Vorlesung Netzwerkcodierung
|
|
|
- Dagmar Hertz
- vor 8 Jahren
- Abrufe
Transkript
1 Sommersemester 2010
2 Organisation Im Internet: Vorlesungen finden wöchentlich statt: Donnerstag, 5. DS, BAR 213 Übungen finden 2-wöchentlich statt: Freitag, 2. DS, BAR Wo Die Probleme für die Übungen liegen rechtzeitig auf der Webseite bereit. 1
3 2
4 Literatur Die Vorlesung folgt in vielen Punkten den Darstellungen in: Raymond W. Yeung: Information Theory and Network Coding, Springer Christina Fragouli und Emina Soljanin: Network Coding Fundamentals, Foundations and Trends in Networking, Now publishers, Tracey Ho und Desmond Lun: Network Coding - An Introduction, Cambridge, Der Basisartikel von 2000: Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li und Raymond W. Yeung: Network Information Flow, IEEE Trans. on Inf. Theory, vol. 46, no. 4, Juli DasvorläufigeStudienhilfegibtesonlinemitZugangskennung: Ahlswede. 3
5 Einordnung in das Curriculum ET/IT und IST Voraussetzungen: Systemtheorie I, II und III (3./4./5. Semester) Nachrichtentechnik (4. oder 6. Semester) Informationstheorie (Codierungstechnik) (6. Semester) Weiterer Weg oder zeitgleich: Mehrnutzer-Informationstheorie (7. Semester) Codierungstheorie (7. Semester) Spieltheorie (6. Semester) 4
6 Traditioneller Ansatz Netzwerkcodierung Informationen von verschiedenen Quellen werden getrennt voneinander als Pakete durch das Netzwerk geschleust. Vergleich mit der Autobahn: jedes Auto stellt ein Paket dar. An den Knotenpunkten werden die Pakete gespeichert und weitergeleitet store and forward. Im Jahr 1999 wurde eine Arbeit zur Satellitenkommunikation vorgestellt und die Theorie in 2000 entwickelt, die zu einem Paradigmenwechsel geführt hat: Netzwerkcodierung 5
7 x1 x2 x1 x2 x1 x1 x2 x1 x2 x2 x1 x1 + x2 x1 x1 + x2 x2 x2 x1 + x2 Abbildung 1.1: Das Butterfly-Netzwerk: Die Quellen S 1,S 2 senden eine gemeinsame Nachricht (multicast) and die Empfänger R 1,R 2. Links und Mitte: Routen zu R 1 und R 2 sowie Rechts: mit Netzwerkcodierung. 6
8 m 1 m 1 m 1 m 2 m 2 m 1 + m 2 m 1 + m 2 m 2 Abbildung 1.2: Bidirektionaler Relay-Kanal links ohne Netzwerkcodierung und rechts mit Netzwerkcodierung. 7
9 Vor- und Nachteile der NC Vorteile Durchsatzerhöhung Bessere Resourcenausnutzung Robustheit gegenüber Paketverluste Nachteile Anforderung an Rechenleistung und Speicher an Knoten steigt Knoten können in den Besitz der Daten kommen (Sicherheit) Implementierung der NC in dynamischen Netzwerken 8
10 Inhalt der VL Einführung und Motivation (1) Graphentheorie und Flüsse auf Graphen (4) Ford-Fulkerson Algorithmus Max-Flow Min-Cut Theorem Hauptsatz der Netzwerkcodierung (4) Formulierung und Interpretation Zufällige Netzwerkcodierung Systematischer Entwurf von NC - Teilbaumzerlegung Netzwerke mit Verzögerungen und Kreisen Wiederholung und Zusammenfassung (1) 9
11 Übungen Graphen und Flüsse Hauptsatz NC, zufällige NC, Jaggi-Sanders Algorithmus Systematischer NC Entwurf (Liniengraph, Teilbaumzerlegung, etc.) Unicast Übertragung, Kanaldämpfungen, NC Entwurf 10
12 Motivation Graphen Die Graphentheorie ist ein Teilgebiet der Mathematik, das die Eigenschaften von Graphen und ihre Beziehungen zueinander untersucht. Literatur i) Reinhard Diestel, Graphentheorie, 3. Auflage, Springer, graphentheorie/ ii) Volker Turau, Algorithmische Graphentheorie, 3. Auflage, Oldenbourg, Die Anfänge der Graphentheorie gehen bis in das Jahr 1736 zurück. Damals publizierte Leonhard Euler eine Lösung für das Königsberger Brückenproblem. Die Frage war, ob es einen Rundgang durch die Stadt Königsberg (Preußen) gibt, der jede der sieben Brücken über den Fluss Pregel genau einmal benutzt. Euler konnte eine für dieses Problem nicht erfüllbare notwendige Bedingung angeben und so die Existenz eines solchen Rundganges verneinen. 11
13 12
14 K M L A B C D E F G I J 13
15 KA MB LC AI AD BD BE CJ CE DF EG FJ FI GJ GI 14
16 K I M L J J I J I 15
Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld
Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus
Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013
Diskrete Mathematik Ralf Borndörfer, Stephan Schwartz 08. April 2013 FUB VL Diskrete Mathematik SS 2013 1 Leonhard Euler (1707-1783) e i sin cos f(x) FUB VL Diskrete Mathematik SS 2013 2 Das Königsberger
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Diskrete Strukturen Kapitel 1: Einleitung
WS 2015/16 Diskrete Strukturen Kapitel 1: Einleitung Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Seminar: Einladung in die Mathematik
Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von
Network Coding in P2P live streaming
Network Coding in P2P live von Niklas Goby Einleitung (1) Anforderungen an ein Live Stream Protokoll Flüssige Wiedergabe Skalierbarkeit Auf Peer Dynamiken reagieren Möglichst geringe Wiedergabeverzögerung
Graphentheorie 2. Diskrete Strukturen. Sommersemester Uta Priss ZeLL, Ostfalia. Hausaufgaben Kantenzüge Small-World Networks Humor SetlX
Graphentheorie 2 Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 26 Diskrete Strukturen Graphentheorie 2 Slide /23 Agenda Hausaufgaben Kantenzüge Small-World Networks Humor SetlX Diskrete Strukturen
WS 2015/16 Diskrete Strukturen Organisatorisches
WS 2015/16 Diskrete Strukturen Organisatorisches Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
7. Vorlesung Netzwerkcodierung
7. Sommersemester 2010 Anwendungen von Netzwerkcodierung Content distribution, P2P Netzwerke, Microsoft Secure Content Distribution (MSCD) aka Avalanche Netzwerkcodierung für drahtlose Netzwerke / Analoge
Übung 5 Algorithmen II
Michael Axtmann [email protected] http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
1. Einleitung wichtige Begriffe
1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse
Schnelle und genaue Routenplanung
Sanders/Schultes: Routenplanung 1 Schnelle und genaue Routenplanung Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe Uni für Einsteiger, 22. November
4. Kreis- und Wegeprobleme
4. Kreis- und Wegeprobleme Kapitelübersicht 4. Kreis- und Wegeprobleme Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Abstände in Graphen Berechnung
Echtzeitfähige Kommunikation
Echtzeitfähige Kommunikation Zusammenfassung 373 Zusammenfassung Die Eignung eines Kommunikationsmediums für die Anwendung in n ist vor allem durch das Medienzugriffsverfahren bestimmt. Die maximale Wartezeit
Komplexe Netzwerke Einführung
Ernst Moritz Arndt Universität Greifswald 17. 4. 2009 Komplexe Netzwerke Einführung Dr. Matthias Scholz www.network-science.org/ss2009.html 1 Komplexe Netzwerke Fachübergreifendes Gebiet: Physik, Mathematik,
Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)
WS 2015/16 Diskrete Strukturen Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Flüsse, Schnitte, bipartite Graphen
Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel
Praktische Grenzen der Berechenbarkeit
Arno Schwarz Praktische Grenzen der Berechenbarkeit Während es im ersten Abschnitt um prinzipiell unlösbare Probleme ging, wenden wir uns nun Aufgaben zu, deren Lösbarkeit praktische Grenzen gesetzt sind.
Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S
Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt
Diskrete Mathematik II
Diskrete Mathematik II Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Sommersemester 2008 DiMA II - Vorlesung 01-07.04.2008 Einführung in die Codierungstheorie, Definition Codes 1 / 36 Organisatorisches
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Andre Krischke. Helge Röpcke. Graphen und. Netzwerktheorie. Grundlagen - Methoden - Anwendungen. Mit 137 Bildern und zahlreichen Beispielen
Andre Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen - Methoden - Anwendungen Mit 137 Bildern und zahlreichen Beispielen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis I
Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion
Hauptdiplomklausur Informatik März 2001: Internet Protokolle
Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 200: Internet Protokolle Name:... Vorname:...
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4
Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt
Flüsse und Schnitte von Graphen
Flüsse und Schnitte von Graphen Christian Koch Friedrich-Alexander-Universität Erlangen-Nürnberg 2. Juni 27 Christian Koch Flüsse und Schnitte 2. Juni 27 / 29 Gliederung Flüsse Allgemeines Maximaler Fluss
Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:
KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage
Flüsse in Netzwerken
Proseminar Theoretische Informatik, Prof. Wolfgang Mulzer, SS 17 Flüsse in Netzwerken Zusammenfassung Gesa Behrends 24.06.2017 1 Einleitung Unterschiedliche technische Phänomene wie der Flüssigkeitsdurchfluss
Rechnernetze I. Rechnernetze I. 1 Einführung SS Universität Siegen Tel.: 0271/ , Büro: H-B 8404
Rechnernetze I SS 2012 Universität Siegen [email protected] Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 20. April 2012 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Gliederung. Tiefensuche. Kurz notiert. Zur Motivation: Breitensuche. Seminar Systementwurf Ralf Cremerius
Seminar Systementwurf Ralf Cremerius Gliederung Teil ): als effizientes Suchverfahren auf Graphen Teil ): zur Bestimmung der Starken Zusammenhangskomponenten in Graphen Kurz notiert Zur Motivation: Abgearbeiteter
6. Flüsse und Zuordnungen
6. Flüsse und Zuordnungen Flußnetzwerke 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert
Algorithmen und Datenstrukturen
Lehrstuhl für Informatik I Algorithmen und Datenstrukturen Wintersemester 2013/14 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmiertutorium: Alexander Wolff (E29) Krzysztof Fleszar (E13)
Algorithmische Mathematik und Programmieren
Algorithmische Mathematik und Programmieren Martin Lanser Universität zu Köln WS 2016/2017 Organisatorisches M. Lanser (UzK) Alg. Math. und Programmieren WS 2016/2017 1 Ablauf der Vorlesung und der Übungen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Programmieren Entwurf/ Implementierung
VOM PROBLEM ZUM PROGRAMM Was ist ein Problem? Ein Problem im Sinne der Programmierung ist durch Computer lösbar. Aspekte -> es läßt sich hinreichend genau spezifizieren (z. B. als Funktion Eingabewerte
KÖNIGSBERGER BRÜCKENPROBLEM
VOM PROBLEM ZUM PROGRAMM NUTZEN EINES FORMALEN MODELLS (U. A.) Was ist ein Problem? Ein Problem im Sinne der ierung ist durch Computer lösbar. Man kann leichter sehen, ob das Problem - oder Teile davon
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge
in einem Zug finden, egal, wie lange man probiert? b) Warum kann man von bestimmten Ecken aus niemals eine Lösung
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Graphentheorie... oder das Haus vom Nikolaus! Graphentheorie man könnte meinen, dass es hier um Funktionsgraphen geht, wie ihr sie
Graphentheorie. für Wiederholer Bachelor Informatik und Wirtschaftsinformatik. Prof. Dr. Peter Becker
Graphentheorie für Wiederholer Bachelor Informatik und Wirtschaftsinformatik Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2018/19 Peter Becker (H-BRS) Graphentheorie
Algorithmische Spieltheorie
Algorithmische Spieltheorie Martin Hoefer Sommer 2017 1 / 8 Worum gehts? Dynamische Systeme mit rationalen Nutzern und Interaktion, z.b. Rationales Verhalten, Anreize und Stabilität bei Ressourcennutzung
Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018
Brückenkurs Mathematik Jörn Steuding (Uni Würzburg), 3. Januar 08 unser Programm. November:. Zahlen und einfache Gleichungen Zahlen, Rechengesetze, lineare u. quadratische Gleichungen, Dezimalbrüche, ein
Genauer Hochleistungs-Routenplaner
Sanders/Schultes: Routenplanung 1 Genauer Hochleistungs-Routenplaner Prof. Dr. Peter Sanders Dominik Schultes Institut für Theoretische Informatik Algorithmik II Universität Karlsruhe (TH) Heidelberger
Algorithmische Mathematik I
Algorithmische Mathematik I Wintersemester 2011 / 2012 Prof. Dr. Sven Beuchler Peter Zaspel Übungsblatt zur Wiederholung Teil 1. Abgabe am -. Aufgabe 1. a) Was ist eine B-adische Darstellung mit fixer
Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke
Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,
Petri-Netze. Renate Klempien-Hinrichs und Caro von Totth. Wer sind wir?
Petri-Netze http://www.informatik.uni-bremen.de/theorie/teach/petri Renate Klempien-Hinrichs und Caro von Totth Wer sind wir? Wie ist der Kurs organisiert? Worum geht es? Wer sind wir? 1.1 Renate Klempien-Hinrichs
Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen
Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound
1 Pfade in azyklischen Graphen
Praktikum Algorithmen-Entwurf (Teil 5) 17.11.2008 1 1 Pfade in azyklischen Graphen Sei wieder ein gerichteter Graph mit Kantengewichten gegeben, der diesmal aber keine Kreise enthält, also azyklisch ist.
Naiver Algorithmus für Hamiltonkreis
Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, Henning Meyerhenke
Algorithmische Methoden zur Netzwerkanalyse Vorlesung 12, 25.01.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum
Algorithmische Spieltheorie. Martin Gairing
Algorithmische Spieltheorie Martin Gairing Folien zur Vorlesung vom 26.04.2004 Organisatorisches: Vorlesung Montags, 14:15-15:45 Uhr Übungen Montags, 16:00-17:00 Uhr Folien zur Vorlesung unter http://www.upb.de/cs/ag-monien/lehre/ss04/spieltheo/
Königsberger Brückenproblem
Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Dr. Harald Upmeier, Benjamin Schwarz Referentin: Lene Baur WS 2009/2010 Königsberger
Flüsse, Schnitte, Bipartite Graphen
Flüsse, Schnitte, Bipartite Graphen Sebastian Hahn 4. Juni 2013 Sebastian Hahn Flüsse, Schnitte, Bipartite Graphen 4. Juni 2013 1 / 48 Überblick Flussnetzwerke Ford-Fulkerson-Methode Edmonds-Karp-Strategie
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 17. April 2018 1/96 WIEDERHOLUNG Eulersche
3. Die Datenstruktur Graph
3. Die Datenstruktur Graph 3.1 Einleitung: Das Königsberger Brückenproblem Das Königsberger Brückenproblem ist eine mathematische Fragestellung des frühen 18. Jahrhunderts, die anhand von sieben Brücken
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 1. Vorlesung 26.04.2006 [email protected] 1 Organisation Web-Seite http://cone.informatik.uni-freiburg.de/ teaching/vorlesung/systeme-ii-s06/
Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra
Gerald Teschl Susanne Teschl Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra Springer Inhaltsverzeichnis Grundlagen 1 Logik und Mengen 1 1.1 Elementare Logik 1 1.2 Elementare
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik, Universität Kassel 34109 Kassel, Germany E-mail: [email protected]
16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87
16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor
Kapitel 4: Netzplantechnik Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
9. November ZHK in dynamischen Graphen Zentralitäten. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67
9. November 2011 ZHK in dynamischen Graphen Zentralitäten H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 67 ZHK in dynamischen Graphen Ungerichteter schlichter dynamischer Graph Dynamisch:
WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Über 7 Brücken... wissen leben WWU Münster. Dietmar Lammers Hochschultag 201
MÜNSTER Über 7 Brücken... Dietmar Lammers Hochschultag 201 MÜNSTER Über 7 Brücken... 2/29 > Dauerwerbeveranstaltung für ein Studium der Informatik- aber mit mathematischem Inhalt! Hier: Ein Auszug aus
Flüsse und Zuordnungen. Kapitel 6. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296
Kapitel 6 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 227 / 296 Inhalt Inhalt 6 Flussnetzwerke Berechnung maximaler Flüsse Max-Flow-Min-Cut Matchings Peter Becker (H-BRS) Graphentheorie
Carsten Harnisch. Der bhv Routing & Switching
Carsten Harnisch Der bhv Co@ch Inhaltsverzeichnis Einleitung 11 Zielgruppe Aufbau 11 11 Modul 1 Das OSl-Referenzmodell 13 1.1 Historie und Entstehung 1.2 Protokoll und Schnittstellen 1.3 Zielsetzung von
Aufgaben zur Klausurvorbereitung
Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014
Algorithmen & Datenstrukturen
Algorithmen & Datenstrukturen Prof. Dr. Gerd Stumme Universität Kassel FB Elektrotechnik/Informatik FG Wissensverarbeitung Sommersemester 2009 Ziele der Veranstaltung 1 Kennenlernen grundlegender Algorithmen
VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz
VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis
Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele
Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele
