5. Kennlinien elektrischer Leiter

Größe: px
Ab Seite anzeigen:

Download "5. Kennlinien elektrischer Leiter"

Transkript

1 KL 5. Kennlinien elektrischer Leiter 5.1 Einleitung Wird an einen elektrischen Leiter eine Spannung angelegt, so fliesst ein Strom. Als Widerstand des Leiters wird der Quotient aus Spannung und Strom definiert: = / Einheit: 1 /A = 1 Ohm = 1 Ω (5.1) Der Widerstand hängt vom Material und von der Geometrie des Leiters ab. m einfachsten Fall ist der Strom proportional zur angelegten Spannung, der Widerstand also konstant. n diesem Fall handelt es sich um einen Ohmschen Widerstand, es gilt das Ohm sche Gesetz: = / = konst. bei konstanter Temperatur T (5.2) n Wirklichkeit ist diese einfache Proportionalität nie exakt vorhanden, sondern der Strom hängt in viel komplizierterer Weise von der angelegten Spannung ab. Die Eigenschaften solcher Leiter werden grafisch in Form von sog. Kennlinien oder Charakteristiken, welche den Strom als Funktion der Spannung darstellen, angegeben. () () Abbildung 5.1: Kennlinie eines elektrischen Leiters. Abbildung 5.2: Kennlinie für einen Leiter mit konstantem ( Ohmschem ) Widerstand. n der in Abbildung 5.1 dargestellten Kennlinie ist = / nicht konstant, es gilt 1 = 1/1 > 2 = 2/2. Der Widerstand nimmt mit zunehmender Spannung ab. st die Kennlinie eine Gerade durch den Nullpunkt, wie in Abbildung 5.2 dargestellt, so ist = konstant (Ohm sches Gesetz). 1

2 2 5. Kennlinien elektrischer Leiter n diesem ersuch werden die Kennlinien verschiedener Leitertypen untersucht. Die Form der Kennlinien liefert nformationen über die dabei vorkommenden Leitungsmechanismen. Stichworte zu diesem ersuch sind: elektrische Stromkreise, Kirchhoffsche egeln, elektrischer Widerstand verschiedener Elemente, Ohmsches Gesetz, Messung von Spannung und Strom, und Kennlinien verschiedener Elemente 5.2 Theoretischer Teil Metallische Leiter Die Leitfähigkeit von Metallen und ihren Legierungen kommt durch die freien Elektronen, die im onengitter leicht beweglich sind, zustande. Bei konstanter Temperatur ist der Widerstand unabhängig von der Spannung und es gilt das Ohmsche Gesetz. Wird aber die Temperatur nicht durch Kühlung konstant gehalten, so bewirkt die beim Stromdurchgang erzeugte Wärme Q = t eine Temperaturerhöhung des Leiters (vgl. Toaster). Dabei nimmt der Widerstand im Allgemeinen zu. m einfachsten Fall hängt linear von der Temperatur ab. st T die absolute Temperatur, dann gilt: = 0 (1 + αt ) Der Temperaturkoeffizient α = 1 0 d dt (5.3) gibt die relative Widerstandsänderung pro Grad Temperaturänderung an. Abbildung 5.3: Lineare Abhängigkeit des Widerstandes von der Temperatur. T Für reine Metalle ist α = 1/ % pro Grad. Durch erwendung von Legierungen kann α auf etwa 0.002% pro Grad gesenkt werden Halbleiter Die Leitfähigkeiten von Halbleitern liegen zwischen denjenigen von solatoren und Metallen. Die moderne Technik der Herstellung von Halbleitern aus verschiedenen Materialien und Schichten ermöglicht es sowohl die Zahl der Leitungselektronen als auch ihre Beweglichkeit in weiten Grenzen

3 5.2. THEOETSCHE TEL 3 zu variieren. Durch Zugabe von Fremdatomen (erunreinigungen, Dotierungen) kann die Leitfähigkeit eines Halbleiters stark erhöht werden. Hier unterscheidet man: n-dotiertes Material: n das Gitter eines aus vier-wertigen Atomen bestehenden Halbleiterkristalls (z.b. Silizium oder Germanium) werden Atome eines fünf-wertigen Elementes eingebaut. n der äussersten Schale dieser Fremdatome ist ein Elektron zu viel vorhanden. Dieses Elektron ist fast frei beweglich und trägt zur Leitfähigkeit bei. Man nennt diese Fremdatome Donatoren. p-dotiertes Material: n das Kristallgitter werden Atome eines drei-wertigen Elementes eingebaut. n der äussersten Schale der Fremdatome fehlt jetzt ein Elektron. Dieses Loch ist bestrebt, ein Elektron aufzunehmen. Wird das Loch durch ein Gitterelektron aufgefüllt, entsteht an anderer Stelle ein Loch; man spricht von Löcherwanderung. Diese Fremdatome nennt man Akzeptoren. m Folgenden werden einige Anwendungsbeispiele für Halbleiter beschrieben: Thermistoren Der Widerstand von Thermistoren ist stark temperaturabhängig. Die sog. NTC (Negative Temperature Coefficient)-Widerstände bestehen aus Oxiden von Cr, Mn, Fe oder ähnlichen. n Fe ist zum Beispiel ein Teil der Fe 3+ -onen durch Fe 2+ - oder Ti 4+ -onen ersetzt. Mit zunehmender Temperatur wird das überzählige Elektron des Fe 2+ -ones frei und zum Leitungselektron (n-material); der Widerstand des Materials sinkt. Solche Widerstände können zur Temperaturmessung verwendet werden, da ihre Temperaturkoeffizienten zwischen -2% und -6% pro Grad liegen. Abbildung 5.4 zeigt einige Kennlinien und die Temperaturabhängigkeit eines NTC-Widerstandes. () T 3 T 2 T 1 T 1 < T 2 < T 3 T Abbildung 5.4: Kennlinien eines Thermistors für verschiedene Temperaturen (linkes Bild) und Abhängigkeit des Widerstandes von der Temperatur (rechtes Bild). Halbleiter-Dioden Eine Halbleiterdiode besteht aus einer p-material- und einer n-material-schicht. Der Kontakt zwischen p-leitendem und n-leitendem Halbleitermaterial erzeugt den pn-übergang, welcher typisch ist für die grosse Gruppe der Halbleiterdioden. Diese finden ihren Einsatz ganz allgemein in der

4 4 5. Kennlinien elektrischer Leiter Gleichrichtung von Spannungen unterschiedlicher Polarität. Die typische Kennlinie einer Halbleiterdiode zeigt Abbildung 5.5. Während der Strom in Durchlassrichtung schon bei kleiner Spannung rasch ansteigt, ist er in Sperrrichtung sehr klein, bis zur maximal zulässigen Sperrspannung, die je nach Bauart zwischen -10 und -10 k liegen kann. z () Sperrgebiet Durchlassgebiet Abbildung 5.5: Kennlinie einer Diode. z ist die maximale Sperrspannung. Dieses erhalten der Diode lässt sich folgendermassen erklären: Durchlassrichtung _ + + _ + + p n + _ 0 Die Löcher des p-materials werden in die n-schicht, die freien Elektronen des n-materials in die p-schicht getrieben, d.h. es fliesst dauernd ein Strom durch die Grenzschicht. Der Widerstand der Trennschicht ist sehr klein. Abbildung 5.6: Diode in Durchlassrichtung. Sperrrichtung _ + + _ + + p n _ + 0 Löcher der p-schicht und Elektronen der n-schicht wandern von der Grenzschicht weg, d.h. Ladungsträger beider orzeichen werden aus der Grenzschicht entfernt. Es entsteht eine nichtleitende Zone. Nach dem Aufbau der sog. Sperrschicht fliesst kein Strom mehr. Abbildung 5.7: Diode in Sperrrichtung. Für Dioden verwendet man die in der Abbildung 5.8 gezeichneten Symbole. Die Diode leitet, wenn die Dreiecksspitze in ichtung des Spannungsabfalls zeigt: + Durchlassrichtung + Sperrrichtung Abbildung 5.8: Symbol für Diode in Durchlass- und in Sperrrichtung.

5 5.2. THEOETSCHE TEL 5 Dioden werden zum Beispiel zur Gleichrichtung von Wechselströmen benützt. Abbildung 5.9: Diode als Gleichrichter. ~ = 0 sin(ωt) t t Lichtabhängige Widerstände Lichtabhängige Widerstände bestehen zum Beispiel aus CdS, einem Material in welchem einfallendes Licht Elektronen freisetzt und so eine erkleinerung des Widerstandes bewirkt.

6 6 5. Kennlinien elektrischer Leiter 5.3 Experimenteller Teil Aufgabenstellung Messung der Kennlinie für folgende Elemente: Ohmscher Widerstand Glühlampe Diode Qualitative Beobachtung der Widerstandsänderung an einem lichtempfindlichen Widerstand Betrachtung der Temperaturabhängigkeit des Widerstands eines Thermistors ersuchsdurchführung Wichtige Hinweise bevor Sie beginnen! Während einer Messreihe sollte der Messbereich der nstrumente nicht geändert werden. Der Maximalstrom von 200 ma darf nie überschritten werden, sonst brennt die Sicherung durch! Messung der Kennlinien Nehmen Sie die Kennlinien mit der in Abbildung 5.10 skizzierten Schaltung auf. Am Potentiometer p (es ist im Spannungsgerät eingebaut) können Spannungen zwischen 0 und 0 abgegriffen werden. Ohm scher Widerstand: Berechnen Sie für den Widerstand aus der angegebenen maximalen Leistung P den maximalen Strom max für die maximale Spannung max und wählen Sie dann auf dem Ampèremeter den passenden Messbereich. Nehmen Sie dann die Kennlinie in Schritten von 5 auf. Lesen Sie zu jedem Spannungswert den entsprechenden Strom ab. 0 P L L = - Ohm'scher Widerstand - Glühlampe - Diode Abbildung 5.10: Anordnung zur Messung der Kennlinien. Glühlampe: Die maximal zulässige Spannung ist angegeben. Erhöhen Sie die Spannung langsam bis Sie den Grenzwert von Spannung oder Strom (200 ma) erreichen und legen Sie die passenden Messbereiche der nstrumente fest. Nehmen Sie die Kennlinie von 0 an in Schritten von 5 auf. Lesen Sie zu jedem Spannungswert den entsprechenden Strom ab.

7 5.3. EXPEMENTELLE TEL 7 Diode: Messen Sie die Kennlinie der Diode für positive und für negative Spannungen (Diode umpolen!). Messen Sie den Bereich, in dem die Diode zu leiten beginnt, in möglichst kleinen Schritten (0.02) aus. Achtung: Der Strom in der Diode steigt sehr plötzlich an! Der maximal zulässige Strom ist angegeben. Stellen Sie die Messwerte in einer übersichtlichen Tabelle zusammen. Fotowiderstand Prüfen Sie qualitativ, wie bei fester Spannung ( = 3 ) der Widerstand von der ntensität des einfallenden Lichtes abhängt, indem Sie den Widerstand verschieden stark mit der Hand abdecken und den Strom jeweils ablesen. Thermistor Die ersuchsanordnung ist in der Abbildung 5.11 skizziert. Bei fester Spannung soll der Widerstand des Thermistors als Funktion der Temperatur bestimmt werden. Thermometer 0 NTC Wasser Dewar Abbildung 5.11: Anordnung zur Messung der Kennlinie des Thermistors (NTC). Stellen Sie eine feste Spannung von 10 ein. Messen Sie den Strom für fünf verschiedene Wassertemperaturen zwischen ca. 10 C und 90 C. Wichtig: Warten Sie vor der Messung und dem Ablesen des Thermometers jeweils, bis sich Temperaturgleichgewicht eingestellt hat Auswertung Kennlinien Zeichnen Sie die drei Kennlinien auf Millimeterpapier auf. Berechnen Sie für jeden Messpunkt (,) den Widerstand = / und stellen Sie grafisch als Funktion von dar (5.12).

8 8 5. Kennlinien elektrischer Leiter i i = i i i i i Abbildung 5.12: Auswertung der Kennlinien. Thermistor Berechnen Sie aus den Strom- und Spannungswerten für jede der fünf Temperaturen den Widerstand und zeichnen Sie diesen als Funktion der Temperatur auf Millimeterpapier auf. Der Widerstand des verwendeten Thermistors hängt exponentiell von der Temperatur ab: (T ) = A e B/T (5.4) ln wobei A und B Konstanten und T die Temperatur in Kelvin sind. Durch Logarithmieren ergibt sich (siehe auch den ersuch Kapazitäten (C)) : ln A Δln 1/T Δln 1/T ln = ln A + B T (5.5) Tragen Sie ln als Funktion von 1/T auf und bestimmen Sie B aus der Steigung und A aus dem Achsenabschnitt der sich ergebenden Geraden. B = ln 1/T Abbildung 5.13: Steigung der Geraden. Der Temperaturkoeffizient α entspricht der relativen Widerstandsänderung pro Grad Temperaturänderung. Er kann für den Thermistor durch Ableiten von Gleichung (5.4) nach der Temperatur T berechnet werden: ( d = A e B/T B ) dt T 2 1 d dt = B T 2 Der Term auf der linken Seite dieser Gleichung ist gerade die relative Widerstandsänderung pro Grad Temperaturänderung, d.h. der Temperaturkoeffizient α. Es ist also: Berechnen Sie α für T = 300 K. α = 1 d dt = B T 2 (5.6)

9 5.4. ANHANG Anhang Einfluss der nnenwiderstände von Messinstrumenten Jedes Messinstrument hat einen endlichen nnenwiderstand. Bei der Messung kleiner Widerstände L kann der nnenwiderstand ia des Ampèremeters nicht gegenüber L vernachlässigt werden. Unter Berücksichtigung der nnenwiderstände erhält man dann folgendes Schaltung: ia K 1 2 Der gemessene Strom teilt sich im Punkt K in einen Strom 1 durch das oltmeter und einen Strom 2 durch den Widerstand L auf: 0 P L i Abbildung 5.14: Anordnung zur Messung kleiner Widerstände L. Also: = = 1 i = 2 L 1 = 2 L i 0 für i L st also der nnenwiderstand des oltmeters viel grösser als L, so ist der Strom 1 durch das oltmeter sehr klein und der gemessene Strom stimmt mit dem tatsächlich durch L fliessenden Strom 2 = 1 gut überein. Ein gutes oltmeter hat deshalb einen grossen nnenwiderstand ( Ω). Um grosse Widerstände L zu messen, d.h. wenn i gegen L nicht zu vernachlässigen ist, baut man die Schaltung wie folgt auf: ia Die gemessene Spannung setzt sich aus dem Spannungsabfall am Ampèremeter und dem Spannungsabfall an L zusammen: 0 P L = ia + L i Also: L = ia für ia L Abbildung 5.15: Anordnung zur Messung grosser Widerstände L. Der nnenwiderstand eines guten Ampèremeters soll also möglichst klein sein. Beim verwendeten nstrument beträgt er etwa 1Ω bei 200 ma Messbereich.

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Physik-nstitut der Universität Zürich nhaltsverzeichnis 10 Kennlinien elektrischer Leiter

Mehr

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!

Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position! FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.

Mehr

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den E8 Kennlinien Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 08.01.2001 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Metalle 2.2 Halbleiter 2.3 Gasentzladugen 3.

Mehr

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1

Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Physik-Übung * Jahrgangsstufe 8 * Elektrische Widerstände Blatt 1 Geräte: Netzgerät mit Strom- und Spannungsanzeige, 2 Vielfachmessgeräte, 4 Kabel 20cm, 3 Kabel 10cm, 2Kabel 30cm, 1 Glühlampe 6V/100mA,

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Nichtlineare Bauelemente - Protokoll zum Versuch

Nichtlineare Bauelemente - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik

Halbleiter. Das Herz unserer multimedialen Welt. Bastian Inselmann - LK Physik Halbleiter Das Herz unserer multimedialen Welt Inhalt Bisherig Bekanntes Das Bändermodell Halbleiter und ihre Eigenschaften Dotierung Anwendungsbeispiel: Funktion der Diode Bisher Bekanntes: Leiter Isolatoren

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam 9. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben............................... 2 2 Vorbetrachtungen

Mehr

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis:

Widerstände. Schulversuchspraktikum WS 2000/2001 Redl Günther und 7.Klasse. Inhaltsverzeichnis: Schulversuchspraktikum WS 2000/2001 Redl Günther 9655337 Widerstände 3. und 7.Klasse Inhaltsverzeichnis: 1) Vorraussetzungen 2) Lernziele 3) Verwendete Quellen 4) Ohmsches Gesetz 5) Spezifischer Widerstand

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Vorlesung 3: Elektrodynamik

Vorlesung 3: Elektrodynamik Vorlesung 3: Elektrodynamik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16 Der elektrische Strom Elektrodynamik:

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Protokoll zum Versuch Nichtlineare passive Zweipole

Protokoll zum Versuch Nichtlineare passive Zweipole Protokoll zum Versuch Nichtlineare passive Zweipole Chris Bünger/Christian Peltz 2005-01-13 1 Versuchsbeschreibung 1.1 Ziel Kennenlernen spannungs- und temperaturabhängiger Leitungsmechanismen und ihrer

Mehr

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur

Versuch 2: Kennlinienaufnahme einer pn-diode in Abhängigkeit der Temperatur Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A

Q t U I R = Wiederholung: Stromstärke: Einheit 1 Ampere, C = A s. Elektrischer Widerstand: Einheit 1 Ohm, Ω = V/A 1 Wiederholung: Stromstärke: I = Q t Einheit 1 Ampere, C = A s Elektrischer Widerstand: R = U I U = R I Einheit 1 Ohm, Ω = V/A Standard Widerstände: 2 Aber auch dies sind Widerstände: Verstellbare Widerstände

Mehr

6.2.6 Ohmsches Gesetz ******

6.2.6 Ohmsches Gesetz ****** 6..6 ****** Motivation Das Ohmsche Gesetz wird mithilfe von verschiedenen Anordnungen von leitenden Drähten untersucht. Experiment 6 7 8 9 0 Abbildung : Versuchsaufbau. Die Ziffern bezeichnen die zehn

Mehr

Das Ohmsche Gesetz (praktisch)

Das Ohmsche Gesetz (praktisch) Grundlagen der Elektrotechnik: OHMSCHES GESETZT Seite 1 Das Ohmsche Gesetz (praktisch) Üblicher Weise wird ein physikalisches Gesetz theoretisch erklärt. Dies erfolgt auch in diesem Dokument etwas später.

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 3. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Kapazität, Induktivität Halbleiter, Halbleiterdiode Wechselspannung

Mehr

Schaltzeichen. Schaltzeichen

Schaltzeichen. Schaltzeichen Die Eigenschaften des pn-übergangs werden in Halbleiterdioden genutzt. Halbleiterdioden bestehen aus einer p- und einer n-leitenden Schicht. Die Schichten sind in einem Gehäuse miteinander verbunden und

Mehr

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 -

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 - Name: Datum: weitere Gruppenmitglieder : Vorbereitung: DORN-BADER Mittelstufe S. 271, roter Kasten S. 272, roter Kasten, S. 273, Abschnitt 2. Thema:

Mehr

Thema Elektrizitätslehre Doppellektion 7

Thema Elektrizitätslehre Doppellektion 7 Natur und Technik 2 Physik Lektionsablauf Thema Elektrizitätslehre Doppellektion 7 Ziele Einblick in das Leben eines Forscher erhalten Das Ohmsche Gesetz herleiten Das Ohmsche Gesetz und die Umformungen

Mehr

Versuch E2a Kennlinien von Widerständen

Versuch E2a Kennlinien von Widerständen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E2a Kennlinien von Widerständen Aufgaben 1. Es sind die s--kennlinien für einen metallischen Widerstand (Glühlampe), einen

Mehr

Dotierung und Sättigungssperrströme an pn Übergängen

Dotierung und Sättigungssperrströme an pn Übergängen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Dotierung und Sättigungssperrströme an pn Übergängen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw berlin.de

Mehr

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke

Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,

Mehr

4. Feldeffekttransistor

4. Feldeffekttransistor 4. Feldeffekttransistor 4.1 Aufbau und Funktion eines Sperrschicht-FETs (J-FET) Eine ganz andere Halbleiterstruktur gegenüber dem Bipolartransistor weist der Feldeffektransistor auf. Hier wird ein dotierter

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung. oder: Ach ihr da Ohm, macht Watt ihr Volt!

Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung. oder: Ach ihr da Ohm, macht Watt ihr Volt! Bestimmung des elektrischen Widerstands durch Strom- und Spannungsmessung oder: Ach ihr da Ohm, macht Watt ihr olt! 20. März 2013 1 orbereitung Erste Themen der orbereitung sd die kirchhoffschen Gesetze

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 2. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Strom und Spannung Ohmscher Widerstand und Ohmsches Gesetz

Mehr

Geschichte der Halbleitertechnik

Geschichte der Halbleitertechnik Geschichte der Halbleitertechnik Die Geschichte der Halbleitertechnik beginnt im Jahr 1823 als ein Mann namens v. J. J. Berzellus das Silizium entdeckte. Silizium ist heute das bestimmende Halbleitermaterial

Mehr

Auswertung: Eigenschaften elektrischer Bauelemente

Auswertung: Eigenschaften elektrischer Bauelemente Auswertung: Eigenschaften elektrischer Bauelemente Christine Dörflinger (christinedoerflinger@gmail.com) Frederik Mayer (fmayer163@gmail.com) Gruppe Do-9 4. Juli 2012 1 Inhaltsverzeichnis 1 Untersuchung

Mehr

Labor Elektrotechnik. Versuch: Temperatur - Effekte

Labor Elektrotechnik. Versuch: Temperatur - Effekte Studiengang Elektrotechnik Labor Elektrotechnik Laborübung 5 Versuch: Temperatur - Effekte 13.11.2001 3. überarbeitete Version Markus Helmling Michael Pellmann Einleitung Der elektrische Widerstand ist

Mehr

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Institut für Technik und ihre Didaktik Geschäftsführender Direktor: Prof. Dr. Hein Lehrerfortbildung Elektronik - Versuchsanleitung Nichtlineare Bauelemente Zielsetzung

Mehr

Elektrische Leistung und Joulesche Wärme

Elektrische Leistung und Joulesche Wärme lektrische eistung und Joulesche Wärme lektrische eistung: lektrische Arbeit beim Transport der adung dq über Spannung U: dw el = dq U Wenn dies in einer Zeit dt geschieht (U = const.), so ist die eistung

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de

Mehr

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen

Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Aktivierungsenergie und TK R -Wert von Halbleiterwerkstoffen Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de

Mehr

Vorbereitung zum Versuch Transistorschaltungen

Vorbereitung zum Versuch Transistorschaltungen Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

Thema 2: Elektrische Kennlinien verschiedener Leiter

Thema 2: Elektrische Kennlinien verschiedener Leiter Version vom 26. April 2015 Thema 2: Elektrische Kennlinien verschiedener Leiter Abbildung 2.1: Der Versuchsaufbau in der Übersicht 1 Grundlagen 1.1 Metallische Leiter, Halbleiter und Isolatoren In einem

Mehr

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung WS 2010/11 Fach: Elektronik,

Mehr

LABORÜBUNG Diodenkennlinie

LABORÜBUNG Diodenkennlinie LABORÜBUNG Diodenkennlinie Letzte Änderung: 30.11.2004 Lothar Kerbl Inhaltsverzeichnis Messaufgabe 1: Kennlinie im Durchlassbereich... 2 Theoretische Kennlinie... 3 Messaufgabe 2 : Kennlinie einer Zenerdiode...

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Auswertung: elektrische Bauelemente

Auswertung: elektrische Bauelemente Auswertung: elektrische Bauelemente Axel Müller & Marcel Köpke 21.06.2012 Inhaltsverzeichnis 1 Aufgabe 1 3 1.1 NTC....................................... 3 1.2 PT100......................................

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Arbeitsblatt: U-I-Kennlinien von Dioden

Arbeitsblatt: U-I-Kennlinien von Dioden Arbeitsblatt: U-I-Kennlinien von Dioden Mit dem folgenden Versuch soll die U-I-Kennlinie von Dioden (Si-Diode, Leuchtdiode, Infrarot-Diode (IR-Diode) aufgenommen werden. Aus der Kennlinie der IR-Diode

Mehr

Versuch E05: Spannungs-Strom-Kennlinien elektrischer Widerstände

Versuch E05: Spannungs-Strom-Kennlinien elektrischer Widerstände ersuch E05: Spannungs-Strom-Kennlinien elektrischer Widerstände 4. März 2016 Einleitung Eine wesentliche Eigenschaft elektrischer Widerstände (elektrische Bauelemente, Leitungen, Geräte) kann dadurch ermittelt

Mehr

Lernaufgabe: Halbleiterdiode 1

Lernaufgabe: Halbleiterdiode 1 1 Organisation Gruppeneinteilung nach Plan / Zeit für die Bearbeitung: 60 Minuten Lernziele - Die Funktionsweise und das Schaltverhalten einiger Diodentypen angeben können - Schaltkreise mit Dioden aufbauen

Mehr

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals

Lufthansa B1 Lehrgang Unterrichtsmitschrift Modul M4 Electronic Fundamentals Halbleiter Halbleiter sind stark abhängig von : - der mechanischen Kraft (beeinflusst die Beweglichkeit der Ladungsträger) - der Temperatur (Zahl und Beweglichkeit der Ladungsträger) - Belichtung (Anzahl

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen ersuchsdurchführung ersuch : Messungen an linearen und nichtlinearen Widerständen. Linearer Widerstand.. orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Versuch 17: Kennlinie der Vakuum-Diode

Versuch 17: Kennlinie der Vakuum-Diode Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................

Mehr

Aufnahme von Kennlinien eines liniaren Bauelementes

Aufnahme von Kennlinien eines liniaren Bauelementes TFH Berlin Messtechnik Labor Seite1 von 6 Aufnahme von Kennlinien eines liniaren Bauelementes Ort: TFH Berlin Datum: 29.09.03 Uhrzeit: von 8.00h bis 11.30h Dozent: Arbeitsgruppe: Prof. Dr.-Ing. Klaus Metzger

Mehr

Google-Ergebnis für

Google-Ergebnis für Solarzellen Friedrich-Schiller-Realschule Böblingen Basiswissen Elektronik - Wissen Schaltzeichen einer Solarzelle Geschichte: Wann wurde die erste Solarzelle entwickelt? Der photovoltaische Effekt wurde

Mehr

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am 15.12.2011. Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm. Praktikum Physik Protokoll zum Versuch: Kennlinien Durchgeführt am 15.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster

Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Halbleiter und Nanostrukturen - Fragen zum Bipolartransistor, Praktikum, Prof. Förster Christoph Hansen chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.

Mehr

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann.

Grolik Benno, Kopp Joachim. 2. Januar 2003 R 1 R 2 = R 3 R 4. herleiten, aus der man wiederum den unbekannten Widerstand sehr genau berechnen kann. Brückenschaltungen Grolik Benno, Kopp Joachim 2. Januar 2003 Grundlagen des Versuchs. Brückenschaltung für Gleichstromwiderstände Zur genauen Bestimmung ohmscher Widerstände eignet sich die klassische

Mehr

AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE

AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE AUSWERTUNG: ELEKTRISCHE WIDERSTÄNDE TOBIAS FREY, FREYA GNAM 1. R(T)-ABHÄNGIGKEIT EINES HALBLEITERWIDERSTANDES Mit Hilfe einer Wheatstoneschen Brückenschaltung wurde die Temperaturbhängigkeit eines Halbleiterwiderstandes

Mehr

Elektrolytische Leitfähigkeit

Elektrolytische Leitfähigkeit Elektrolytische Leitfähigkeit 1 Elektrolytische Leitfähigkeit Gegenstand dieses Versuches ist der Zusammenhang der elektrolytischen Leitfähigkeit starker und schwacher Elektrolyten mit deren Konzentration.

Mehr

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:

Mehr

Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-Ing. M. Gilbert

Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-Ing. M. Gilbert Physikalisches Praktikum, FH Münster Prof. Dr.H.-Ch.Mertins / Dipl.-ng. M. Gilbert 6.08.008 Ohmsches Gesetz & nnenwiderstand ersuch Nr.: E0 (Pr_E_E0_nnenwiderstand) Praktikum: FB 0 Plätze: 3. Ziel n diesem

Mehr

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode-

-Dioden- -Strom- und Spannungsmessung bei einer Halbleiterdiode- -Dioden- Dioden sind Bauelemente, durch die der Strom nur in eine Richtung fliessen kann. Sie werden daher häufig in Gleichrichterschaltungen eingesetzt. Die Bezeichnung Diode ist aus der griechischen

Mehr

Die Leuchtdiode (Artikelnr.: P )

Die Leuchtdiode (Artikelnr.: P ) Lehrer-/Dozentenblatt Gedruckt: 30.03.207 7:0:5 P37800 Die Leuchtdiode (Artikelnr.: P37800) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 0-3 Lehrplanthema: Elektrizitätslehre Unterthema:

Mehr

Inhalt. 1. Aufgabenstellung und physikalischer Hintergrund 1.1. Was ist ein elektrischer Widerstand? 1.2. Aufgabenstellung

Inhalt. 1. Aufgabenstellung und physikalischer Hintergrund 1.1. Was ist ein elektrischer Widerstand? 1.2. Aufgabenstellung Versuch Nr. 03: Widerstandsmessung mit der Wheatstone-Brücke Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor: Batu Klump Inhalt 1. Aufgabenstellung

Mehr

Elektrotechnik: Übungsblatt 2 - Der Stromkreis

Elektrotechnik: Übungsblatt 2 - Der Stromkreis Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Grundpraktikum der Physik

Grundpraktikum der Physik Grundpraktikum der Physik ersuch Nr. 26 KENNLNEN ersuchsziel: ufnahme der Kennlinie einer Glühlampe, einer Zenerdiode und eines Transistors. 1 Einführung Festkörper besitzen unterschiedliche Eigenschaften

Mehr

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen Bearbeitet von Herrn M. Sc. Christof

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F

Hochschule für angewandte Wissenschaften Hamburg, Department F + F 1 Versuchsdurchführung 1.1 Bestimmung des Widerstands eines Dehnungsmessstreifens 1.1.1 Messung mit industriellen Messgeräten Der Widerstandswert R0 eines der 4 auf dem zunächst unbelasteten Biegebalken

Mehr

2. Halbleiterbauelemente

2. Halbleiterbauelemente Fortgeschrittenpraktikum I Universität Rostock» Physikalisches Institut 2. Halbleiterbauelemente Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 20. April 2006 Protokoll erstellt:

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Hochschule für angewandte Wissenschaften Hamburg, Department F + F

Hochschule für angewandte Wissenschaften Hamburg, Department F + F 1 Versuchsdurchführung 1.1 Bestimmung des Widerstands eines Dehnungsmessstreifens 1.1.1 Messung mit industriellen Messgeräten Der Widerstandswert R 0 eines der 4 auf dem zunächst unbelasteten Biegebalken

Mehr

VORBEREITUNG: ELEKTRISCHE WIDERSTÄNDE

VORBEREITUNG: ELEKTRISCHE WIDERSTÄNDE VORBEREITUNG: ELEKTRISCHE WIDERSTÄNDE FREYA GNAM, TOBIAS FREY VORÜBERLEGUNGEN Halbleiter. Ein Festkörper, meist aus Silizium, der je nach Temperatur sowohl als Leiter, als auch als Nichtleiter wirken kann,

Mehr

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid

Spezifischer Widerstand fester Körper. Leiter Halbleiter Isolatoren. Kupferoxid R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Halbleiter Widerstandsbestimmung durch Strom - Spannungsmessung Versuch: Widerstandsbestimmung durch Strom und Spannungsmessung. 1. Leiter : Wendel

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GNDLGEN DE ELEKTOTECHNK ersuch 2: Messungen an linearen und nichtlinearen Widerständen 1 ersuchsdurchführung 1.1 Linearer Widerstand 1.1.1 orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Leiter, Halbleiter, Isolatoren

Leiter, Halbleiter, Isolatoren eiter, Halbleiter, Isolatoren lektronen in Festkörpern: In einzelnem Atom: diskrete erlaubte nergieniveaus der lektronen. In Kristallgittern: Bänder erlaubter nergie: gap = Bandlücke, pot Positionen der

Mehr

F02. Bandabstand von Germanium

F02. Bandabstand von Germanium F02 Bandabstand von Germanium Im Versuch wird der elektrische Widerstand eines Halbleiterstücks aus Germanium in Abhängigkeit von der Temperatur gemessen. Mit höherer Temperatur werden gemäß Gleichung

Mehr

Dielektrizitätskonstante

Dielektrizitätskonstante Dielektrizitätskonstante Spannung am geladenen Plattenkondensator sinkt, wenn nichtleitendes Dielektrikum eingeschoben wird Ladung bleibt konstant : Q = C 0 U 0 = C D U D Q + + + + + + + + + + + - - -

Mehr

Hinweis: Bei a) und b) fehlt der Transformator!

Hinweis: Bei a) und b) fehlt der Transformator! 1. Zeichnen Sie einen Einweggleichrichter inkl. Transformator b) einen Zweiweggleichrichter inkl. Transformator c) Brückengleichrichter inkl. Transformator b) c) U di=0,45 U 1 U di=0,45 U 1 U di=0,9 U

Mehr

Brückenschaltung (BRÜ)

Brückenschaltung (BRÜ) TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Brückenschaltung (BRÜ) Inhaltsverzeichnis 9. Januar 2007 1. Einleitung... 2 2. Messung ohmscher und komplexer Widerstände... 2 3. Versuchsauswertung...

Mehr

h- Bestimmung mit LEDs

h- Bestimmung mit LEDs h- Bestimmung mit LEDs GFS im Fach Physik Nicolas Bellm 11. März - 12. März 2006 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

-Q 1 Nach Aufladen C 1

-Q 1 Nach Aufladen C 1 Verschaltung von Kondensatoren a) Parallelschaltung C 2 Knotensatz: Q 2 -Q 2 Q 1 -Q 1 Nach Aufladen C 1 U Die Kapazitäten addieren sich b) Reihenschaltung C 1 C 2 Q -Q Q -Q Maschenregel: U Die reziproken

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

PE Peltier-Effekt. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

PE Peltier-Effekt. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 PE Peltier-Effekt Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Seebeck-Effekt...................... 2 2.2 Peltier-Effekt.......................

Mehr

13. Dioden Grundlagen

13. Dioden Grundlagen 13.1 Grundlagen Die Diode ist ein Bauteil mit zwei Anschlüssen, das die Eigenschaft hat den elektrischen Strom nur in einer Richtung durchzulassen. Dioden finden Anwendung als Verpolungsschutz (siehe Projekt)

Mehr

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23)

Physik 2 Hydrologen et al., SoSe 2013 Lösungen 4. Übung (KW 22/23) 4. Übung (KW 22/23) Aufgabe 1 (T 5.1 Eisenstück ) Ein Stück Eisen der Masse m und der Temperatur wird in ein sehr großes Wasserbad der Temperatur T 2 < gebracht. Das Eisen nimmt die Temperatur des Wassers

Mehr

Leiterkennlinien elektrischer Widerstand

Leiterkennlinien elektrischer Widerstand Leiterkennlinien elektrischer Widerstand Experiment: Wir untersuchen den Zusammenhang zwischen der anliegenden Spannung und der Stromstärke I bei verschiedenen elektrischen Leitern. Als elektrische Leiter

Mehr

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 8 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Elektronik,

Mehr

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version

Grundlagen-Vertiefung PW10. Ladungstransport und Leitfähigkeit Version Grundlagen-Vertiefung PW10 Ladungstransport und Leitfähigkeit Version 2007-10-11 Inhaltsverzeichnis 1 1.1 Klassische Theorie des Ladungstransports.................. 1 1.2 Temperaturabhängigkeit der elektrischen

Mehr

Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern

Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern Temperaturabhängigkeit der elektrischen Leitfähigkeit von Metallen und Halbleitern Gruppe 24: Alex Baumer, Axel Öland, Manuel Diehm 17. Februar 2005 Inhaltsverzeichnis 1 Einleitung 1 2 Grundlagen 1 2.1

Mehr