufgabe 1

Musterlösung - Aufgabenblatt 4. Aufgabe 1 Murlöung - Augnl 4 Aug ) Au Üungl 3 hn wir ür n ggnn Grphn G gzig, ν(g) = 9 gil, inm wir olgn Mhing M von mximlr Krinliä nggn hn: g h i j 3 4 6 7 8 9 0 E gil lo, nh König Mhing-Thorm u r Vorlung, uh τ(g)

Mehr

Spektralbilder einer Oktav-Tonleiter in C-Dur

Spektralbilder einer Oktav-Tonleiter in C-Dur Spktrlbilr inr Oktv-Tonlitr in C-Dur (Zum Tm Tonlitr vl. u i Ausürunn zu Tonlitr Quint -- un i usürlin Txt zum lin Tm u r Sit Hörbispil - Tonlitr) ' (us Hörbispil Tonlitr Tl-8 5'57) Im Untrsi zu n Spktrlbilrn

Mehr

1254.03. Lindab Coverline - Stahltrapezprofi le. Montageanleitung für Dach und Fassadenbekleidung

1254.03. Lindab Coverline - Stahltrapezprofi le. Montageanleitung für Dach und Fassadenbekleidung Ln Covrln Projktrun un Montnltun 1254.03 Ln Covrln - Stltrpzpro l Montnltun ür D un Fssnklun Ln Covrln - Proukt Proukt Ln Covrln st s Erns lnjärr Errunn mt Stltrpzproln ür Där un Fssn. Dr könnn wr unktonsrt

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Motvton: Ds Msmsprolm n Msm soll r Kmrs ürwt wrn w vl Kmrs wrn nött? wo solln Kmrs pltzrt wrn? Trnlrn von Polyonn n s Msmsprolm (Ltrtr: Br t l., Kptl ) Ds Msmsprolm r Pln s Msms st n ns Polyon P n Kmr

Mehr

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto

1 Ergänzen Sie. der Zug das Taxi der Bus die U-Bahn das Flugzeug die Straßenbahn das Auto das Fahrrad ... ... das Taxi das Fahrrad das Auto Lktion 11: In r Stt untrwgs 11 A Si müssn mit r U-Bhn hrn. A2 1 Ergänzn Si. r Zug s Txi r Bus i U-Bhn s Flugzug i Strßnhn s Auto s Fhrr r Bus........................ A2 2 Ergänzn Si. r Zug mit m Zug r

Mehr

Das Ziel ist das Ziel

Das Ziel ist das Ziel l tn-wc Tl 2 Das Zl st das Zl (c) 2013 Kathrn Pohnk/ tn-wcl - Slbst-Coachng & Mhr / Das Zl st das Zl / 1 l tn-wc Inhalt Tl 1 1. Enltung 2. Im Rückwärtsgang 3. Schrtt 1 Tl 2 1. Prsonal-Kanban - was st dnn

Mehr

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party)

Beispielfragen QM9(3) Systemauditor nach ISO 9001 (1 st,2 nd party) QM9(3) Systmuitor nh ISO 9001 (1 st,2 n prty) Allgmin Hinwis: Es wir von n Tilnhmrn rwrtt, ss usrihn Knntniss vorhnn sin, um i Frgn 1.1 is 1.10 untr Vrwnung r ISO 9001 innrhl von 20 Minutn zu ntwortn (Slsttst).

Mehr

Das dine&shine KOnzept für Anlässe mit nachhaltiger Wirkung

Das dine&shine KOnzept für Anlässe mit nachhaltiger Wirkung Das &sh KOzt für Aläss mt achhaltgr Wrkug Lass S us gmsam guts Tu. catrg solutos a r o v b y & s h a r o v b y & s h Usr acht Ltsätz Um usr Abscht kokrt lb u mss zu kö, hab wr acht Ltsätz frt. Ds Ltsätz

Mehr

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e

R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r G r e v e n T e l / F a x / e R a i n e r N i e u w e n h u i z e n K a p e l l e n s t r. 5 4 8 6 2 8 G r e v e n T e l. 0 2 5 7 1 / 9 5 2 6 1 0 F a x. 0 2 5 7 1 / 9 5 2 6 1 2 e - m a i l r a i n e r. n i e u w e n h u i z e n @ c

Mehr

F r e i t a g, 3. J u n i

F r e i t a g, 3. J u n i F r e i t a g, 3. J u n i 2 0 1 1 L i n u x w i r d 2 0 J a h r e a l t H o l l a, i c h d a c h t e d i e L i n u x - L e u t e s i n d e i n w e n i g v e r n ü n f t i g, a b e r j e t z t g i b t e

Mehr

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch

L 3. L a 3. P a. L a m 3. P a l. L a m a 3. P a l m. P a l m e. P o 4. P o p 4. L a. P o p o 4. L a m. Agnes Klawatsch 1 L 3 P 1 L a 3 P a 1 L a m 3 P a l 1 L a m a 3 P a l m 2 P 3 P a l m e 2 P o 4 L 2 P o p 4 L a 2 P o p o 4 L a m 4 L a m p 6 N a 4 L a m p e 6 N a m 5 5 A A m 6 6 N a m e N a m e n 5 A m p 7 M 5 A m p

Mehr

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab Lösungen zu Übungsufgben Angewndte Mthemtk MST Bltt Mtlb Prf.Dr.B.rbwsk Zu Aufgbe ) Errbeten Se sch begefügtes Mterl zur Trpezmethde und zur Smpsnschen Fssregel! (us Ppul, Mthemtk für Ingeneure, Bnd Kp.V.)

Mehr

E i n b a u-b a c k o f e n O I M 2 2 3 0 1 B i t t e z u e r s t d i e s e B e d i e n u n g s a n l e i t u n g l e s e n! S e h r g e e h r t e K u n d i n, s e h r g e e h r t e r K u n d e, v i e

Mehr

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT

Digitaltechnik. TI-Tutorium. 17. Januar 2012. Tutorium von K. Renner für die Vorlesung Digitaltechnik und Entwurfsverfahren am KIT Digitltchnik I-utorium 17. Jnur 2012 utorium von K. Rnnr für di Vorlsung Digitltchnik und Entwurfsvrfhrn m KI hmn Orgnistorischs Anmrkungn zum Übungsbltt 9 Korrktur inr Foli von ltztr Woch Schltwrk Divrs

Mehr

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug

Basiswissen > Geometrie im Raum > Trigonometrie in Körpern > Streckenzug www.shullv.d Bsiswissn > Gomtri im Rum > Trigonomtri in Körprn > Strknzug Strknzug Spikzttl Augn 1. Läng ds Strknzugs rhnn In disr Aug sollst du dn Strknzug ds gzihntn Hus vom Nikolus rhnn. Am inhstn ist

Mehr

...t e c h n o l o g y g i v e s c o m f o r t

...t e c h n o l o g y g i v e s c o m f o r t St andard programme for gas springs and dampers St andardprogramm Gasfedern und Dämpfer...t e c h n o l o g y g i v e s c o m f o r t L I F T- O - M T g a s s p r i n g s L I F T- O - M T g a s s p r i

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Tag der letzten Fachprüfung des Rigorosums: 15. Dezember 1999. Univ.-Prof. Dr. Peter Kleinschmidt

Tag der letzten Fachprüfung des Rigorosums: 15. Dezember 1999. Univ.-Prof. Dr. Peter Kleinschmidt 81,9(56,7b73$66$8 :LUWVFKDIWVZLVVHQVFKDIWOLFKH)DNXOWlW 35,25,7b765(*(/%$6,(57(5(66285&(13/$181*)h5 352-(.7(0,7.203/(;(5$%/$8)6758.785 'LVVHUWDWLRQ ]XU(UODQJXQJGHVDNDGHPLVFKHQ*UDGHV HLQHV'RNWRUVGHU:LUWVFKDIWVZLVVHQVFKDIWHQ'UUHUSRO

Mehr

Memory. Das Spiel. Meine Hilfe kommt von dem HERRN, der Himmel und Erde gemacht hat.

Memory. Das Spiel. Meine Hilfe kommt von dem HERRN, der Himmel und Erde gemacht hat. D Bbl Palm 11, Mn Hlf ko von dm HERRN, d Hl nd Ed gmac a. J C ag Folg DU m nac! D Bbl Joann 1, J C ag pc Ic bn da Lc d Wl; w m nacfolg, wd nc n d Fnn wandln. D Bbl Joann 8,1 Mmoy Da Spl Hallo Knd! Af nm

Mehr

Übersicht über die systematischen Hauptgruppen

Übersicht über die systematischen Hauptgruppen Ü ü H 1-9: A G 1 B 2 Nw 3 F 4 A T 5 I I A (D, M, H) 6 Z (w.) 7 Z ( w S), Z 10-19: W W 10 S G W 11 G Gw, G 12 G Gw G, 13 G Gw G, N, Lä 14 G Gw G, N, Lä 15 O Gw 16 B, A M 17 G Pä / G U / L S G 20-29: U E

Mehr

Clubbeitrag: Der Clubbeitrag wird problemlos monatlich von Ihrem Konto per Bankeinzugsverfahren abgebucht.

Clubbeitrag: Der Clubbeitrag wird problemlos monatlich von Ihrem Konto per Bankeinzugsverfahren abgebucht. & K Clu Amlug s 4 Woch ch E s sucht Kurs tfällt ANMELDEGEÜH vo 10,-- (pro K) - uch m spätr Clutrtt ch Ihrr Whl - Motlchr Clutrg hltt: Kurstlhm: Kurstlhm vo K mt Eltrtl (Säuglgsgrupp s 3.-6. Lsjhr) Kurstlhm

Mehr

5. Allgemeine Bäume und Binärbäume

5. Allgemeine Bäume und Binärbäume 5. llgmin äum un inäräum äum - Ürlik - Orintirt äum - Drstllungsrtn - Gornt äum inär äum: griff un Dfinitionn Spihrung von inärn äumn - Vrkttt Spihrung - Flum-Rlisirung - Squntill Spihrung - ufu von inäräumn

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 4 Rgulär Aurük Automtn un forml Sprhn Notizn zu n Folin Präznz r Oprtorn (Folin 108) Dr -Oprtor ht i höht Präznz, nh r Konktntionoprtor, un r - Oprtor ht i niriht Präznz. D hißt: (() (( ))) Bipil von rgulärn

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Kommentierung zum Prüfungsnachweis JAR - FCL - PPL(A)

Kommentierung zum Prüfungsnachweis JAR - FCL - PPL(A) Vrwnts Fluzumustr (Zulssun ür i Ausilun urh i zustäni Luthrthör) sih Anhn 1 zu JAR-FCL 1.125 Sihrhitsstlunn Vorhrst Bon- un Flusiht min. 8 km, Huptwolknuntrrnz min. 2000 t, Di im Fluhnuh nn, monstrirt

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Chemische Bindung - Grundprinzipien der Valenztheorie

Chemische Bindung - Grundprinzipien der Valenztheorie Chmsh ndung - Gundpnzpn d Valnztho Fagn: Waum bldn manh tom und and nht? Waum fndt man dfnt Popotonn (C 4 anstatt C 5 )? kläung von ndungslängn, -wnkln, -ngn t.. Klasssh lktostatsh Tho shwah Üblappung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Grps Dtvrrtu u Blvrrtu Hosul Nrr Mtmts u llm Grul Grps D u B, R Pol,. Mtmts u llm Grul Eoru Ilt r orlsu Eüru mtmts u llm Grul Hrwr ür Grpk u Blvrrtu Grps Grulortm (Z rpsr Prmtv, Mto ür Atls, Fülllortm)

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)}

2 Mengen bzgl. Knoten r (Wurzel): A = {Knoten v mit ungerader Weglänge (r,v)} B = {Knoten v mit gerader Weglänge (r,v)} K. 1.2: t P D. Pt tz Lt ü At E, LS11 3. VO 30. Ot 2006 Ü Ot: Pü / Ü Pt t ü tt G Pt t ü G x t 2 Püt ü Fü: Ü VO 2 Ü 2: 6LP A: Zä Gt Sz Ft t NEU: ( ätt : äß tv tt Ü, t ) ü Pü: St VO Ü, 20 t Püt Ltw: Ü VO

Mehr

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1)

Für Wachstumsprozesse, die nach dem logistischen Wachstumsmodell ablaufen, gilt: (1) Dr Arnlf Schönli, Logistischs Wchstm in dr Prxis Logistischs Wchstm in dr Prxis Für Wchstmsrozss, di nch dm logistischn Wchstmsmodll lfn, gilt: ( ( t ( Drin sind (t zw di Polionn z dn Zitnktn t zw t, nd

Mehr

Das Phasendiagramm des 3-Zustands- Pottsmodells

Das Phasendiagramm des 3-Zustands- Pottsmodells Das Phasndagramm ds 3-Zustands- Pottsmodlls Das Potts-Modll n Erwtrung ds Isng-Modlls von ssca athj TU raunschwg WS 04/05 Inhaltsvrzchns. Enltung. Das Isng-Modll. spl. Das Modll 3 3. Das Potts-Modll 5.

Mehr

Produktive Aufgaben mit magischen Quadraten

Produktive Aufgaben mit magischen Quadraten Prutv Au t s Qurt Mr Kt, Uvrstät W u Päs Hsu W. Ws s s Qurt? Utr s Qurt vrstt t x-zqurt st us Z,,,..., ², - r Zsu, - r Stsu - u u r Dsu s Wrt t. D s Z-, St- u Dsu wr s Kstt s Qurts t. S trät 0 A. : Bs

Mehr

Kannst du ein großes A bezahlen? Spiele mit Zahlen und Buchstaben. Dr. H. Schneider, Wien. Buchstabenrätsel mit zwei Vorgaben

Kannst du ein großes A bezahlen? Spiele mit Zahlen und Buchstaben. Dr. H. Schneider, Wien. Buchstabenrätsel mit zwei Vorgaben Spil mit Zhln un Buhstn Einzlmtril 87 Klss 6 is 8 S Knnst u in großs A zhln? Spil mit Zhln un Buhstn Dr. H. Shnir, Win M Buhstnrätsl mit zwi Vorgn Brhn i Blknsumm nhn von zwi Vorgn! Di Zhln, 2,, 4 un sin

Mehr

JUBILÄUMSTAFEL. 18. Ju l i. 18: 0 0 U hr. 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l

JUBILÄUMSTAFEL. 18. Ju l i. 18: 0 0 U hr. 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l 18. Ju l i 18: 0 0 U hr 125 Jah re IG Met all Gaggenau 50 Jahre Le be nshilfe Ra sta tt/m ur gta l #01 Pizzeria Ristorante Salmen G e f ü l l t e r M o zza r e l l a m i t S p i na t u n d G a r n e l

Mehr

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist.

Grundwissen 8 Klasse. y = c x ist, das x-y-diagramm eine Ursprungsgerade ist. Grundwissen 8 Klsse Direkt proportionle Größen x und y sind direkt proportionl, wenn zum n-en Wert ür x der n-e Wert ür y eört, die Wertepre quotientenlei y y2 sind:, x x2 y x ist, ds x-y-dirmm eine Ursprunserde

Mehr

CD/DVD Brenner-Kompatibilität

CD/DVD Brenner-Kompatibilität CD/DVD Brenner-Kompatibilität Stellen Sie sicher, dass Ihr Laufwerk High-Performance-CDs & DVDs verwenden kann Um beste Resultate zu erzielen, sollten Sie sicherstellen, dass Sie die aktuellste Firmware-

Mehr

Lineare Gleichungssysteme mit 3 und mehr Variablen

Lineare Gleichungssysteme mit 3 und mehr Variablen Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile

Mehr

2D-NMR-Spektroskopie

2D-NMR-Spektroskopie MR: Korrlton Spktroskop D-MR-Spktroskop. In r D-MR-Spktroskop wrn Krn ls Invun hnlt: jr Krn t n Snl ml lnks, ml rhts m Spktrum. D Whslwrkunn untrnnr wrn nht rkt zt, nur Snl-Multplztät t nn nws u hrsht

Mehr

Übungen zu RED / PRED 1 Synchrones Digitaldesign

Übungen zu RED / PRED 1 Synchrones Digitaldesign Üungn zu RED: Snchons Digitlsign Rgnsug, 16.06.2015 Üungn zu RED / PRED 1 Snchons Digitlsign 1.1 Snchons Digitlsign: Enl-Gnto () glol_nl CLOCK_50 ngn (nl-flgs gnto) nl _50MHz 10 MHz 1 MHz 100 KHz 10 KHz

Mehr

1. Ableitung von Funktionen mit einer Veränderlichen

1. Ableitung von Funktionen mit einer Veränderlichen . Ableitung von Funktionen mit einer Veränerlichen. Algebrische Interprettion Die Ableitung einer Funktion f f f+ f = lim. 0 = ist efiniert ls In Worten usgerückt ist ie Ableitung er Grenzwert er Änerungsrte

Mehr

Totalrevision Geldspielgesetz: Aktueller Stand und Perspektiven Swiss Sport Forum, Zürich, 29. Januar 2015

Totalrevision Geldspielgesetz: Aktueller Stand und Perspektiven Swiss Sport Forum, Zürich, 29. Januar 2015 Ednössschs Justz- und Pozdpartmnt EJPD Bundsamt für Justz BJ Drkton Totarvson Gdspstz: Aktur Stand und Prspktvn Swss Sport Forum, Zürch, 29. Januar 2015 Mch Bsson, Bundsamt für Justz Ednössschs Justz-

Mehr

Jetzt auch als E-Journal 5 / 2013. www.productivity-management.de. Besuchen Sie uns: glogistikprozesse. Logistiktrends.

Jetzt auch als E-Journal 5 / 2013. www.productivity-management.de. Besuchen Sie uns: glogistikprozesse. Logistiktrends. Jv J -J J J -J -J L L L L L 5 v- - v Nv - v v- IN 868-85 x OUCTIV % G - IN 868-85 L v JN868-85 I J 6 8-85 v- IN 8 -- IZ G T 5 ß G T 68-8 Fä ßvU 8V G T % IN G L ßv ß J T NLGTTGI 5 V IV Fx v v V I ö j L

Mehr

Wärmedurchgang durch Rohrwände

Wärmedurchgang durch Rohrwände ämeuchgng uch Rohwäne δ - L Rohlänge Bl: Sonäe ämeleung uch ene enschchge zylnsche n Fü e ämeleung gl llgemen: λ x Fü ene ünne konzensche Schch es Rohes von e Dcke gl: &Q λ Fläche: f(): 2 π L (Mnelfläche)

Mehr

Notenblätter. Christof Fankhauser Hofmattstrasse 41a 4950 Huttwil 062 /

Notenblätter. Christof Fankhauser Hofmattstrasse 41a 4950 Huttwil 062 / Ntnblättr hrf Fnkhusr Hfmttstrss 41 4950 Huttwl 062 / 965 43 16 ml@chrffnkhusrch wwwfnkhusrchrfch O fröhlch ( Nr 2 und 11) trdtnll, us Szln Q \ \ #! ch #! O O O fröh fröh fröh l l l ch ch s s s l l l Q

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

4 Bäume und Minimalgerüste

4 Bäume und Minimalgerüste 4. Bäum un Wälr Charaktrisirung von Minimalgrüstn 4 Bäum un Minimalgrüst Dfinition 4.1. Es in G = (V, E) in zusammnhängnr Graph. H = (V, E ) hißt Grüst von G gw. wnn H in Baum ist un E E gilt. Bmrkung

Mehr

Bundesministerium für Verkehr, Bau und Stadtentwicklung. Bekanntmachung der Regeln für Energieverbrauchskennwerte im Wohngebäudebestand

Bundesministerium für Verkehr, Bau und Stadtentwicklung. Bekanntmachung der Regeln für Energieverbrauchskennwerte im Wohngebäudebestand Bundsmnstrum für Vrkhr, Bau und Stadtntwcklung Bkanntmachung dr Rgln für nrgvrbrauchsknnwrt m Wohngbäudbstand Vom 30. Jul 2009 Im nvrnhmn mt dm Bundsmnstrum für Wrtschaft und Tchnolog wrdn folgnd Rgln

Mehr

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7

Übung zur Vorlesung PC II Quantenchemische Modellsysteme, Atom und Molekülspektroskopie B.Sc. Blatt 7 Pof.. Nobt pp Wintsst 9/ 7. Novb 9 nil Khlöß Übung zu Volsung PC II Quntnchisch Mollsyst, Ato un Molkülspktoskopi B.Sc. Bltt 7. i uphys Si ist in Si i Spktu s ton Wssstoffs. Si bginnt bi 6 n un nt bi,

Mehr

2. Večerní les rozvázal zvonky

2. Večerní les rozvázal zvonky V Přídě (In Ntre s Relm In der Ntr) o. 63 (B.126) 2. zzl n nn Dvořák (141 1904) Vítězslv Hák (135 174) z z z š: m 6 6 6 6 zl Során lt Tenor Bs Poco son zl zl n zl n n z ve c c c zl š: k t k t tá tá tá

Mehr

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien

Wie in der letzten Vorlesung besprochen, ergibt die Differenz zwischen den Standardbildungsenthalpien Vorlsung 0 Spnnungsnrgi dr Cyclolkn Wi in dr ltztn Vorlsung bsprochn, rgibt di Diffrnz zwischn dn Stndrdbildungsnthlpin dr Cyclolkn C n n und dm n-fchn Bitrg für di C - Gruppn [n (-0.) kj mol - ] di Ringspnnung.

Mehr

NAME: VICKI ZODIAC: VIRGINIA. Schäle die Banane und schneide sie in Scheiben.

NAME: VICKI ZODIAC: VIRGINIA. Schäle die Banane und schneide sie in Scheiben. H chndn. Zum Auchndn und Smmln. Folg 1 von 6 APPY CAPRI M 1 G m m N. Rzpt 06 Oct, 2014 t Ab jtz m n dn zn: g Flly-M chn ß T zw ü gb! po Au n hmmmm g n l h c S Obt NAME: LIO ZODIAC: LEON fü n Schlng: 1

Mehr

Hartfolien- Verpackungen öffnen

Hartfolien- Verpackungen öffnen Mxr rg 20 E pr Tropf Spülttl d tw Wr 28 d Mxr gb, fx, pül, br! 29 Hlt & Rg Hlt & Rg 19 Swrg, w gwßtr Doöffr gkft wrd. Hrtfol- Vrpkg öff B Stbxr fktort d Przp bfll, w d Wr d Spülttl Br gbt. I Hrtfol gwßt

Mehr