Institut für Leistungselektronik und Elektrische Antriebe. Übungen zur Leistungselektronik 2. Kapitel 1 Funktionsweise des Thyristors

Größe: px
Ab Seite anzeigen:

Download "Institut für Leistungselektronik und Elektrische Antriebe. Übungen zur Leistungselektronik 2. Kapitel 1 Funktionsweise des Thyristors"

Transkript

1 Übungen zur Leistungselektronik 2

2 2 1.1 hyristor einfache Herstellung, benötigt keine feinen Halbleiterstrukturen wurde in den 50er Jahren noch vor dem ransistor eingeführt weit verbreitet in Anwendungen mit niedrigen Schaltfrequenzen Einsatz in Bereichen von sehr hoher Spannung und sehr hohen Strömen, z. B. HGÜ ein einzelner hyristor kann Spannungen bis zu 13 kv sperren er kann Ströme bis 6 ka führen

3 3 Arbeitsbereiche leistungselektronischer Bauteile mit Sperrspannung über Durchlassstrom:

4 4 Arbeitsbereiche leistungselektronischer Bauteile mit Schaltleistung über Schaltfrequenz:

5 Aufbau und Funktionsweise Der hyristor ist ein Vierschicht-Element mit folgender Schichtenfolge:

6 Aufbau und Funktionsweise Auf Grund des Halbleiteraufbaus sperrt der hyristor im ungesteuerten Zustand sowohl in Vorwärts- als auch Rückwärtsrichtung.

7 7 Im gesperrten Zustand verhält sich der hyristor wie eine Leistungsdiode, die Sperrkennlinie gleicht daher der einer Leistungsdiode.

8 Einschaltvorgang

9 9 Vorgänge im hyristor

10 10 Ungewolltes Zünden eines hyristors: a) Überkopfzünden: Überschreiten der Nullkippspannung U B0 bei i G = 0 (Ist im Allgemeinen unzulässig). Erreicht die Spannung u AK den Wert der Nullkippspannung, so wird die Durchbruchspannung der mittleren Sperrschicht überschritten und der hyristor beginnt zu leiten. Dieser Vorgang ist sehr kritisch, da in Folge von Unebenheiten (Inhomogenitäten) im Halbleiter zunächst ein enger Kanal zuerst leitet. Der Kanal muss dann während des Einschaltens die gesamte Verlustenergie aufnehmen. b) Kritische Spannungssteilheit: du Übersteigt die Spannungssteilheit AK bei i G = 0 den kritischen Wert des dt krit hyristors, so wirkt der Strom i C wie ein Zündstrom und der hyristor wird leitend. ypischer Wert: du AK dt krit = 1000 V/µs

11 11 Durchlasskennlinie Im leitenden Betrieb besitzt der hyristor die gleichen Eigenschaften wie eine leitende Diode.

12 12

13 Schalteigenschaften Dynamisches Verhalten beim Einschalten

14 Dynamisches Verhalten beim Abschalten

15 Ansteuerung Mit Hilfe einer Steuerspannung zwischen dem Gate und der Kathode des hyristors kann dieser gezündet werden. Die Steuerspannung, welche in Form eines Steueroder Zündimpulses angelegt wird, muss die im Datenblatt des hyristors angegebenen Werte bezüglich der Impulsdauer und Impulshöhe einhalten.

16 Dynamisches Verhalten beim Einschalten a) Dauer: Die minimale Zündimpulsdauer t G muss überschritten werden. Dies muss durch das Gatesteuergerät sichergestellt werden. Der Anodenstrom muss den Einraststrom überschreiten. (i A > I L ) Kann nur durch die Schaltung sichergestellt werden. b) Amplitude: Die Eingangskennlinien unterliegen einer starken Exemplarstreuung. Daher wird vom Hersteller ein oleranzfeld für diese Kennlinien angegeben. Der Zündimpulsgenerator (siehe ) muss nun genau auf dieses Kennlinienfeld abgestimmt werden. Damit die bei der Festlegung der zulässigen Strombelastung mit einbezogene Steuerverlustleistung P G nicht überschritten wird, müssen Zündspannung und Zündstrom unterhalb einer hyperbolischen Grenzlinie P = u i = const. liegen. G GK G Auch die emperaturabhängigkeit der Zündwerte spielt ein wichtige Rolle. Bei zunehmender emperatur reichen kleinere Zündströme aus. Dies hat zur Folge, dass die Zündung bei tiefen emperaturen erschwert wird. Deshalb muss der obere Zündwert für eine sichere Zündung bei der niedrigsten emperatur die auftreten kann, überschritten werden. (Bsp. Bahnanwendung, HGÜ)

17 17 Eingangskennlinienfeld Bereiche: keine Zündung mögliche Zündung sichere Zündung oberer Zündstrom obere Zündspannung unterer Zündstrom untere Zündspannung oberhalb dieser Werte zündet der hyristor sicher. unterhalb dieser Werte zündet der hyristor sicher nicht

18 Dynamisches Verhalten beim Abschalten Einfaches Ersatzschalbild eines Zündimpulsgenerators Die Kennlinie dieses Zündimpulsgenerators bestimmt nun, ob ein sicheres Zünden des hyristors ermöglicht wird.

19 19 Die technische Realisierung einer potenzialfreien Ansteuerschaltung kann wie folgt aussehen: z. B. HGÜ (800 kv) Funktionsweise: 1. hyristor sperrt: 2. Zündimpuls 3. i A > I L : ig = 0, i1= 0, M1 sperrt M1 leitet; i 1 baut sich auf; i stellt sich ein. G M1 sperrt; D z wird leitend; an L h1 liegt negative Spannung; i baut sich ab. 1

20 Verluste und Erwärmung in Halbleiterventilen Verlustleistung in Halbleiterventilen Die auftretenden Verlustleistungen in Halbleiterventilen setzen sich aus folgenden Anteilen zusammen: Sperrverluste P sperr In Rückwärtsrichtung bei nicht leitenden Dioden und hyristoren. Steuerverluste P steuer Werden über den Steueranschluss (Gate bzw. Basis) zugeführt. Schaltverluste P s Ein- und Ausschaltverluste. Durchlassverluste P d Während das Ventil leitet. Blockierverluste P block Bei anliegender Vorwärtsspannung, deren Betrag unterhalb der Durchbruchspannung liegt. Die gesamte Verlustleistung berechnet sich aus der Summe der einzelnen Verlustleistungen. Bei den Anwendungen in Leistungselektronik 2 überwiegen die Durchlassverluste.

21 21 Berechnung der Schaltverluste: Während des Ein- und Ausschaltens von Leistungshalbleitern treten kurzzeitig sehr hohe Leistungen auf. Der auftretende Augenblickswert der Leistung berechnet sich aus: p(t) = u(t) i(t) Während des Schaltens entstehen folgende Verlustenergien: W s,on = p(t) dt t on W s,off = p(t) dt t off Die mittlere Schaltverlustleistung ergibt sich somit zu: 1 1 P = P + P = p(t) dt + p(t) dt = f (W + W ) s s,on s,off s s,on s,off t t on Hierbei ist t on die Zeitdauer des Einschaltvorgangs, t off die Zeitdauer des Ausschaltvorgangs, 1 die Periodendauer und fs = die Schaltfrequenz. off

22 22 Berechnung der Durchlassverluste: Bei hyristoren und Dioden kann zur Berechnung der Durchlassverluste die statische Durchlasskennlinie aus Abschnitt herangezogen werden. Die Durchlasskennlinie wurde dort mit der folgenden Gerade angenähert: u = U + i R AK 0 A D Die Leistung berechnet sich als zeitlicher Mittelwert aus dem Produkt der anliegenden Spannung und des fließenden Stroms: P 1 = u(t) i(t)dt Die mittlere Durchlassverlustleistung, welche maßgebend für die thermische Beanspruchung ist, berechnet sich somit zu: 2 ( ) 1 1 P = u(t) i(t)dt = U i (t) + i (t) R dt 0 A A D P = U0 i A(t) dt RD i A(t) dt + I A I 2 Aeff 2 wobei : I I A Aeff = = arithmetischer Mittelwert Effektivwert Die mittlere Durchlassverlustleistung eines hyristors berechnet sich somit aus: 2 = 0 I A + D I Aeff P U R

23 Stromberechnungen Um die mittlere Verlustleistung berechnen zu können, muss der arithmetische Mittelwert und der Effektivwert des Stromes bekannt sein. i(t) Augenblickswert des Stromes i Spezifischer, zeitlicher Verlauf des Stromes i, z. B. sinusförmig. I I eff arithmetischer Mittelwert Effektivwert 1 I= i(t) dt I Aeff 1 = i (t) dt 2 A Linearer zeitlicher Mittelwert (Gleichrichtwert) des Stromes i. Der Gleichrichtwert ist der lineare Mittelwert der Beträge der Augenblickswerte i(t), gebildet über eine Periodendauer. Der Effektivwert stellt den zeitlichen, quadratischen Mittelwert von Wechselgrößen dar.

24 24 Beispiele Zeitlicher Verlauf von i(t) 0 t t : i(t) = ˆi e e t t : i(t) = 0 Arithmetischer Mittelwert t e Effektivwert I= î I î t e eff = t 0 t t ˆ e : i(t) = i t t t : i(t) = 0 e e t e I= î 2 I eff = î 1 3 t e ˆ t 0 t t e : i(t) = i sin π t t t : i(t) = 0 e e 2 t I= î e π I eff = î 1 2 t e

25 hermisches Ersatzschaltbild Elektrisches Strömungsfeld Wärmeströmungsfeld Größe Zeichen Einheit Größe Zeichen Einheit Potential ϕ V emperatur ϑ C Spannung U V emperaturdifferenz ϑ C Strom I A Wärmeleistung P V W U Widerstand R = Ω C Wärmewiderstand R th I W Ws Kapazität C F Wärmekapazität C th C

26 26

27 27 Im thermisch eingeschwungenen Zustand gilt folgender Zusammenhang zwischen den thermischen Größen: R R P =ϑ ϑ thjc Vges J C P =ϑ ϑ thca Vges C A RthCA = RthCK + RthKA Erklärung der auftretenden Größen: PVges R thjc R thck Gesamte Verlustleistung die im Halbleiter entsteht Wärmewiderstand zwischen Sperrschicht und Gehäuse Wärmewiderstand zwischen Gehäuse und Kühlkörper R thka R thca Wärmewiderstand zwischen Kühlkörper und Kühlmedium Wärmewiderstand zwischen Gehäuse und Kühlmedium Das Wärmespeichervermögen der Komponenten wird durch die Wärmekapazität C th beschrieben. Dadurch erhält man das Ersatzschaltbild für den Impulsbetrieb.

28 Kühlung Leistungshalbleiter werden meist mit Kühlkörpern gekühlt. Der Kühlkörper sollte möglichst dicht am Leistungshalbleiter angebracht sein, damit der Wärmeübergangswiderstand sehr gering wird. Durch Wärmeleitpaste oder ein Wärmeleitpad kann der Wärmeübergang verbessert werden. Man unterscheidet zwischen der natürlichen Kühlung und der verstärkten Kühlung. Bei der natürlichen Kühlung wird die entstehende Wärme über einen Kühlkörper direkt an die Umgebungsluft abgegeben. Verstärkte Kühlung bedeutet, dass der Kühlköper entweder mit Lüftern bestückt ist, oder selbst durch Wasser oder Öl gekühlt wird. Die Kühlleistung P k eines Kühlkörpers berechnet sich wie folgt: Pk =ρ c Q ϑ=ρ c Q RthKA Pvges Hierbei bedeutet: ρ = Dichte Luft: ρ = 1,20 kg / m 3 3 ( ) c = spezifische Wärme Luft: c = 1,00 10 Ws / kg K Q = Kühlstrom Luft: Q = l/s ϑ = emperaturunterschied zwischen Gehäuse und Umgebung Um nun für den entsprechenden Anwendungsfall den richtigen Kühlkörper auswählen zu können, geben die Kühlerhersteller zu jedem Kühlkörper den Wärmeübergangswiderstand R thka an. In dieser Widerstandsangabe ist bereits berücksichtigt, ob es sich um natürliche oder verstärkte Kühlung handelt.

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Leistungselektronik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Leistungselektronik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Leistungselektronik 2 Inhalt der Übungen: 1. Funktionsweise des hyristors 2. Der Kommutierungsvorgang in

Mehr

Leistungselektronik Grundlagen und Standardanwendungen

Leistungselektronik Grundlagen und Standardanwendungen Leistungselektronik Grundlagen und Standardanwendungen Verlustleistung und Kühlung Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Vollbild Übung 6: Verlustleistung und Kühlung Seite

Mehr

2. Die Einrichtungs-Thyristortriode: der Thyristor

2. Die Einrichtungs-Thyristortriode: der Thyristor D ER T HYRISTOR 1. Mehrschicht-Halbleiter: Thyristoren Unter der Bezeichnung Thyristoren werden Mehrschicht-Halbleiter zusammengefasst. Diese Mehrschicht-Halbleiter haben drei oder mehr PN-Übergänge und

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Laboratorium für Leistungselektronik und elektrische Antriebe

Laboratorium für Leistungselektronik und elektrische Antriebe Fachhochschule Offenburg Laboratorium für Leistungselektronik und elektrische Antriebe Versuch Nr. SS WS 00 Versuchstag 6.04.00 Semester EA7 Abgabedatum 30.04.00 Gruppe Abgabetermin der Korrektur Namen

Mehr

E l e k t r o n i k II

E l e k t r o n i k II Fachhochschule Südwestfalen Hochschule für Technik und Wirtschaft E l e k t r o n i k II Dr.-Ing. Arno Soennecken EEX European Energy Exchange AG Neumarkt 9-19 04109 Leipzig Vorlesung Thyristor im SS 2003

Mehr

Aufgabe 8 Lösung ( ) ( ) Institut für Leistungselektronik und Elektrische Antriebe. 8.1 Berechnung der Phasenverschiebung. û Z

Aufgabe 8 Lösung ( ) ( ) Institut für Leistungselektronik und Elektrische Antriebe. 8.1 Berechnung der Phasenverschiebung. û Z Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Aufgabe 8: Lösung 8.1 Berechnung der Phasenverschiebung ω L π fl L π 50Hz 1,84mH Θ= arctan = arctan = arctan R R

Mehr

Leistungselektronik. r f

Leistungselektronik. r f 1. Vierschichtdioden (=Thyristordioden) Leistungselektronik Die Thyristordiode ist ein Halbleiterbauteil mit 4 Halbleiterzonen wechselnden Leitfähigkeitstyps. Die beiden Anschlusselektroden heißen Kathode

Mehr

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.

KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK. KÜHLKÖRPER RISIKEN UND NEBENWIRKUNGEN EINE ART BEIPACKZETTEL ALEXANDER C. FRANK, DIPL. ING. ETH ZÜRICH, V1.0 MÄRZ 2008 WWW.CHANGPUAK.CH EINLEITUNG In Halbleitern entstehen Verluste, die in Form von Wärme

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Leseprobe. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN: 978-3-446-42734-1

Leseprobe. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN: 978-3-446-42734-1 Leseprobe Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen ISBN: 978-3-446-42734-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42734-1

Mehr

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen

Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen ISBN-10: 3-446-40784-7 ISBN-13: 978-3-446-40784-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40784-8

Mehr

Elektronikpraktikum. Versuch EP6 Thyristoren. Versuchsziele: Schwerpunkte bei der Durchführung des Versuchs:

Elektronikpraktikum. Versuch EP6 Thyristoren. Versuchsziele: Schwerpunkte bei der Durchführung des Versuchs: Elektronikpraktikum Versuch EP6 Thyristoren Institut für Festkörperelektronik Kirchhoff-Bau K1084 Die Versuchsanleitung umfasst 5 Seiten Stand 2006 Versuchsziele: Kennenlernen der Eigenschaften von Thyristoren

Mehr

Elementare Schaltvorgänge

Elementare Schaltvorgänge Elementare Schaltvorgänge Was sind als Schalter MOSFET (Schaltverhalten) Freilaufdiode Treiberschaltungen Kühlung Quellen 1 Elementare Schaltvorgänge meist als Schalterbetrieb Ziel ist möglichst Verlustarm

Mehr

Kühlung von Leistungshalbleitern

Kühlung von Leistungshalbleitern Lehrveranstaltung Leistungselektronik Grundlagen und Standard-Anwendungen Kühlung von Leistungshalbleitern Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21

Mehr

2. Parallel- und Reihenschaltung. Resonanz

2. Parallel- und Reihenschaltung. Resonanz Themen: Parallel- und Reihenschaltungen RLC Darstellung auf komplexen Ebene Resonanzerscheinungen // Schwingkreise Leistung bei Resonanz Blindleistungskompensation 1 Reihenschaltung R, L, C R L C U L U

Mehr

Arbeitsblätter. Bauelemente und Elektronik: Kombinations-BE (Di.) THY -1-

Arbeitsblätter. Bauelemente und Elektronik: Kombinations-BE (Di.) THY -1- Bauelemente und Elektronik: Kombinations-BE 13.1.04 (Di.) THY -1- Einführung Thyristoren, GTO s und Triac s werden überwiegend in der Leistungselektronik eingesetzt. Dabei wird das Bauelement als Schalter

Mehr

Aufgabe 1: Schaltender Transistor

Aufgabe 1: Schaltender Transistor Aufgabe 1: Schaltender Transistor Zur verlustarmen und stufenlosen Steuerung der Heckscheibenheizung eines Autos wird ein schaltender Transistor eingesetzt. Durch die Variation der Einschaltdauer des Transistors

Mehr

Professur für Leistungselektronik und Messtechnik

Professur für Leistungselektronik und Messtechnik Aufgabe 1: Diode I (leicht) In dieser Aufgabe sollen verschiedene Netzwerke mit Dioden analysiert werden. I = 1 A R = 2 Ω T = 25 C Diodenkennlinie: Abbildung 5 Abbildung 1: Stromteiler mit Diode a) Ermitteln

Mehr

Technische Information / Technical Information

Technische Information / Technical Information Elektrische Eigenschften / Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung T vj = - 40 C...T vj max V DRM, V RRM 1200 1400 V

Mehr

Fragebogen Auswahl Peltier-Element

Fragebogen Auswahl Peltier-Element Fragebogen Auswahl Peltier-Element Inhaltsverzeichnis 1 Einleitung... 3 2 Anwendung / Anordnung / Konfiguration... 3 3 Abmessungen... 4 4 Umgebung... 4 4.1 Temperatur... 4 5 Kalte Seite... 4 5.1 Temperatur...

Mehr

5. Anwendungen von Dioden in Stromversorgungseinheiten

5. Anwendungen von Dioden in Stromversorgungseinheiten in Stromversorgungseinheiten Stromversorgungseinheiten ( Netzgeräte ) erzeugen die von elektronischen Schaltungen benötigten Gleichspannungen. Sie bestehen oft aus drei Blöcken: Transformator Gleichrichter

Mehr

Technische Information / Technical Information

Technische Information / Technical Information TT B6C 95 N 12...18 1) (ISOPACK) N B6 Elektrische Eigenschaften / Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung T vj = - 40

Mehr

Drohaflttsveirzeklhiinifls

Drohaflttsveirzeklhiinifls Drohaflttsveirzeklhiinifls 1 Besonderheiten leistungselektronischer Halbleiterbauelemente 1 2 Halbleiterphysikalische Grundlagen 5 2.1 Eigenschaften der Halbleiter, physikalische Grundlagen 5 2.1.1 Kristallgitter

Mehr

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009

Versuch P1-50,51,52 - Transistorgrundschaltungen. Vorbereitung. Von Jan Oertlin. 4. November 2009 Versuch P1-50,51,52 - Transistorgrundschaltungen Vorbereitung Von Jan Oertlin 4. November 2009 Inhaltsverzeichnis 0. Funktionsweise eines Transistors...2 1. Transistor-Kennlinien...2 1.1. Eingangskennlinie...2

Mehr

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski

Betrachtung der Stoffwerte und ihrer Bezugstemperatur. Von Franz Adamczewski Betrachtung der Stoffwerte und ihrer Bezugstemperatur Von Franz Adamczewski Inhaltsverzeichnis Einleitung... 3 Bezugstemperatur... 4 Eintrittstemperatur des Kühlmediums 4 Austrittstemperatur des Kühlmediums

Mehr

5.3 Transistoren. Wenn man zu einer Diode einen weiter PNÜbergang hinzufügt gibt es 2 Möglichkeiten:

5.3 Transistoren. Wenn man zu einer Diode einen weiter PNÜbergang hinzufügt gibt es 2 Möglichkeiten: Das Ohmsche Gesetz Wir unterscheiden bipolare Transistoren und Feldeffekttransistoren. Heute besprechen wir die bipolaren Transistoren. Man kann den Transistor als eine erweiterte Diode betrachten: Wenn

Mehr

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ

+DXVDUEHLW $XIJDEH / VXQJ / VXQJ +DXVDUEHLW $XIJDEH Wie groß muß der Abstand der Platten eines Plattenkondensators sein, wenn seine Kapazität 100pF betragen soll. Gegeben ist der Durchmesser der runden Platten (d = 5 cm) und das Isoliermaterial

Mehr

Funktionsprinzip: P P. Elektrische Leistung (DC) Leistungs- Verstärker. Lautsprecher. Thermische Verlustleistung (Wärme) Wirkungsgrad:

Funktionsprinzip: P P. Elektrische Leistung (DC) Leistungs- Verstärker. Lautsprecher. Thermische Verlustleistung (Wärme) Wirkungsgrad: eistungsverstärker Funktionsprinzip: Elektrische eistung () Elektrische Signale (AC) Ue(t) eistungs- Verstärker Elektr. eistung (AC) autsprecher neumatische eistung uftdruckänderung Thermische Verlustleistung

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Aufgabe 9

Institut für Leistungselektronik und Elektrische Antriebe. Aufgabe 9 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Aufgabe 9 Photovoltaik-Wechselrichter mit Leistungsmaximierung In dieser Aufgabe soll die Einspeisung von elektrischer

Mehr

Skript für die Vorlesung. Elektronik. Schaltverluste und Grenzlastintegral

Skript für die Vorlesung. Elektronik. Schaltverluste und Grenzlastintegral Skript für die Vorlesung Elektronik Schaltverluste und Grenzlastintegral Ein- und Ausschaltverluste Der Einschaltvorgang eines Halbleiterbauelements vollzieht sich aufgrund der begrenzten Diffusionsgeschwindigkeit

Mehr

Technische Information / Technical Information

Technische Information / Technical Information Elektrische Eigenschften / Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung T vj = - 40 C...T vj max V DRM, V RRM 2600 V repetitive

Mehr

Elektrische Antriebe und Anlagen

Elektrische Antriebe und Anlagen Elektrische Antriebe und Anlagen Kapitel 4: Leistungshalbleiter 5.Jhrg KOHE 1 Leistungshalbleiter Schalter in Stromrichtern: Leistungshalbleiter (Halbleiterventile) 1) Dioden 2) Thyristoren 3) verschiedene

Mehr

Datenblatt / Data sheet

Datenblatt / Data sheet TT17N TT17N TD17N DT17N Kenndaten Elektrische Eigenschaften / Eigenschaften Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung repetitive

Mehr

Technische Information / Technical Information

Technische Information / Technical Information Elektrische Eigenschaften / Electrical properties Höchstzulässige Werte / Maximum rated values Periodische orwärts- und Rückwärts-Spitzensperrspannung T vj = - 40 C...T vj max DRM, RRM 1400 repetitive

Mehr

Leistungselektronik für Bachelors

Leistungselektronik für Bachelors Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen 3., neu bearbeitete und erweiterte Auflage 1.2 Eigenschaften des Schaltbetriebs 19 Allgemein wird der arithmetische Mittelwert

Mehr

Ausarbeitung: MOSFET

Ausarbeitung: MOSFET Ausarbeitung: MOSFET Inhaltverzeichnis: 1. Einleitung 2. Definition 3. Aufbau 4. Kennlinien 5. Anwendungen 6. Vor- & Nachteile 7. Quellen 1 1.Einleitung: Die erste begrifflich ähnliche MOSFET- Struktur

Mehr

Passive Bauelemente, Grundgrößen

Passive Bauelemente, Grundgrößen Passive Bauelemente, Grundgrößen 1. Wie lauten die beiden wichtigsten Parameter eines ohmschen Widerstandes? 2. Wie lauten die beiden wichtigsten Parameter eines Kondensators? 3. Wie lauten die beiden

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Laborprotokoll 2 Korrekturfassung

Laborprotokoll 2 Korrekturfassung Laborprotokoll Korrekturfassung Elektrotechnik / Elektrische Antriebstechnik Eigenschaften von Messgeräten und einfacher Leistungselektronik-schaltungen Dozent: Protokollführer: Versuchsteilnehmer: Prof.

Mehr

Bauelemente der LEISTUNGSELEKTRONIK

Bauelemente der LEISTUNGSELEKTRONIK Bauelemente der LEISTUSELEKTROIK Best Of Elektronik www.kurcz.cc - 2010 Bauelemente der LEISTUSELEKTROIK Inhaltsverzeichnis 1 Thyristor... 3 1.1.1 Schaltszeichen... 3 1.2 Eingangskennlinie:... 3 1.3 Ausgangskennlinie:...

Mehr

Datenblatt / Data Sheet

Datenblatt / Data Sheet TT16N TT16N TD16N DT16N Kenndaten TD16N..K..-A TD16N..K..-K Elektrische Eigenschaften / Eigenschaften Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung

Mehr

Bezieht man sich auf die Merkmale der Eingangs- und Ausgangsspannungen, so gibt es vier grundsätzliche Umwandlungsmöglichkeiten.

Bezieht man sich auf die Merkmale der Eingangs- und Ausgangsspannungen, so gibt es vier grundsätzliche Umwandlungsmöglichkeiten. ELECTROTECHNIQE G LEICHRICHTERSCHALTNGEN 1. Stromrichter Stromrichter sind elektrische Netzwerke aus Leistungshalbleitern, wie Leistungsdioden, Thyristoren und Leistungstransistoren, zur kontinuierlichen

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 6 ntersuchungen an einem bipolaren Transistor Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

EINSCHALTSTROMPEAKS BEI SIC-JFET IN HALBBRÜCKEN

EINSCHALTSTROMPEAKS BEI SIC-JFET IN HALBBRÜCKEN Einschaltstrompeaks bei SiC-JFET in Halbbrücken 1 EINSCHALTSTROMPEAKS BEI SIC-JFET IN HALBBRÜCKEN I. Koch 1 EINLEITUNG In leistungselektronischen Anwendungen sollten sich Ober- und Unterschalter einer

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 10. Vorlesung Dr.-Ing. Wolfgang Heenes 22. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Vorbesprechung drittes Labor

Mehr

Übung 2 Einschwingvorgänge 2 Diode Linearisierung

Übung 2 Einschwingvorgänge 2 Diode Linearisierung Universität Stuttgart Übung 2 Einschwingvorgänge 2 Diode Linearisierung Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Aufgabe 2.1

Mehr

Kapitel. Eins zurück, zwei vor: die ersten Schritte

Kapitel. Eins zurück, zwei vor: die ersten Schritte Kapitel 1 Eins zurück, zwei vor: die ersten Schritte ASIMO ist ein dem Menschen nachempfundener Roboter, der sich auf zwei Beinen fortbewegen kann. Er vereint alle Inhalte der Elektrotechnik und Elektronik

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis...VII. 1 Besonderheiten leistungselektronischer Halbleiterbauelemente...1

Inhaltsverzeichnis. Inhaltsverzeichnis...VII. 1 Besonderheiten leistungselektronischer Halbleiterbauelemente...1 VII Inhaltsverzeichnis Inhaltsverzeichnis...VII 1 Besonderheiten leistungselektronischer Halbleiterbauelemente...1 2 Halbleiterphysikalische Grundlagen...5 2.1 Eigenschaften der Halbleiter, physikalische

Mehr

Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich aus der Fassung brächten.

Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich aus der Fassung brächten. Der MOS-FET-Transistor (Isolierschicht-Feldeffekt-Transistor) Voraussetzungen: Es wäre von Vorteil, wenn dich die Begriffe Dotierung, thermische Paarbildung, Influenz und Halbleiterdiode nicht gänzlich

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Thyristor. n3 + N. Bild 1: Prinzipieller Aufbau und Ersatzschaltbild eines Thyristors

Thyristor. n3 + N. Bild 1: Prinzipieller Aufbau und Ersatzschaltbild eines Thyristors Beuth Hochschule für Technik Berlin Fachbereich VI Informatik und Medien Labor für utomatisierungstechnik, B054 WiSe 2009/2010 Elektrische Systeme Labor (ESÜ29) Studiengang Technische Informatik Thyristor

Mehr

Bezüglich der Auslegung von Kabeln und Leitungen ist zu beachten, dass die Strombelastbarkeit

Bezüglich der Auslegung von Kabeln und Leitungen ist zu beachten, dass die Strombelastbarkeit 30 2 Überlast- und Kurzschlussschutz elektrischer Betriebsmittel Bezüglich der Auslegung von Kabeln und Leitungen ist zu beachten, dass die Strombelastbarkeit I z nicht allein eine Eigenschaft des Kabels

Mehr

Aufgabe 1 Transiente Vorgänge

Aufgabe 1 Transiente Vorgänge Aufgabe 1 Transiente Vorgänge S 2 i 1 i S 1 i 2 U 0 u C C L U 0 = 2 kv C = 500 pf Zum Zeitpunkt t 0 = 0 s wird der Schalter S 1 geschlossen, S 2 bleibt weiterhin in der eingezeichneten Position (Aufgabe

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Zu MOSFET (metal oxide semiconductor field-effect transistor) Zu Diode

Zu MOSFET (metal oxide semiconductor field-effect transistor) Zu Diode Zu.1.1 Diode Zu.1. MOFE (metal oxide semiconductor field-effect transistor) Bild.1: Reale und linearisierte Diodenkennlinie Bild.: Ausgangskennlinienfeld eines selbstsperrenden n-kanal-mofe Bild.: Idealisierte

Mehr

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014

Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Umwandlung elektrischer Energie mit Leistungselektronik WS 2014 Übungsaufgaben Übung Raumzeiger: Gegeben ist folgende Durchflutung für die Wicklung a einer dreiphasigen Maschine. F a (θ mech, t) = α =

Mehr

Kapitel 3 Resonante schaltentlastende (Gleich-)Spannungssteller

Kapitel 3 Resonante schaltentlastende (Gleich-)Spannungssteller Übungen zur Leistungselektronik 2 2 3.1 Prinzip der resonanten Schaltentlastung Ziel: Reduzierung der Schaltverluste Einschaltvorgang Ausschaltvorgang 3 3.1 Prinzip der resonanten Schaltentlastung Zero-Voltage-Switching

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten

Diplomvorprüfung SS 2011 Fach: Elektronik, Dauer: 90 Minuten Diplomvorprüfung Elektronik Seite 1 von 9 Hochschule München FK 03 Fahrzeugtechnik Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Elektronik,

Mehr

GRUNDLAGENLABOR CLASSIC NICHTLINEARITÄTEN UND KENNLINIEN

GRUNDLAGENLABOR CLASSIC NICHTLINEARITÄTEN UND KENNLINIEN GRUNDLGENLBOR CLSSIC NICHTLINERITÄTEN UND KENNLINIEN Inhalt: 1. Einleitung und Zielsetzung...2 2. Theoretische ufgaben Vorbereitung...2 3. Praktische Messaufgaben...8 Filename: Version: uthor: Kennlinien_Nichtlinearitäten_3_0.doc

Mehr

Technische Information Bipolare Halbleiter

Technische Information Bipolare Halbleiter AN2011-02 Ask Infineon Infineon Hotline-Service at your fingertips. Where you need it. When you need it. Infineon Technologies Bipolar GmbH & Co. KG Infineon offers its toll-free 0800 service hotline as

Mehr

Datenblatt / Data sheet

Datenblatt / Data sheet TT57N TT57N TT57N...-A Kenndaten Elektrische Eigenschaften Periodische Vorwärts- und Rückwärts-Spitzensperrspannung repetitive peak forward off-state and reverse voltages TD57N T vj = -4 C... T vj max

Mehr

Datenblatt / Data sheet

Datenblatt / Data sheet TD61N DT61N 5555Kenndaten...-K TD61N...-A DT61N...-K Elektrische Eigenschaften / Eigenschaften Electrical properties Höchstzulässige Werte / Maximum rated values Periodische Vorwärts- und Rückwärts-Spitzensperrspannung

Mehr

Stand: 05.07.2001 Seite 3-1

Stand: 05.07.2001 Seite 3-1 Inhaltsverzeichnis: Thema Bereiche Seite Thyristordiode Funktionsweise, Aufbau und Schaltzeichen 3-2 Kennlinie 3-2 Thyristor Funktionsweise, Aufbau und Schaltzeichen 3-3 Kennlinie 3-3 Thyristortetrode

Mehr

Inhaltsverzeichnis. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN:

Inhaltsverzeichnis. Uwe Probst. Leistungselektronik für Bachelors. Grundlagen und praktische Anwendungen ISBN: Inhaltsverzeichnis Uwe Probst Leistungselektronik für Bachelors Grundlagen und praktische Anwendungen ISBN: 978-3-446-42734-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42734-1

Mehr

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null.

NTB Druckdatum: ELA II. Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. WECHSELSTROMLEHRE Wechselgrössen Zeitlicher Verlauf Wechselgrösse: Augenblickswert ändert sich periodisch und der zeitliche Mittelwert ist Null. Zeigerdarstellung Mittelwerte (Gleichwert, Gleichrichtwert

Mehr

Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April 2002

Wiederholungsklausur Grundlagen der Elektrotechnik I 22. April 2002 Wiederholungsklausur Grundlagen der Elektrotechnik I Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier.

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Halbleiter-Leistungsbauelemente

Halbleiter-Leistungsbauelemente Halbleiter-Leistungsbauelemente Physik, Eigenschaften, Zuverlässigkeit Bearbeitet von Josef Lutz 1. Auflage 2012. Buch. xxii, 383 S. Hardcover ISBN 978 3 642 29795 3 Format (B x L): 16,8 x 24 cm Gewicht:

Mehr

Praktikum 3 Aufnahme der Diodenkennlinie

Praktikum 3 Aufnahme der Diodenkennlinie Praktikum 3 Aufnahme der Diodenkennlinie Seite Inhalt 2 Einleitung 2 Vorbereitung 2 1. Statische Messung 3 2. Dynamische Messung 5 3. Einpuls-Mittelpunktschaltung 7 azit 8 Anhang Seite 1 Einleitung Bei

Mehr

Transistor- und Operationsverstärkerschaltungen

Transistor- und Operationsverstärkerschaltungen Name, Vorname Testat Besprechung: 23.05.08 Abgabe: 30.05.08 Transistor- und Operationsverstärkerschaltungen Aufgabe 1: Transistorverstärker Fig.1(a): Verstärkerschaltung Fig.1(b): Linearisiertes Grossignalersatzschaltbild

Mehr

Laborübung, NPN-Transistor Kennlinien

Laborübung, NPN-Transistor Kennlinien 15. März 2016 Elektronik 1 Martin Weisenhorn Laborübung, NPN-Transistor Kennlinien Einführung In diesem Praktikum soll das Ausgangskennlinienfeld des NPN-Transistors BC337 ausgemessen werden, um später

Mehr

Leistungselektronik. Grundlagen und Anwendungen. Bearbeitet von Rainer Jäger, Edgar Stein

Leistungselektronik. Grundlagen und Anwendungen. Bearbeitet von Rainer Jäger, Edgar Stein Leistungselektronik Grundlagen und Anwendungen Bearbeitet von Rainer Jäger, Edgar Stein 06. Auflage, aktualisierte 2011. Buch. 427 S. Hardcover ISBN 978 3 8007 2966 1 Format (B x L): 14,8 x 21 cm Gewicht:

Mehr

evtl. C th,j / C th,c Kühlkörper NTC's ("negative temperature coefficient" Heißleiter) Sonstiges Temperatur, die an der Sperrschicht abfällt: T J

evtl. C th,j / C th,c Kühlkörper NTC's (negative temperature coefficient Heißleiter) Sonstiges Temperatur, die an der Sperrschicht abfällt: T J Kühlkörper Temperatur, die an der Sperrschicht abfällt: T J P V ( th,jc th,ck th,k T anfänglicher Temperaturanstieg: (um Temperatursensoren zu dimensionieren (Überwachung P V0 th J τ th T t P V0 C th,k

Mehr

Probeklausur Elektronik (B06)

Probeklausur Elektronik (B06) Probeklausur Elektronik (B06) Bitte vor Arbeitsbeginn ausfüllen Name: Vorname: Matrikel-Nummer: Fachsemester: Datum: Unterschrift: Zugelassene Hilfsmittel: Taschenrechner ohne Textspeicher 1DIN A4-Blatt:

Mehr

Inhalt. Vorwort... 5. Benutzerhinweise... 7

Inhalt. Vorwort... 5. Benutzerhinweise... 7 Vorwort.......................................................... 5 Benutzerhinweise.................................................. 7 0 Einführung in das Simulationssystem Portunus.................

Mehr

ELEKTRONIK - Beispiele - Dioden

ELEKTRONIK - Beispiele - Dioden ELEKTRONIK - Beispiele - Dioden DI Werner Damböck (D.1) (D.2) geg: U 1 = 20V Bestimme den Vorwiderstand R um einen maximalen Strom von 150mA in der Diode nicht zu überschreiten. Zeichne den Arbeitspunkt

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein. Leistungselektronik. Grundlagen und Anwendungen. 5. Auflage. VDE VERLAG Berlin Offenbach

Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein. Leistungselektronik. Grundlagen und Anwendungen. 5. Auflage. VDE VERLAG Berlin Offenbach Prof. Dr.-Ing. Rainer Jäger Prof. Dr.-Ing. Edgar Stein Leistungselektronik Grundlagen und Anwendungen 5. Auflage VDE VERLAG Berlin Offenbach Inhalt Einleitung 11 1 Halbleiterbauelemente der Leistungselektronik

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 1. Klausur Grundlagen der Elektrotechnik I-A 2. Dezember 2002 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten rennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der

Mehr

A1 A2 A3 A4 A5 A6 Summe

A1 A2 A3 A4 A5 A6 Summe 2. Klausur Grundlagen der Elektrotechnik I-A 16. Februar 2004 Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Björn Eissing Karsten Gänger Christian Jung Andreas Schulz Jörg Schröder

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 6. Vorlesung Dr.-Ing. Wolfgang Heenes 25. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. ipolartransistoren 2. Kennlinienfelder

Mehr

SCHÜLERPROJEKT: COOL PHYSICS HANDBUCH ZUR STATION STATION: KÜHLUNG FÜR UNTERWEGS DAS PELTIER-ELEMENT

SCHÜLERPROJEKT: COOL PHYSICS HANDBUCH ZUR STATION STATION: KÜHLUNG FÜR UNTERWEGS DAS PELTIER-ELEMENT SCHÜLERPROJEKT: COOL PHYSICS HANDBUCH ZUR STATION STATION: KÜHLUNG FÜR UNTERWEGS DAS PELTIER-ELEMENT INHALTSVERZEICHNIS Hinweise zu Gefährdungen ab Seite 3 Genaue Versuchsdurchführungen ab Seite 4 Hintergrundwissen

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 1: Diodengleichrichter

Leistungselektronik Grundlagen und Standardanwendungen. Übung 1: Diodengleichrichter Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Halbleiterbauelemente Martin Adam Versuchsdatum: 10.11.2005 Betreuer: DI Bojarski 16. November 2005 Inhaltsverzeichnis 1 Versuchsbeschreibung 2 1.1 Ziel................................... 2 1.2 Aufgaben...............................

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Technische Universität Ilmenau Ilmenau, Fakultät EI FG Elektronische Messtechnik. zum S e m i n a r Elektrische Messtechnik

Technische Universität Ilmenau Ilmenau, Fakultät EI FG Elektronische Messtechnik. zum S e m i n a r Elektrische Messtechnik Technische niversität Ilmenau Ilmenau,.9.9 Fakultät EI FG Elektronische Messtechnik zum S e m i n a r Elektrische Messtechnik . AFGABE a) Definieren Sie eine komplexe Zahl anhand ihrer beiden Schreibweisen,

Mehr

Rechenübungen zu Leistungselektronik

Rechenübungen zu Leistungselektronik Ausarbeitung der Beispiele aus Rechenübungen zu eistungselektronik Teil B - Selbstgeführte Stromrichter Die hier angeführten Berechnungen könnten fehlerhaft sein Inhalt Beispiel 3 Beispiel 4 Beispiel 3

Mehr

Vorwort 5. Benutzerhinweise 7

Vorwort 5. Benutzerhinweise 7 Inhalt Vorwort 5 Benutzerhinweise 7 o Einführung in das Simulationssystem Portunus 15 0.1 Installation 15 0.2 Portunus Übersicht. 16 0.2.1 Menü und Symbolleiste 19 0.2.2 Kontextmenü 26 0.2.3 Modell-Datenbanken

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

Der MosFET. Referent: Dominik Tuszyoski

Der MosFET. Referent: Dominik Tuszyoski Der MosFET Referent: Dominik Tuszyoski 27.05.2010 1. Geschichte 1.1.Erfinder 1.2.Ein paar Fakten 2. Einsatzgebiete 3. Aufbau 3.1. Schaltzeichen 3.2. physikalischer Aufbau 3.3. Funktionsweise 3.4.1. Kennlinienfeld

Mehr