Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0

Größe: px
Ab Seite anzeigen:

Download "Tutorium 3. 1 Nilpotente Endomorphismen. Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = 0"

Transkript

1 Tutorium 3 1 Nilpotente Endomorphismen Definition. Sei Φ End(V ). Φ heißt nilpotent: n N : Φ n = Bemerkung. Sei V {}. Dann ist λ = einziger EW. Und wegen H(Φ, ) = Kern((Φ id) k ) Kern(Φ n ) = Kern() = V k= gilt nach dem Satz von letztem Mal H(Φ, ) = V und CP Φ (X) = X dim V. Sei nun X d das Minimalpolynom von Φ, und u V mit Φ d 1 (u). Betrachte U := u, Φ(u),..., Φ d 1 (u) }{{} :=B Es ist klar, dass dim U d. Andererseits ist Φ U auch nilpotent, und es gilt dim U = Grad CP Φ U (X) Grad MP Φ U (X) d da Φ d 1 (u). Bezüglich B hat Φ U dann die Abbildungsmatrix: 1 J d () := 1 Diese Matrix heißt Jordankästchen der Länge d zum EW. Lemma aus der Vorlesung sagt: Es gibt ein Φ-invariantes Komplement zu U vollständige Induktion liefert den folgenden Satz: Satz. Sei A K n n eine nilpotente Matrix. Dann gibt es eindeutig bestimmte natürliche Zahlen k und d 1... d k 1 sodass A ähnlich ist zu folgender Matrix: Ã := J d1 () Jdk () Diese Matrix heißt Jordansche Normalform (JNF) von A. Bemerkung. Für die Anzahl der Jordankästchen gilt: k = dim Eig(Φ, ) = dim Kern(Φ) wie man durch Betrachten der JNF erkennt. 1

2 Aufgabe 1. Sei Φ End(V ), dim V = und Bild(Φ) Kern(Φ). Bestimmen Sie charakteristisches Polynom, Minimalpolynom und Jordansche Normalform. Lösung. Nach Voraussetzung gilt für alle x V : Φ(Φ(x)) = Φ = Also ist Φ nilpotent, und also CP Φ (X) = X. Außerdem ist X annullierendes Polynom, folglich MP Φ (X) {X, X }. Es gilt aber: MP Φ (X) = X Φ = Rang(Φ) = Also treffen wir eine Fallunterscheidung nach r := Rang(Φ). 1. Fall: r = k =, und die Jordansche Normalform ist:. Fall: r = 1 k = 3, und es folgt zwingend: 1 (denn = ist ohne Beachtung der Reihenfolge die einzige Zerlegung der in 3 Summanden) 3. Fall: r = k =, wir haben zwei mögliche Zerlegungen = = + in Summanden. Aber wegen 1 1 = 1 kann es kein Jordankästchen der Länge 3 geben, wir erhalten also als JNF: 1 1. Fall: r = 3 k = 1, aber dann hätten wir ein Jordankästchen der Länge, was ja nicht möglich ist.

3 Die Jordansche Normalform Definition. Die Matrix λ 1 λ J d (λ) := 1 λ heißt Jordankästchen der Länge d zum EW λ. Bemerkung. Sei nun Φ End(V ) und das charakteristische Polynom zerfalle in Linearfaktoren. Wir wissen: V = λ H(Φ, λ), H(Φ, λ) = Kern((Φ λ id) µa(φ,λ) ) Also ist (Φ λ id) H(Φ,λ) nilpotent, es gibt also eine Darstellung als JNF bestehend aus Jordankästchen J di (). Aber es gilt ja: Φ H(Φ,λ) = λ id H(Φ,λ) + (Φ λ id) H(Φ,λ) Folglich gibt es für Φ H(Φ,λ) eine Darstellung als sogenanntem Jordanblock, bestehend aus Jordankästchen der Form J di (λ). Macht man das für jeden EW λ, so erhält man den folgenden Satz: Satz. Sei Φ End(V ), und das charakteristische Polynom von Φ zerfalle in Linearfaktoren. Weiterhin seien Spec(Φ) = {λ 1,... λ l } die l EWe von Φ. Dann gibt es für jeden EW λ i eindeutig bestimmte natürliche Zahlen k i und d 1,i... d ki,i 1 sodass Φ bezüglich einer geeigenetes Basis B die Abbildungsmatrix in Jordanscher Normalform (JNF) D BB (Φ) = D 1 D l hat, wobei J d1,i (λ i ) D i := Jdki,i (λi) der Jordanblock zum i-ten EW ist. 3

4 Bemerkung. Es gelten: (i) Die JNF ist eindeutig bis auf Reihenfolge der Jordanblöcke/Eigenwerte. (ii) Länge des Blocks zum EW λ = dim H(Φ, λ) = µ a (Φ, λ) (iii) Anzahl Kästchen zum EW λ = k i = dim Eig(Φ, λ) = µ g (Φ, λ) (iv) Länge des größtes Kästchens zum EW λ = Exponent von (X λ) im Minimalpolynom! (v) Für die Anzahl der Jordankästchen der Länge d zum EW λ gilt: m d (λ) = Rang((Φ λ id) d 1 ) Rang((Φ λ id) d ) + Rang((Φ λ id) d+1 ) Aufgabe. Berechnen Sie die Jordansche Normalform der Matrix A := R sowie eine Matrix S GL (R) sodass S 1 AS in Jordanscher Normalform ist. Lösung. X X X CP A (X) = det( 3 X 3 1 X 1 ) = det( 1 X 1 X X 1 ) X + X X X X X X = det( 1 X 1 X ) = X det( 1 X 1 1 ) X X X 1 X ) = X det( X X ) = X X X det(( ) X X = X ( 3X + X + 3X) = X Folglich gibt es genau einen Jordanblock, und zwar zum EW. Es gilt A =, also gilt MP A (X) = X und das größte Jordankästchen hat Länge. Wir berechnen nun Eig(A, ) = Kern(A), denn dessen Dimension liefert uns ja die Anzahl Jordankästchen: Kern(A) = 1, 1 Es gibt also Jordankästchen, wir erhalten folgende Jordansche Normalform: Ã := 1 1

5 Wir finden wir die Jordanbasis? Wir suchen Vektoren b 1, b 3 in Kern(A ) \ Kern(A), so dass b := Ab 1, b := Ab 3 linear unabhängig sind! Wir setzen an: 1 3 b 1 :=, b 3 := 1 b := Ab 1 = 3, b := Ab 3 = und scheinen erfolgreich gewesen zu sein! Also: S = ( ) b 1 b b 3 b = 3 1 S 1 = und tatsächlich gilt S 1 AS = Ã. Aufgabe 3. Sei Φ End(V ), dim V = 5, dim Kern(Φ) = 1 und CP Φ (X) = X 5 9X 3. Berechnen Sie die Jordansche Normalform von Φ. Lösung. Wir berechnen zunächst die Jordansche Normalform von Φ. Wegen CP Φ (X) = X 3 (X 3)(X + 3) interessiert uns nur noch die Anzahl Jordankästchen zum Eigenwert, und die ist ja gerade gleich dim Kern(Φ) = 1. Also ist die JNF von Φ: 1 J := und J := ist eine Abbildungsmatrix von Φ! Also gilt CP J (X) = X 3 (X 9), und uns interessiert wieder nur die Anzahl Jordankästchen zum Eigenwert, also dim Kern(Φ ) = dim Kern(J ) = (denn es gibt offenbar genau 3 l.u. Zeilen). Folglich ist die JNF von Φ :

Tutorium 2. 1 Der Polynomring

Tutorium 2. 1 Der Polynomring 1 Der Polynomring Tutorium 2 Wiederholung. Eine Einheit eines Rings ist ein multiplikativ invertierbares Element. Zum Beispiel sind {1, 1} die Einheiten in Z, und alle Zahlen außer der 0 in jedem Körper.

Mehr

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen

Lösungsskizzen zur Klausur zur Linearen Algebra II. Definitionen Technische Universität Berlin Sommersemester 2008 Institut für Mathematik 18 Juli 2008 Prof Dr Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Klausur zur Linearen Algebra II Aufgabe 1 (1+1+1 Punkte)

Mehr

Lineare Algebra 2. Lösung zu Aufgabe 7.2:

Lineare Algebra 2. Lösung zu Aufgabe 7.2: Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)

Mehr

3.4 Trigonalisierung und Jordansche Normalform

3.4 Trigonalisierung und Jordansche Normalform 3.4 Trigonalisierung und Jordansche Normalform Definition 3.4.1. Sei V ein K-Vektorraum, F End K (V ). Ein Unterraum U V heißt F -invariant falls F (U) U. Bemerkung. (1) Falls U V ein F -invarianter Unterraum

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Übungsblatt

Übungsblatt Prof Dr Fabien Morel Lineare Algebra II Dr Anand Sawant Sommersemester 2018 Übungsblatt 11 20062018 Aufgabe 1 (2 Punkte) Berechnen Sie eine Jordan-Basis für die Matrix 3 1 1 M = 2 2 0 M 3 (R) 1 1 3 Wir

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 215/216 Lineare Algebra und analytische Geometrie I Vorlesung 27 In der letzten Vorlesung haben wir die Haupträume zu einem Eigenwert λ zu einem Endomorphismus ϕ als Kern

Mehr

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung Aufgabe (8 Punkte) Es sei (G, ) eine Gruppe und ϕ: G G die Abbildung, die für jedes g G durch ϕ(g) = g g =: g gegeben ist. a) Zeigen Sie, dass ϕ genau dann ein Gruppenhomomorphismus ist, wenn die Verknüpfung

Mehr

JNF Rezept. 21. Juli 2006

JNF Rezept. 21. Juli 2006 JNF Rezept Simon Wood swood@student.ethz.ch. Juli 6 Was ist die Jordan Normalform? Die Jordan Normalform (JNF) ist die eifachst mögliche Darstellung einer Matrix bezüglich einer geeigneten Basis. Matrizen

Mehr

Lineare Algebra II Lösungen zu ausgewählten Aufgaben

Lineare Algebra II Lösungen zu ausgewählten Aufgaben Lineare Algebra II Lösungen zu ausgewählten Aufgaben Blatt 2, Aufgabe 3 a) Wir zeigen, daß das Ideal (2, X) kein Hauptideal in Z[X] ist. (Dieses Ideal besteht aus allen Elementen in Z[X], die von der Form

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Proseminar Lineare Algebra SS10

Proseminar Lineare Algebra SS10 Proseminar Lineare Algebra SS1 Normalform von Matrizen Jordansche Normalform Philip Bauermeister Heinrich-Heine-Universität Betreuung Prof. Dr. Oleg Bogopolski 2 1 Matrizen linearer Abbildungen 1.1 Definition

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Vorlesung 28 If it works, it s out of date David Bowie Ein Zerlegungssatz Satz 28 Sei ϕ: V V ein trigonalisierbarer K-Endomorphismus

Mehr

12.3 Kommutierende Abbildungen

12.3 Kommutierende Abbildungen 12.3 Kommutierende Abbildungen Definition 12.3.1 Sei V ein endlichdimensionaler Vektorraum, und sei F eine Familie linearer Abbildungen V V mit UT = TU für alle U, T in F. Dann nennt man F eine Familie

Mehr

Basisprüfung. 18. August 2015

Basisprüfung. 18. August 2015 Lineare Algebra I/II D-MATH, HS 4/FS 5 Prof Richard Pink Basisprüfung 8 August 25 [6 Punkte] Betrachte den reellen Vektorraum R 3 zusammen mit dem Standardskalarprodukt, und die Vektoren 9 3 v := 6, v

Mehr

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder

Scheinklausur, 2. Teil, Lineare Algebra I, WS 2001, Prof. Dr. G. Hiß. Ja oder Gruppe A Scheinklausur 2. Teil 15.2.2002 Lineare Algebra I WS 2001 Prof. Dr. G. Hiß Name: Matrikelnummer: Kreuzen Sie bei jeder Frage entweder Ja oder Nein oder nichts an. Auswertung der Multiple-Choice-Aufgaben:

Mehr

Steilkurs Lineare Algebra 1 einige wichtige Stationen

Steilkurs Lineare Algebra 1 einige wichtige Stationen Steilkurs Lineare Algebra 1 einige wichtige Stationen Für einen Körper K ist ein K-Vektorraum V eine Menge mit einer kommutativen und assoziativen Verknüpfung + : V V V, für die es ein neutrales Element

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010

Lösungsvorschläge zur Klausur. Lineare Algebra, Herbst 2010 Lösungsvorschläge zur Klausur Lineare Algebra, Herbst 200 I. Es seien n eine natürliche Zahl, M = {,..., n} N und S n die Gruppe der Permutationen der Menge M. Zeigen Sie: a) Für jedes a M ist H a := {σ

Mehr

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen.

29 Lineare Algebra 2 (SS 2009) 4.9. Das charakteristische Polynom sei Produkt von linearen Polynomen. 9 Lineare Algebra (SS 009) 49 Das charakteristische Polynom sei Produkt von linearen Polynomen 49 Das charakteristische Polynom sei Potenz eines linearen Polynoms Wir betrachten nun eine Matrix A, sodass

Mehr

Musterlösungen zur Linearen Algebra II Hauptklausur

Musterlösungen zur Linearen Algebra II Hauptklausur Musterlösungen zur Linearen Algebra II Hauptklausur Aufgabe. Q ist unitär genau dann, wenn gilt Q Q = I n. Daraus folgt, dass a) und c) richtig sind. Die -Matrix A := (i) zeigt, dass i.a. A A t, d.h. b)

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

VI.3. JORDAN SCHE NORMALFORM 167

VI.3. JORDAN SCHE NORMALFORM 167 VI3 JORDAN SCHE NORMALFORM 67 VI3 Definition (Verallgemeinerte Eigenräume Sei V ein endlich-dimensionaler K-Vektorraum ϕ: V V linear und λ ein Eigenwert von ϕ Unter dem verallgemeinerten Eigenraum von

Mehr

Musterlösung der Klausur zur linearen Algebra II

Musterlösung der Klausur zur linearen Algebra II David Blottière SS 7 Patrick Schützdeller Universität Paderborn Julia Sauter Musterlösung der Klausur zur linearen Algebra II Aufgabe 1 Bestimmen Sie Jordan-Normalformen der folgenden Matrizen, und schreiben

Mehr

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit

4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit 4.4 Simultane Diagonalisierbarkeit und Trigonalisierbarkeit Definition 4.41. Eine Familie F linearer Operatoren heißt vertauschbar oder kommutierend, wenn für je zwei Operatoren U,T in F gilt: UT = TU.

Mehr

20. Die Jordansche Normalform

20. Die Jordansche Normalform 20. Die Jordansche Normalform 233 20. Die Jordansche Normalform Im letzten Kapitel haben wir bereits ausführlich untersucht, wie man zu einer gegebenen quadratischen Matrix A Mat(n n,k) eine möglichst

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.8): L 1, L 1 AM n (K). Dann: L 1 a L 2 falls C AGL n (K) mit C 1 L 2 C = L 1. Die aus 3.2.9 bekannte

Mehr

Kapitel 13. Normalformen Zyklische Unterräume

Kapitel 13. Normalformen Zyklische Unterräume Kapitel 13 Normalformen In diesem ganzen Kapitel ist V ein n-dimensionaler K-Vektorraum und T End(V). Natürlich können Sie sich T auch immer als Matrix vorstellen, und wenn wir konkret rechnen, dann machen

Mehr

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie:

Aufgabe I.1 (4 Punkte) Gegeben seien die Matrix H := und die Menge L := {A R 4 4 A HA = H} Zeigen Sie: Aufgabe I (4 Punkte Gegeben seien die Matrix und die Menge Zeigen Sie: H := L := {A R 4 4 A HA = H} a L ist bezüglich der Matrizenmultiplikation eine Gruppe b Die Matrizen der Form ( E O, O B wobei E R

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

Nachholklausur zur Linearen Algebra I, WS 03/04

Nachholklausur zur Linearen Algebra I, WS 03/04 16.4.2004 Nachholklausur zur Linearen Algebra I, WS 03/04 Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen

Lösung zu Serie Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Lineare Algebra D-MATH, HS 4 Prof. Richard Pink Lösung zu Serie. Zeige, dass das Minimalpolynom jedes Jordanblocks gleich seinem charakteristischen Polynom ist. Lösung: Das charakteristische Polynom eines

Mehr

5.4 Affine Abbildungen in C 2 und R 2

5.4 Affine Abbildungen in C 2 und R 2 5.4 Affine Abbildungen in C 2 und R 2 Notation. Wir erinnern an die affine Ähnlichkeit von Matrizen (5.3.(ii)): L, L n (K). Dann: L a L 2 falls C AGL n (K) mit C L 2 C = L. Die aus 3.2.9 bekannte übliche

Mehr

Lineare Algebra I für Mathematiker Lösungen

Lineare Algebra I für Mathematiker Lösungen Lineare Algebra I für Mathematiker Lösungen Anonymous 24. April 2016 Aufgabe 1 Beantworten Sie bitte die folgenden Fragen. Jeder Vektorraum hat mindestens ein Element. Q ist ein R-Vektorraum (mit der Multiplikation

Mehr

Lineare Algebra II Lösungen der Klausur

Lineare Algebra II Lösungen der Klausur Prof Dr K Doerk 673 Jens Mandavid Christian Sevenheck Lineare Algebra II Lösungen der Klausur (a Diese Aussage ist richtig, sie stimmt nämlich für k = Sei nämlich n N beliebig und bezeichne N die Menge

Mehr

Musterlösungen zur Linearen Algebra II Weihnachtszettel

Musterlösungen zur Linearen Algebra II Weihnachtszettel Musterlösungen zur Linearen Algebra II Weihnachtszettel Aufgabe. Welche der folgenden Matrizen 3 0 0 A = 0 4, B = 3, C = 0 0 0 6 0 0 0 sind über R und welche über C diagonalisierbar? Bestimmen Sie dazu

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Lineare Algebra II Zwischentest

Lineare Algebra II Zwischentest Lineare Algebra II Zwischentest Dr. Stephan Ehlen, Dr. Chris Jennings-Shaffer, Jonathan Schürr 14.06.18 Dieser Zwischentest besteht aus 7 Aufgaben und enthält insgesamt 12 Seiten. Sie haben für die Bearbeitung

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

5 Minimalpolynom und charakteristisches Polynom

5 Minimalpolynom und charakteristisches Polynom 5 Minimalpolynom und charakteristisches Polynom 5.1 Lemma Sei A K n n. Dann ist λ K genau dann ein Eigenwert von A, wenn det(λe n A) = 0. 5.2 Beispiel ( ) 1 4 i) A = R 1 1 2 2 det(λe 2 A) = λ 1 4 1 λ 1

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 )

a) Ein Gruppenhomomorphismus von G nach H ist eine Abbildung Φ : G H, sodass für alle g 1, g 2 G die Gleichung Φ(g 1 g 2 ) = Φ(g 1 ) Φ(g 2 ) I. (4 Punkte) Es seien (G, ) eine Gruppe mit neutralem Element e G und (H, ) eine weitere Gruppe. a) Geben Sie die Definition eines Gruppenhomomorphismus Φ : G H an und beweisen Sie, dass für solch einen

Mehr

23. Die Jordan sche Normalform

23. Die Jordan sche Normalform Chr.Nelius, Lineare Algebra II (SS 2005) 1 23. Die Jordan sche Normalform Wir suchen für einen trigonalisierbaren Endomorphismus unter seinen dreiecksförmigen Darstellungsmatrizen eine Darstellungsmatrix,

Mehr

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4.

Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Hinweis: Die Klausur Lineare Algebra 2 für die Fachrichtung Informatik besteht aus den Aufgaben 2.1 bis 2.4. Aufgabe 2.1 (8 Punkte) Es sei K ein Körper, n N, V ein 2n-dimensionaler K -Vektorraum und U

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

6 Die Jordansche Normalform

6 Die Jordansche Normalform 6 Die Jordansche Normalform 6.1 Definition Sei f End K (V ). i) U V heißt f-invariant, falls f(n) U n U. Mit f U End K (C) bezeichnen wir die Einschränkung von f auf U: f U (v) = f(u) für u U. ii) Eine

Mehr

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie-

Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- 1 Vorbemerkungen Alle Vektoren sind hier Spaltenvektoren. Eine Matrix besteht aus nebeneinandergeschrie- benen Vektoren. Wird die Matrix A = ( a 1,..., a n ) mit dem Vektor c = c 1. c n multipliziert,

Mehr

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010

Übungsblatt 13. Lineare Algebra I für Informatiker, Dr. Frank Lübeck, SS 2010 Übungsblatt 3 Lineare Algebra I für Informatiker, Dr Frank Lübeck, SS Für Matrikelnummer: 9787 Abgabezeitpunkt: Do Jul :: CEST Dieses Blatt wurde erstellt: Do 5 Jul 8:47:36 CEST Diese Übung besteht aus

Mehr

Normalformen. Kapitel Zyklische Unterräume

Normalformen. Kapitel Zyklische Unterräume Kapitel 10 Normalformen In diesem ganzen Kapitel ist V ein n-dimensionaler K-Vektorraum und T Hom(V, V ) Natürlich können Sie sich T auch immer als Matrix vorstellen, und wenn wir konkret rechnen, dann

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch

a) Die Abbildung µ h ist injektiv, da für alle g 1, g 2 G gilt: Daher ist µ h bijektiv. Zudem folgt aus µ h (g) = g auch Aufgabe. (8 Punkte) Es sei (G, ) eine Gruppe und e G ihr neutrales Element. Für h G sei µ h : G G die Abbildung, die durch g G : µ h (g) := h g gegeben ist. a) Zeigen Sie, dass für jedes h G die Abbildung

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

VI.4. REELLE NORMALFORMEN 185

VI.4. REELLE NORMALFORMEN 185 VI.4. REELLE NORMALFORMEN 185 VI.4. Reelle Normalformen. Wir wollen hier die Primärzerlegung des vorangehenden Abschnitts verfeinern und anschließend die reelle Jordan sche Normalform besprechen. Wir beginnen

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 42 Normale Endomorphismen Nach Satz 34.1 besitzt eine Isometrie über C eine Orthonormalbasis aus Eigenvektoren

Mehr

Serie 1: Eigenwerte & Eigenvektoren

Serie 1: Eigenwerte & Eigenvektoren D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Serie 1: Eigenwerte & Eigenvektoren 1. Beweisen oder widerlegen Sie, dass die folgenden Paare von Matrizen über dem angegebenen Körper zueinander ähnlich

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Musterlösungen für die Nachklausur in LinAlg vom

Musterlösungen für die Nachklausur in LinAlg vom Musterlösungen für die Nachklausur in LinAlg vom 10.10.16 1. Finden Sie mindestens ) zwei Dreh )Matrizen ) M R 2 2 mit der Eigenschaft 1 0 M = : M = ± 1 1 2 ±1 1 k k 1 k 2. Sei A R 3 3 die Matrix A = 0

Mehr

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich

Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es

Mehr

Vordiplomsklausur, Lineare Algebra I, WS 2003/04, Prof. Dr. H. Pahlings

Vordiplomsklausur, Lineare Algebra I, WS 2003/04, Prof. Dr. H. Pahlings Vordiplomsklausur, 22.3.2004 Gruppe A Lineare Algebra I, WS 2003/04, Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Ralf Gerkmann. Mathematisches Institut der Ludwig-Maximilians-Universität München. Lineare Algebra II. (Version vom 13.

Ralf Gerkmann. Mathematisches Institut der Ludwig-Maximilians-Universität München. Lineare Algebra II. (Version vom 13. Ralf Gerkmann Mathematisches Institut der Ludwig-Maximilians-Universität München Lineare Algebra II (Version vom 13. August 2014) Inhaltsverzeichnis 1. Eigenwerte und Eigenvektoren...........................

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren

2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren 2 ÄHNLICHKEIT VON MATRIZEN, EIGENWERTE UND EIGENVEKTOREN 1 19. Mai 2000 2 Ähnlichkeit von Matrizen, Eigenwerte und Eigenvektoren Motivation. Es seien: V ein K-Vektorraum mit dim V = n < und F End V, Φ,

Mehr

Kapitel 5. Endomorphismen von Vektorräumen. 5.4 Die jordansche Normalform

Kapitel 5. Endomorphismen von Vektorräumen. 5.4 Die jordansche Normalform Kapitel 5 c M. Roczen und H. Wolter Preview zur aktuellen Fassung: Lineare Algebra individuell Online Ver. 0.52, 15.5.2005 Alle Rechte vorbehalten Endomorphismen von Vektorräumen V 0 sei ein Vektorraum

Mehr

3.1. JORDAN-NORMALFORM 63

3.1. JORDAN-NORMALFORM 63 3.1. JORDAN-NORMALFORM 63 Der Beweis ist mit Bedacht so gewählt, dass man noch diverse Strategien bei der Auffindung der linearen Abhängigkeiten anwenden kann. Im Unterschied zur Hauptraumzerlegung ist

Mehr

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix

Jordansche Normalform - Beispielrechnung. 1 Beispielrechnung an einer komplexen Matrix Jordansche Normalform - Beispielrechnung Dieses kurze Skript soll die jordansche Normalform erklären die auch oft als Trigonalisierung von Matrizen bezeichnet wird da man die Matrix auf eine bestimmte

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet:

8 Eigenwerttheorie I 8. EIGENWERTTHEORIE I 139. Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: 8. EIGENWERTTHEORIE I 139 8 Eigenwerttheorie I Wir hatten bereits früher den Polynomring in einer Variablen über einem Körper K betrachtet: K[x] = Abb[N, K] = {P ; P = a n x n + a n 1 x n 1 + + a 0 ; a

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

Musterlösungen zur Linearen Algebra II Blatt 2

Musterlösungen zur Linearen Algebra II Blatt 2 Musterlösungen zur Linearen Algebra II Blatt 2 Aufgabe. Sei R ein nullteilerfreier kommutativer Ring mit. Setze K := R R\{0}/ mit der Äquivalenzrelation definiert durch (a, b) (a, b ) genau dann, wenn

Mehr

2.11 Eigenwerte und Diagonalisierbarkeit

2.11 Eigenwerte und Diagonalisierbarkeit 2.11. EIGENWERTE UND DIAGONALISIERBARKEIT 127 Die Determinante eines Endomorphismus Wir geben uns jetzt einen endlichen erzeugten K-Vektorraum V und einen Endomorphismus ϕ : V V vor. Wir wollen die Determinante

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1

Universität Bielefeld Sommersemester Lineare Algebra 2 Übungsblatt 1 Übungsblatt 1 Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors. Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit

Mehr

Lineare Algebra - Determinanten und Eigenwerte

Lineare Algebra - Determinanten und Eigenwerte Lineare Algebra - Determinanten und Eigenwerte 26 März 2011 1 Determinanten 11 Definition (Determinanten): Sei K ein Körper und N n 0 Dann nennt man eine durch det : M(n n, K) K, a det(a) definierte Abbildung

Mehr

5.2 Diagonalisierbarkeit und Trigonalisierung

5.2 Diagonalisierbarkeit und Trigonalisierung HINWEIS: Sie finden hier eine vorläufige Kurzfassung des Inhalts; es sind weder Beweise ausgeführt noch ausführliche Beispiele angegeben. Bitte informieren Sie sich in der Vorlesung. c M. Roczen und H.

Mehr

Kapitel 11 Eigenwerte und Eigenvektoren

Kapitel 11 Eigenwerte und Eigenvektoren Kapitel Eigenwerte und Eigenvektoren. Problem der Diagonalisierbarkeit Es sei wieder K gleich R oder. Eine n n)-matrix A mit Koeffizienten aus K wird als diagonalisierbar bezeichnet, wenn es eine invertierbare

Mehr

Vordiplomsklausur zur Linearen Algebra I, WS 05/06

Vordiplomsklausur zur Linearen Algebra I, WS 05/06 27.3.2006 Vordiplomsklausur zur Linearen Algebra I, WS 05/06 Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Kapitel 5. Endomorphismen von Vektorräumen. 5.3 Nilpotente Endomorphismen

Kapitel 5. Endomorphismen von Vektorräumen. 5.3 Nilpotente Endomorphismen Kapitel 5 c M Roczen und H Wolter Preview zur aktuellen Fassung: Lineare Algebra individuell Online Ver 052, 1552005 Alle Rechte vorbehalten Endomorphismen von Vektorräumen V 0 sei ein Vektorraum über

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

3.7 Eigenwerte und Eigenvektoren

3.7 Eigenwerte und Eigenvektoren 3.7. EIGENWERTE UND EIGENVEKTOREN 123 3.7 Eigenwerte und Eigenvektoren Wir wollen jetzt lineare Endomorphismen durch Matrizen besonders übersichtlicher Gestalt (u.a. mit möglichst vielen Nullen) beschreiben,

Mehr

9. Die Jordansche Normalform.

9. Die Jordansche Normalform. 9. Die Jordansche Normalform. Etwas verkürzt ausgedrückt geht es in diesem Kapitel darum, zu einem L End(V, dim V = n

Mehr

5.3 Darstellungsmatrizen affiner Abbildungen

5.3 Darstellungsmatrizen affiner Abbildungen 5.3 Darstellungsmatrizen affiner Abbildungen Definition 5.3.1. Seien A und B endlich-dimensionale ARs mit dim A n, dim B m und KS E : (p 0,..., p n ) von A und KS F : (q 0,..., q m ) von B. Sei α : A B

Mehr

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz

Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Lineare Algebra I Lösungsvorschläge zum 14. Übungsblatt U. Görtz Aufgabe 1 Sei V ein endlich-dimensionaler K-Vektorraum, und seien f und g Endomorphismen von V mit f g = g f. Zeige: a) Sind f und g diagonalisierbar,

Mehr

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Blatt 3 - Lösung Technische Universität München Physik Department Pablo Cova Fariña, Claudia Nagel Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 207/8 Blatt 3 - Aufgabe : Darstellungsmatrizen Sei

Mehr