Didaktik der Elementargeometrie
|
|
|
- Victor Esser
- vor 8 Jahren
- Abrufe
Transkript
1 Humboldt-Universität zu Berlin Sommersemester 2014 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen 3.1 Erkenntnisndung und Erkenntnissicherung Beispiele Beweisen: Sicherung einer Erkenntnis (die als Satz formuliert sein kann). Vor der Erkenntnissicherung sollte im Unterricht i. Allg. die Erkenntnisfindung stehen. Mitunter lassen sich Erkenntnisfindung und -sicherung nicht vollständig trennen. Meist leitet die Frage warum die Phase der Erkenntnissicherung ein. Beispiel: Eine Leiter steht an einer Mauer und rutscht langsam an der Mauer nach unten. Welchen Weg beschreibt der Mittelpunkt der Leiter? Begründe deine Antwort. Beispiel: Innenwinkelsatz Erkenntnisfindung: Messungen, DGS(?) Anschauliche Begründung, Beweisidee Exakter Beweis: Was darf und was muss verwendet werden? Lokales Ordnen. 1
2 3.2 Lokales Ordnen Vollständiger (axiomatischer) Aufbau der Geometrie ist im Unterricht kaum möglich (in der Geschichte: vorläufiger Abschluss eines langen Erkenntnisprozesses.) Verständnis der gegenseitigen Abhängigkeit von Begriffen und Sätzen ist dennoch wünschenswert. Lokales Ordnen als Herstellung eines Beziehungsgefüges innerhalb eines überschaubaren Feldes. Es blieb eben nichts anders übrig, als die Wirklichkeit zu ordnen, Beziehungsgefüge herzustellen und sie bis zu einem Horizont der Evidenz zu führen, der nicht genau festgelegt und recht variabel war. Ich habe diese Tätigkeit die des lokalen Ordnens genannt. FREUDENTHAL Arbeiten mit Sätzen vor dem Beweisen Anwenden von Sätzen Förderung bereichsspezischer Beweisstrategien Bestimme die fehlenden Winkelgrößen in der Figur. Basiswinkelsatz Satz des Thales Innenwinkelsatz Umfangswinkelsatz 1 FREUDENTHAL, H.: Was ist Axiomatik, und welchen Bildungswert kann sie haben? In: Der Mathematikunterricht 9 (1963), 4, S
3 3.3.2 Herausarbeiten von Sätzen In der Mittelstufe kommt enaktiven und ikonischen Wegen der Satzfindung eine hohe Bedeutung zu. Beispiel: Satz des Thales Wo enaktive Zugänge nicht ohne Weiteres möglich sind oder zu ihrer Ergänzung sollten graphische Darstellungen angefertigt und Messungen durchgeführt werden. Gute Möglichkeiten hierfür bietet dynamische Geometriesoftware Notwendige Schritte vor dem Führen (exakter) Beweise Bevor ein Satz bewiesen werden kann, muss seine Aussage von den Schülern wirklich verstanden worden sein. Dazu: Annehmen, dass der Satz gilt; Arbeiten mit dem Satz. Beispiel: Innenwinkelsatz für Dreiecke a) Berechne die fehlenden Winkel. b) Warum gibt es das folgende Dreieck nicht? c) Kann es Dreiecke mit zwei rechten Winkeln geben? 3
4 Beispiel: Satz des Thales In welchen Fällen kannst du mit dem Satz des Thales begründen, dass der gelbe Winkel ein Rechter ist? Beispiel: In jedem Parallelogramm halbieren die Diagonalen einander. In welchen Fällen kannst du die fehlende Streckenlänge angeben? 4
5 3.3.4 Arbeiten mit Sätzen sprachlich-logische Aspekte Notwendige Schritte vor dem Führen (exakter) Beweise Um Beweise führen zu können, müssen Voraussetzungen und Behauptungen klar herausgearbeitet werden. Sinnvoll ist dazu die Formulierung von Sätzen in der Wenn-Dann -Form. Beispiel: Satz des Pythagoras In jedem rechtwinkligen Dreieck ist die Summe der Flächeninhalte der Quadrate über den Katheten gleich dem Flächeninhalt des Quadrates über der Hypotenuse. Wenn ein Dreieck rechtwinklig ist, so ist die Summe der Flächeninhalte der Quadrate über den Katheten gleich dem Flächeninhalt des Quadrates über der Hypotenuse. Bei einigen Sätzen ist die Formulierung in der Wenn-Dann -Form komplizierter (z. B. Satz des Thales, Strahlensätze) bedeutsam für Umkehrung(en). Herausarbeiten von Voraussetzung(en) und Behauptung Häufig Verwendung von Skizzen (sprachliche Vereinfachung) aber: Verkürzungen vermeiden (z. B.: Pythagoras: a 2 + b 2 = c 2 ) Beispiel: Satz des Thales Voraussetzungen: 1. Scheitelpunkt (Eckpunkt) C liegt auf dem Kreis k. 2. AB ist ein Durchmesser von k. Behauptung: γ ist ein rechter Winkel Anschauliche Vorgehensweisen beim Beweisen Gerade Beweisanfängern sollte das Beweisen nicht durch eine zu komplizierte Sprache und auch nicht durch verwirrende Symbole (wie z. B. γ 1,...) erschwert werden. Es lohnt sich, nach Möglichkeiten zu suchen, Beweise ikonisch (bzw. halbikonisch ) aufzubereiten. Halbikonischer Beweis des Satzes des Thales Halbikonischer Beweis des Satzes über die Gegenwinkel im Sehnenviereck 5
6 3.4 Umkehrungen von Sätzen Umkehrungen von Sätzen sind ein heikles Problem. Oft identifizieren Schüler Sätze mit ihren Umkehrungen. Gegenbeispiele sind wichtig. Enaktives Herausarbeiten der Umkehrung des Satzes des Thales 3.5 Arten von Beweisen Zerlegungs-, Ergänzungsbeweise Beweise bzw. Begründungen lassen sich oft auf recht unterschiedliche Arten führen; einige Vorgehensweisen sind im Mathematikunterricht besonders bedeutsam. Zerlegungs- und Ergänzungsbeweise können teilweise unter Zuhilfenahme der Anschauung geführt werden. Beispiel für einen Zerlegungs-/Ergänzungsbeweis (Satz des Pythagoras) Die beiden großen Quadrate haben jeweils die Seitenlänge a + b und deshalb gleiche Flächeninhalte (a + b) 2. Außer den grau eingefärbten Quadraten enthalten diese beiden Quadrate jeweils viermal das Dreieck ABC. Die weißen Flächen haben also in beiden Quadraten den gleichen Flächeninhalt. Deshalb muss der Flächeninhalt der grauen Flächen in den beiden großen Quadraten ebenfalls gleich sein. a 2 + b 2 = c Berechnungsbeweise Bei Berechnungsbeweisen folgt die Behauptung durch algebraische Umformungen von Gleichungen (z. B. zur Flächeninhalts- oder Volumenberechnung). 6
7 Beispiel für einen rechnerischen Beweis Beweis des Satzes des Pythagoras mit Hilfe der Flächeninhaltsformel für rechtwinklige Dreiecke und der binomischen Formeln Da der Flächeninhalt der vier Dreiecke (siehe Abb.) jeweils ab beträgt, gilt: 2 c 2 = (a + b) 2 4 ab 2 = (a + b)2 2ab = a 2 + b Vektorielle Beweise (Sekundarstufe II) Beispiel: Vektorieller Beweis für den Satz des Pythagoras unter Nutzung des Skalarproduktes Da in einem bei C rechtwinkligen Dreieck ABC die Vektoren a = CB und b = CA orthogonal zueinander sind, ist ihr Skalarprodukt Null. Es gilt deshalb: c 2 = c c = AB ( ) 2 AB = AC + CB = ( a b) 2 = a a + b b 2 a b = a a + b b = a 2 + b Abbildungsbeweise, Kongruenzbeweise, Ähnlichkeitsbeweise Bei einem Abbildungsbeweis wendet man eine Kongruenz- oder Ähnlichkeitsabbildung auf eine Figur oder eine Teilfigur an und begründet die Behauptung aufgrund der Eigenschaften dieser Abbildung. Ein Kongruenzbeweis stützt sich auf die Kongruenzsätze für Dreiecke: Man sucht in der Figur Paare von Teildreiecken und zeigt deren Kongruenz. Hieraus kann man auf gleich große Winkel oder gleich lange Strecken schließen. Ein Ähnlichkeitsbeweis zieht die Ähnlichkeitssätze für Dreiecke heran: Man sucht in der Figur Paare von Teildreiecken und zeigt deren Ähnlichkeit. Hieraus kann man auf gleiche Verhältnisse von Streckenlängen oder gleich große Winkel schließen. Beispiel für einen Abbildungsbeweis Satz: In jedem Parallelogramm sind gegenüberliegende Seiten gleich lang. Ein Begründung bzw. ein Beweis kann mithilfe einer Punktspiegelung (Drehung um 180 ) gegeben werden. 7
8 Anschauliche Begründung (auch mithilfe von Transparenzpapier): Eine Drehung um 180 um den Mittelpunkt M einer der Diagonalen des Parallelogramms bildet das Parallelogramm auf sich selbst ab (A auf C, B auf D, C auf A und D auf B). Also müssen AB und CD sowie BC und DA jeweils gleich lang sein. Anschauliche Begründungen auf abbildungsgeometrischer Grundlage lassen sich exaktifizieren. Dazu müssen Eigenschaften der verwendeten Abbildungen (im obigen Beispiel betrifft dies die Punktspiegelungen) erarbeitet und verwendet werden. Eigenschaften von Punktspiegelungen: (S1) Die Verbindungsstrecke eines Punktes mit seinem Bildpunkt wird von dem Spiegelzentrum halbiert. (S2) Gerade und Bildgerade sind stets zueinander parallel. (S3) Der Schnittpunkt zweier Geraden wird auf den Schnittpunkt der Bildgeraden abgebildet. (S4) Punktspiegelungen sind involutorische Abb., d. h. aus A B folgt B A. (S5) Strecken werden auf Strecken gleicher Länge abgebildet. Ein exakter Beweis des o. g. Satzes unter Verwendung dieser Eigenschaften ist möglich, umfasst aber recht viele Schritte (vgl. HOLLAND: Geometrie in der Sekundarstufe, S. 62f). Beispiel für einen Kongruenzbeweis Satz: In jedem Parallelogramm sind gegenüberliegende Seiten gleich lang. Da ABCD ein Parallelogramm ist, gilt: AB DC und AD BC. α 1 und γ 1 sind Wechselwinkel an AB und DC α 1 = γ 1. α 2 und γ 2 sind Wechselwinkel an AD und BC α 2 = γ 2. In den beiden Dreiecken ABC und CDA gilt: AC = CA, CAB = α 1 = γ 1 = ACD, BCA = γ 2 = α 2 = DAC. Nach dem Kongruenzsatz wsw sind die beiden Dreiecke kongruent: ABC = CDA. Also gilt AB = CD und BC = DA. Abbildungs- vs. Kongruenzmethode Vorteile der Abbildungsmethode Anschaulichkeit unterschiedliche Niveaustufen möglich Einbeziehung der Symmetrieeigenschaften von Figuren Nachteile der Abbildungsmethode unübersichtlich viele Eigenschaften der verschiedenen Abbildungen exakte Beweise sind oft recht lang Unsicherheitsfaktor Vorteile der Kongruenzmethode besser überschaubares Feld an zu verwendenden Fakten (Definitionen, Kongruenzsätze, einige weitere Sätze) einfachere und kürzere Beweisdarstellung 8
9 Auch Kongruenzbeweise lassen sich oft recht anschaulich darstellen, ohne dass der wesentliche Inhalt verlorengehen muss. Da ABCD ein Parallelogramm ist, gilt: AB DC und AD BC. Die rot markierten Winkel sind gleich groß (Wechselwinkel an geschnittenen Parallelen). Die blau markierten Winkel sind gleich groß (Wechselwinkel an geschnittenen Parallelen). Die Dreiecke ABC und CDA haben eine gemeinsame Seite und stimmen in zwei Winkelgrößen überein. Nach wsw sind die beiden Dreiecke kongruent. Deshalb ist AB = CD und BC = DA. In neueren Schulbüchern hat sich die Kongruenzmethode weitgehend durchgesetzt. Beispiele für Ähnlichkeitsbeweise: Beweise des Katheten- und des Höhensatzes mithilfe ähnlicher Teildreiecke (zu finden in vielen Gymnasiallehrbüchern der Klassenstufe 9, teilweise auch 8) Direkte und indirekte Beweise Bei einem direkten Beweis wird eine unmittelbare und direkte Argumentationskette von den Voraussetzungen zur Behauptung aufgebaut, unter Einbeziehung bekannter Axiome und Sätze. Ein Widerspruchsbeweis (indirekter Beweis) wird geführt, indem man zusätzlich zu den Voraussetzungen die Verneinung der Behauptung annimmt und zeigt, dass diese Annahme letztlich in einen Widerspruch zu den Voraussetzungen mündet Existenz- und Eindeutigkeitsbeweise Bei einem Existenzbeweis ist zu zeigen, dass unter den gegebenen Voraussetzungen ein Objekt mit bestimmten Eigenschaften existiert. Bei einem Eindeutigkeitsbeweis ist zu zeigen, dass unter den gegebenen Voraussetzungen höchstens ein Objekt mit bestimmten Eigenschaften existiert (der Nachweis der Existenz dieses Objekts ist dann nicht Bestandteil des Beweises). Eindeutigkeitsbeweise werden häufig als Widerspruchsbeweise geführt: Man nimmt an, dass zwei verschiedene Objekte mit den geforderten Eigenschaften existieren und führt diese Annahme zu einem Widerspruch. 9
Didaktik der Elementargeometrie
Humboldt-Universität zu Berlin Sommersemester 2015 Institut für Mathematik A. Filler. Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 3 Argumentieren, Beweisen, lokales Ordnen
Elemente der Mathematik - Sommer 2016
Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
1 Begriffe und Bezeichnungen
1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,
Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie
Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe
Geometrie (4b) Wintersemester 2015/16. Kapitel 3. Dreieck, Viereck, Fünfeck, Kreis. Anwendungen & bekannte Sätze
Kapitel 3 Dreieck, Viereck, Fünfeck, Kreis Anwendungen & bekannte Sätze 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Im Folgenden werden Maßzahlen für Winkelgrößen
Euklidische. abbildungsgeometrische Herangehensweisen an die Geometrie
Euklidische abbildungsgeometrische Herangehensweisen an die Geometrie Seminareinheit im Seminar Ausgewählte Kapitel der Mathematik Leitung: Prof. Andreas Filler Studenten: Elisa Gliederung Aufbau der Geometrie
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten
Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2
Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung
Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist
7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d
Aufgabe 1: Multiple Choice Test
PH Heidelberg, Fach Mathematik, Klausur zur Teilprüfung Modul, Einführung in die Geometrie, SS010, 30.07.010 Aufgabe 1: Multiple Choice Test Kennzeichnen Sie die Ihrer Meinung nach richtigen Antworten.
Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus
Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch
Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke
edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.00, RPO vom 4.08.00 Einführung in die Geometrie Wintersemester 1/1, 1. Februar 01 Klausur zur ATP, Modul, Einführung
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
Geometrie. Homepage zur Veranstaltung: Lehre Geometrie
Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen
Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6
Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,
Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke
Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,
Grundlagen Mathematik 7. Jahrgangsstufe
ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und
Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:
Ähnlichkeit GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. März 2016 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................
13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 2010/2011
13. Landeswettbewerb Mathematik Bayern Lösungsbeispiele 1. Runde 20/2011 Aufgabe 1 Sonja hat neun Karten, auf denen die neun kleinsten zweistelligen Primzahlen stehen. Sie will diese Karten so in eine
21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen
21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2
1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
2.6. Aufgaben zu Kongruenzabbildungen
Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter
Aehnlichkeit 1. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 31. Oktober 2009 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................
Übersicht zur Vorlesung
Stand: 19.1.2012 Übersicht zur Vorlesung Ausgewählte Kapitel der Geometrie Definitionen/Axiome Anordnungsaxiome Archimedisches Axiom Definition von größer in den reellen Zahlen Intervalle Punkte, Geraden
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Grundlagen. Einteilung der Dreiecke. Besondere Punkte des Dreiecks
Der Name leitet sich von den griechischen Begriffen Tirgonon Dreieck und Metron Maß ab. ist also die Lehre vom Dreieck, d.h. die Grundaufgabe der besteht darin, aus drei Größen eines gegebenen Dreiecks
11. Landeswettbewerb Mathematik Bayern
11 Landeswettbewerb Mathematik Bayern Aufgaben und Lösungsbeispiele 1 Runde 008 Aufgabe 1 Das abgebildete Viereck soll durch einen einzigen geraden Schnitt so zerlegt werden, dass zwei Teile gleicher Form
Algebraische Eigenschaften des Skalarprodukts
Voyage TM 00/ TI-89 Titanium Analytische Geometrie Vektorrechnung Name des KB: Algebraische Eigenschaften des Skalarprodukts Wir wissen: Das Rechnen mit Zahlen beruht auf bestimmten Rechengesetzen. Gesetze
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Geometrie WiSe 2014/2015 am 23.1.2015 Bearbeiten Sie bitte zwei der drei folgenden Aufgaben! Falls Sie alle drei Aufgaben bearbeitet haben sollten, kennzeichnen
22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen
22. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1982/1983 Aufgaben und Lösungen 1 OJM 22. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
Didaktik der Geometrie Prof. M. Ludwig. 1. Aus Sicht der Fachwissenschaft Mathematik Bedeutung Einteilung
Beweisen und Argumentieren 3.1. Überblick 3.1.1. Beweisen und Beweisdarstellung 3.1.2. Einteilung 3.2. Theorie 3.2.1. Die Rolle des Beweisens und Argumentierens im Mathematikunterricht 1. Aus Sicht der
Sphärische Zwei - und Dreiecke
TECHNISCHE UNIVERSITÄT DORTMUND Sphärische Zwei - und Dreiecke Proseminar innerhalb des Lehramtsstudiums im Fach Mathematik Meryem Öcal Matrikelnummer 168833 Studiengang LABG 2009 Prüfer: Prof. Dr. Lorenz
Beweisen mithilfe von Vektoren
330 9 Abstände und Winkel zwischen Geraden und Ebenen Beweisen mithilfe von Vektoren In den vorherigen Abschnitten sind Vektoren dazu benutzt worden, Geraden und Ebenen im Raum zu beschreiben und ihre
Klausur zur Akademischen Teilprüfung, Modul 2,
PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung
Der Satz des Pythagoras
Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen
Grundwissen. 7. Jahrgangsstufe. Mathematik
Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
Mathematik Geometrie
Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen
Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -
1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;
Vierte Schularbeit Mathematik Klasse 3E am
Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19
Gruppenarbeit Satzgruppe des Pythagoras
Anregungen zur Gestaltung schülerzentrierter, materialgestützter Unterrichtsphasen Gruppenarbeit Satzgruppe des Pythagoras Lösungshinweise für Lehrkräfte ie folgenden Lösungshinweise sollen die Lehrkräfte
2.2C. Das allgemeine Dreieck
.C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die
π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit).
Das geometrische π π geometrisch ermittelt als Gerade im Thaleskreis (mit 99,9%iger Genauigkeit). nach Hans-Werner Meixner und Coautor Christian Meixner Als Basis für die Ausführungen zur geometrischen
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
Klausur zur Einführung in die Geometrie im SS 2002
Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen
Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis
Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken
Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?
Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.
4. Parallelität ohne Metrik
4. Parallelität ohne Metrik In der Euklidischen Geometrie wird nicht gemessen. as hat zwei Gründe. Erstens, gab es bei den Griechen noch kein entwickeltes Stellenwertsystem. Zweitens, haben sie ja schon
Trigonometrie. Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe. Ronald Balestra CH Zürich
Trigonometrie Geometrie - Kapitel 3 Sprachprofil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 31. Januar 2013 Überblick über die bisherigen ALGEBRA - Themen:
Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich
GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt
Didaktik der Elementargeometrie
Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren
Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $
$Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am
Nachklausur zur Modulprüfung zum Lehrerweiterbildungskurs Geometrie am 12.7.17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Punkte Bearbeiten Sie bitte drei der vier folgenden
Inhaltsverzeichnis. Einleitung... 7
Inhaltsverzeichnis Einleitung... 7 I Ziele des Geometrieunterrichts (H.-G. Weigand)... 13 1 Lernziele, Kompetenzen und Leitlinien... 13 2 Allgemeine Ziele des Geometrieunterrichts... 17 2.1 Geometrie und
Beweise im Geometrieunterricht
Beweise im Geometrieunterricht Nancy Jens Daniel Metzsch Freie Universität Berlin Didaktik des Stochastik-, Geometrie-, Algebra- und Arithmetikunterrichts, SS 2006, Dr. Martina Lenze Vorformen des mathematischen
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
3 Geometrisches Beweisen
22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette
Themenbereich: Besondere Dreiecke Seite 1 von 6
Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften
Elementare Geometrie - Die Gerade & das Dreieck Teil I
Proseminar zur Linearen Algebra und Elementargeometrie Elementare Geometrie - Die Gerade & das Dreieck Teil I Eingereicht von: Alexandra Kopp 178294 [email protected] Eingereicht bei: Prof.
Der Flächeninhalt eines Sehnenvierecks auf den Spuren des indischen Mathematikers Brahmagupta ( )
Den Flächeninhalt eines allgemeinen Vierecks bestimmt man meistens durch Zerlegung in Dreiecke. Geht es auch anders? Für den Fall, dass das Viereck ein Sehnenviereck ist, hat der indische Mathematiker
Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks.
Aufgabe 11.1 Definieren Sie die Begriffe Innenwinkel eines Dreiecks und Außenwinkel eines Dreiecks. (Innenwinkel eines Dreiecks): Sei ABC ein Dreieck. Die Winkel < AB +, AC + ; < BA +, BC + und < CA +,
Arbeitsblatt Mathematik 2 (Vektoren)
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben
Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.
Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende
ÖMO. Geometrie. Grundlagen der. Birgit Vera Schmidt. Österreichische MathematikOlympiade
ÖMO Österreichische MathematikOlympiade Grundlagen der Geometrie 14. 11. 2008 Birgit Vera Schmidt 1 Wiederholung 1.1 Grundlagen 1.1.1 Strecken und Verbindungen Eine Strecke ist eine Verbindung zwischen
Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen
3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine
Definitionen: spitzer Winkel, stumpfer Winkel
Definitionen: spitzer Winkel, stumpfer Winkel Die in der Schule üblichen Definitionen über den Vergleich mit 90 dürften klar sein. Wir geben hier die Definitionen ohne die Verwendung von Zahlen für die
Ähnlichkeitsabbildungen und Ähnlichkeitslehre
Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.
AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,
Korrespondenz-Seminar der LSGM 2011/12. Klasse 7, Treff 4 am 9. Juni 2012
1 Korrespondenz-Seminar der LSGM 011/1 Klasse 7, Treff 4 am 9. Juni 01 Vor dem Klaus-Spiel wurde eine geografische Frage erörtert: Ein Mann geht 5 km nach Süden, dann 5 km nach Osten und dann 5 km nach
Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23
Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des
30. Satz des Apollonius I
30. Satz des Apollonius I Das Teilverhältnis T V (ABC) von drei Punkten ABC einer Geraden ist folgendermaßen definiert: Für den Betrag des Teilverhältnisses gilt (ABC) = AC : BC. Für das Vorzeichen des
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
Dreieckskonstruktionen und Kongruenzsätze
Dreieckskonstruktionen und Kongruenzsätze 27. Oktober 2009 Vertr. Prof. Dr. Katja Krüger Universität Paderborn Didaktik der Geometrie II (Klasse 7-10) 1 Inhalt Was sollen eigentlich Figuren sein? Kongruente
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Der Satz von Pythagoras
Der Satz von Pythagoras Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 W. Kinzner (TUM) Der Satz von Pythagoras 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 Einleitung
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Vierecke Kurzfragen. 2. Juli 2012
Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?
(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)
Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte
Mitten-Dreiund Vier-Ecke
Alle Ergebnisse - dazu gehören auch Kopiene der Zeichnungen - sind im Heft zu notieren Du wirst im Folgenden einiges selbst herausfinden müssen. Nutze dazu auch die Hilfen, dei dir kig liefert. 1 Mittendreieck
