Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013)

Größe: px
Ab Seite anzeigen:

Download "Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes. Holographie - Grundlagen und Anwendungen (2012/2013)"

Transkript

1 Holographie Grundlagen und Anwendungen Prof. Dr. R. Kowarschik Fragen und Aufgaben zur Vertiefung des Vorlesungsstoffes Holographie - Grundlagen und Anwendungen (2012/2013) 1. Was versteht man unter Schärfen- und Abbildungstiefe? 2. Konstruieren Sie für eine Sammellinse Nah-, Fern- und Hyperfokalpunkte! 3. Wodurch ist der Durchmesser des Zerstreuungskreises bestimmt? 4. Wie wirkt sich die Beugung bei einer Kamera mit Objektiv im Vergleich zur Lochkamera aus? 5. Wodurch ist das Auflösungsvermögen des Auges begrenzt? 6. Warum können wir mit zwei phasenblinden Detektoren (Augen) trotzdem dreidimensional sehen? 7. Welche Hinweisreize helfen uns beim 3D-Sehen? 8. Was versteht man unter binokularer Disparität für Stereopsis? 9. Erklären Sie das Prinzip der Lippmannschen Farbfotografie! 10. Erläutern Sie das Grundprinzip der Holographie! 11. Welche Rolle spielt die Kohärenz des Feldes bei der Holographie? 12. Berechnen Sie den Abstand der Intensitätsmaxima der Interferenzstrukturen bei der Überlagerung zweier ebener Wellen! 13. Wann entstehen bei der Überlagerung zweier Kugelwellen Hyperboloide oder Ellipsoide? 14. Berechnen Sie die Radien der Interferenzringe einer Fresnelschen Zonenplatte, die bei der Interferenz einer ebenen Welle mit einer Kugelwelle entsteht! 15. Was sind Denisyuk-Hologramme (Reflexionshologramme)? 16. Was beschreibt die Amplitudentransmissionsfunktion eines Speichermediums? 17. Was versteht man unter Belichtung? 18. Warum ist es sinnvoll, im linearen Teil der Kennlinie zu arbeiten, und wie kann man einen günstigen Arbeitspunkt experimentell festlegen? 1

2 19. Was beschreibt der Gamma-Wert einer Kennlinie? 20. Erklären Sie das Zustandekommen von primärem und konjugiertem Bild bei der holographischen Rekonstruktion! 21. Welche Eigenschaften haben die holographisch rekonstruierten Bilder? 22. Warum macht es Sinn, das Hologramm mit der ursprünglichen Referenzwelle zu rekonstruieren? 23. Welche Bilder treten auf, wenn man das Hologramm mit der konjugierten Referenzwelle rekonstruiert? 24. Was sind die Vor- und Nachteile der Inline-Holographie und der Off-axis-Holographie? 25. Welche prinzipielle Struktur hat das Ortsfrequenzspektrum der holographisch rekonstruierten Wellen? 26. Wie kann man die Überlagerung der einzelnen Spektren vermeiden? 27. Wie unterscheiden sich dünne (ebene, Flächen-) Hologramme von dicken (Volumen-, Bragg-) Hologrammen? 28. Welche Rolle spielt bei Volumenhologrammen der Braggeffekt? 29. Was versteht man unter Fresnel-Holographie? 30. Berechnen Sie das Fresnelhologramm für einen Objektpunkt und eine ebene Referenzwelle! 31. Wie kann man die Ortsfrequenz von Interferenzstreifen aus der Phasendifferenz berechnen? 32. Wodurch ist die effektive Hologrammgröße bestimmt? 33. Wie wirkt sich die Hologrammgröße auf das rekonstruierte Bild aus? 34. Was versteht man unter dem Orts-Bandbreite-Produkt (SBP) und wie kann man es im Phasenraum darstellen? 35. Wann kann man den Formalismus der Strahlmatrizen auf die Berechnung des SBP anwenden? 36. Wie ändert sich das SBP bei der Abbildung mit einer dünnen Linse? 37. Wie wird eine Kugelwelle im Phasenraum dargestellt? 38. Wie sieht das SBP im Phasenraum für die Fourier-Transformation und die Fresnel- Transformation aus? 39. Was geschieht mit dem SBP bei einer idealen Abbildung? 2

3 40. Welche Struktur hat das SBP bei der In-line- und Off-axis-Fresnel-Holographie? 41. Was kann man tun, um das SBP des Fresnel-Hologramms zu verringern? 42. Wie kann man das SBP des Objektes bzw. des Hologramms berechnen, wenn man die jeweilige maximale Ortsfrequenz und die Größen von Objekt und Hologramm kennt? 43. Wie kann man experimentell Fraunhofer-Hologramme aufnehmen? 44. Welche Arten der Fourier-Holographie gibt es? 45. Was sind die Vorteile der Fourier-Holographie verglichen mit der Fresnel-Holographie? 46. Warum setzt man bevorzugt die linsenlose Fourier-Holographie ein? 47. Wann kann man reelle bzw. virtuelle Bilder mit Fourier-Holographie rekonstruieren? 48. Wie sieht das SBP von Fourier-Hologrammen aus? 49. Was sind Bildfeld-Hologramme und welche Eigenschaften haben sie? 50. Wie groß ist sind die SBPs einer Linse und eines off-axis-bildfeld-hologramms? 51. Welche Voraussetzungen werden üblicherweise gemacht, um die Phasenterme der holographisch rekonstruierten Bilder zu berechnen? 52. Wie kommt man von den Phasentermen zu den Abbildungsgleichungen der Holographie? 53. Wovon hängen die Brennweiten eines Hologramms ab? 54. Welchen Einfluß hat die Lage der Rekonstruktionsquelle auf die Bildpositionen? 55. Welche Parameter kann man nutzen, um virtuelle oder reelle Bilder zu erhalten? 56. Wie kommt man zu den verschiedenen Vergrößerungen (lateral, longitudinal, Winkel-)? 57. Wie kann man die Schärfentiefe bei der holographischen Abbildung definieren? 58. Wodurch unterscheiden sich Transmissions- und Reflexionshologramme? 59. Wie kann man durch Zwei-Schritt-Verfahren reelle holographische Bilder erzeugen? 60. Wie kann man ein Objekt mit seiner Vorder- und Rückseite holographisch aufnehmen? 61. Wie werden Regenbogenhologramme aufgenommen? 62. Welche Parallaxe ist bei Regenbogenhologrammen zu beobachten? 63. Was sind Multiplex-Hologramme und wofür kann man sie einsetzen? 64. Was versteht man unter Polarisationshologrammen? 3

4 65. Welche Polarisation erhält man in der Hologrammebene, wenn bei der Aufnahme eine linear polarisierte und eine zirkular polarisierte Welle verwendet werden? 66. Wie sieht die Polarisation einer Gaborschen Zonenplatte in der Hologrammebene aus? 67. Was sind synthetische Hologramme (CGHs)? 68. Welche Schritte sind für die Herstellung von GCHs erforderlich? 69. Warum werden für synthetische Hologramme vor allem Fourier-Hologramme verwendet? 70. Welche Kodierungsarten gibt es? 71. Wie kann man komplexe Amplituden kodieren? 72. Welche Möglichkeiten hat man, um die iterativen Berechnungsverfahren (IFTA) zu optimieren? 73. Welche Rolle spielt die Phase der Objektfunktion? 74. Wie kann man Prägehologramme herstellen? 75. Was versteht man unter konoskopischer Holographie? 76. Mit welchen Methoden kann man die Beugung elektromagnetischer Wellen an periodischen Strukturen beschreiben? 77. Wie ist der Beugungswirkungsgrad (BWG) definiert? 78. Wie geht man bei der Methode der gekoppelten Wellen prinzipiell vor? 79. Auf welche Weise werden die Raumharmonischen im Gitterbereich mit den Beugungsordnungen außerhalb verknüpft? 80. Wie kann man die Dielektrizitätskonstante mit dem Brechungsindex und dem Absorptionskoeffizienten verbinden? 81. Wann treten Freiraumwellen bzw. evaneszente Wellen auf? 82. Was beschreibt die Bragg-Bedingung? 83. Was versteht man unter Winkel- und Wellenselektivität? 84. Welche Näherungen werden üblicherweise bei der 2-Wellen-Theorie (Kogelnik-Theorie) gemacht? 85. Wie sieht der BWG von Transmissions- und Reflexions-Volumenhologrammen im Braggfall aus? 86. Wann kann man theoretisch einen BWG von 100 % erreichen? 4

5 87. Wie ändert sich der BWG bei Abweichung vom Braggfall? 88. Wie kann man die Seitenbänder des BWG unterdrücken? 89. Was versteht man unter der Raman-Nath-Theorie? 90. Welche Gittertypen lassen sich gut mit der Amplituden-Transmissions-Theorie beschreiben? 91. Kann man bei dünnen Gittern einen BWG von 100 % erreichen? 92. Welche Forderungen müssen Speichermedien für die Holographie erfüllen? 93. Warum werden in der Regel Medien mit sehr hohem Auflösungsvermögen benötigt? 94. Was versteht man unter Sensitivität und Reversibilität von Speichermedien? 95. Was bedeutet digitale Holographie? 96. Welche Vor- und Nachteile haben digital-holographische Verfahren verglichen mit konventioneller Holographie? 97. Welche holographischen Schritte laufen bei der digitalen Holographie im Computer ab? 98. Was versteht man unter der Faltungsmethode? 99. Welchen Einfluß hat die Pixelstruktur der Detektoren auf die mögliche Objektgröße? 100. Welche Aufnahmegeometrien sind in der digitalen Holographie sinnvoll? 101. Was versteht man unter Phasenkonjugation und wie kann man sie mit Hilfe der Holographie realisieren? 102. Welche Anwendungen gibt es für phasenkonjugierende Spiegel? 103. Wie funktioniert die holographische Interferometrie? 104. Vergleichen Sie konventionelle und holographische Interferometrie! 105. Wie arbeitet ein holographisches Mikroskop? Was sind seine Vor- und Nachteile? 106. Welche holographisch-optischen Elemente kennen Sie? 107. Wie kann man mit HOEs Strahlteiler- und Koppler realisieren? 108. Wie kann man Farbhologramme aufnehmen und rekonstruieren? 109. Warum sind Regenhologramme keine echten Farbhologramme? 110. Wie finden holographische Methoden bei Displays Anwendung? 5

6 111. Wo erwartet man die Anwendung holographischer Displays in Zukunft? 112. Wie kann man Faltungs- und Korrelationsoperationen holographisch ausführen? 113. Wo finden solche Korrelationsverfahren Anwendung? 114. Warum werden holographische Speicher auch als assoziative Speicher bezeichnet? 115. Was ist ein direkt adressierbarer Speicher? 116. Welche Speicherkapazität kann man bei einem holographischen Volumenspeicher erreichen? 117. Wie funktioniert ein holographischer Massenspeicher? 118. Welche Vorteile haben holographische Speicher vgl. mit DVDs und Festplatten? 119. Warum werden bei holographischen Massenspeichern Volumenhologramme bevorzugt? 120. Welche potentiellen Applikation gibt es für holographische Massenspeicher? 6

Holographie. Jürgen Eichler. Gerhard Ackermann. Springer-Verlag. Mit 109Abbildungen

Holographie. Jürgen Eichler. Gerhard Ackermann. Springer-Verlag. Mit 109Abbildungen I" Jürgen Eichler. Gerhard Ackermann Holographie Mit 109Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest ..._-~-~~. Prof. Dr. rer.nat. Jürgen Eichler

Mehr

HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM

HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM 27-1 HOLOGRAPHIE I : VOM GITTER ZUM 3D- HOLOGRAMM Vorbereitung: Interferenz, Sinusgitter und Zonenplatte, Kohärenz, Laser, Prinzip der Holographie (Aufnahme und Rekonstruktion), Amplituden- und Phasenholographie,

Mehr

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von

Optik. Lichtstra h len - Wellen - Photonen. Wolfgang Zinth Ursula Zinth. Oldenbourg Verlag München. 3-, verbesserte Auflage. von Optik Lichtstra h len - Wellen - Photonen von Wolfgang Zinth Ursula Zinth 3-, verbesserte Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort V 1 Einführung und historischer Überblick 1 2 Licht

Mehr

Holographie. Mario Chemnitz

Holographie. Mario Chemnitz Holographie Mario Chemnitz Kurzvortrag im Rahmen des Proseminars des F-Praktikums Physikalische Astronomische Fakultät Friedrich-Schiller-Universität Jena 28. Mai 2009 Inhaltsverzeichnis 1 Einleitung 2

Mehr

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München

Optik. Lichtstrahlen -Wellen - Photonen. Wolfgang Zinth Ursula Zinth. von. 4., aktualisierte Auflage. OldenbourgVerlag München Optik Lichtstrahlen -Wellen - Photonen von Wolfgang Zinth Ursula Zinth 4., aktualisierte Auflage OldenbourgVerlag München Inhaltsverzeichnis Vorwort 1 Einführung und historischer Überblick v 1 Licht als

Mehr

Optische Holographie

Optische Holographie ----------'I THIEMIG -TASCHENBÜCHER' BAND 61 Optische Holographie Theoretische und experimentelle Grundlagen und Anwendung Optical Holography Theoretical and experimental principles and application Von

Mehr

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln

Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Institut für Angewandte Optik und Elektronik Fakultät für Informations-, Medien- und Elektrotechnik Fachhochschule Köln Praktikumsanleitung: Holografie Versuch 4: Hologrammkopie 1 Versuchsziel Ziel dieses

Mehr

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak Die Aufzeichnung dreidimensionaler Bilder Caroline Girmen, Leon Pernak Ablauf Einführung Allgemeine Definition Geschichte Aufnahme Wiedergabe Besondere Hologrammtypen Dicke Hologramme Echtfarbige Hologramme

Mehr

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart Dr. Hanskarl Treiber Martin Treiber Lasertechnik Band 2 Holographie Frech-Verlag Stuttgart Inhaltsverzeichnis 1. Klassische Photographie 11 1.1 Eigenschaften photographischer Bilder 11 1.2 Stereophotographie

Mehr

EINFUHRUNG IN DIE TECHNIK DER HOLOGRAPHIE

EINFUHRUNG IN DIE TECHNIK DER HOLOGRAPHIE EINFUHRUNG IN DIE TECHNIK DER HOLOGRAPHIE VON DE. HORST KIEMLE DE. DIETER RÖSS MÜNCHEN MIT 152 ABBILDUNGEN AKADEMISCHE VERLAGSGESELLSCHAFT FRANKFURT AM MAIN 1969 Inhalt 1 Prinzip und Entwicklung der Holographie

Mehr

Fourier-Optik und Holographie

Fourier-Optik und Holographie E. Menzel W. Mirande I. Weingärtner Technische Universität Braunschweig Fourier-Optik und Holographie Springer-Verlag Wien New York Inhaltsverzeichnis 1. Interferenz und Kohärenz (Menzel) 1 1.1. Die ebene

Mehr

M. Fran90n HOLOGRAPHIE. Übersetzt und bearbeitet von I. Wilmanns. Mit 139 Abbildungen. Springer-Verlag Berlin Heidelberg NewYork 1972

M. Fran90n HOLOGRAPHIE. Übersetzt und bearbeitet von I. Wilmanns. Mit 139 Abbildungen. Springer-Verlag Berlin Heidelberg NewYork 1972 M. Fran90n HOLOGRAPHIE Übersetzt und bearbeitet von I. Wilmanns Mit 139 Abbildungen Springer-Verlag Berlin Heidelberg NewYork 1972 ---------_... Professor Dr. Maurice Franeon Institut d'optique, Universire

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

Physik III. Mit 154 Bildern und 13 Tabellen

Physik III. Mit 154 Bildern und 13 Tabellen Physik III Optik, Quantenphänomene und Aufbau der Atome Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Wolfgang Zinth und Hans-Joachim Körner 2., verbesserte Auflage Mit

Mehr

Holographie. Jiirgen Eichler. Gerhard Ackennann. Springer-Verlag. Mit 109 Abbildungen

Holographie. Jiirgen Eichler. Gerhard Ackennann. Springer-Verlag. Mit 109 Abbildungen Jiirgen Eichler. Gerhard Ackennann Holographie Mit 109 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Prof. Dr. rer.nat. Jurgen Eichler Prof. Dr.

Mehr

Optische Phasenkonjugation

Optische Phasenkonjugation Optische Phasenkonjugation Unter optischer Phasenkonjugation(OPC) soll ein Effekt verstanden werden, bei dem eine einfallende monochromatische Welle nach Wechselwirkung mit einem Medium dieses so verläßt,

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Übungsaufgaben zur E3 / E3p WS 2018/19. Aufgabe 49: Grundlagen der Holographie

Übungsaufgaben zur E3 / E3p WS 2018/19. Aufgabe 49: Grundlagen der Holographie Übungsaufgaben zur E3 / E3p WS 2018/19 Prof. J. O. Rädler, PD. B. Nickel Fakultät für Physik, Ludwig-Maximilians-Universität, München Blatt 13: Holographie, Gaußsche Strahlenoptik Ausgabe: Mo 21.01.19

Mehr

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart

Dr. Hanskarl Treiber Martin Treiber. Lasertechnik. Band 2. Holographie. Frech-Verlag Stuttgart T c l Dr. Hanskarl Treiber Martin Treiber f j.l f j Lasertechnik Band 2 Holographie Frech-Verlag Stuttgart Für eine gewerbliche Nutzung der gezeigten Modelle ist die Genehmigung des Verfassers erforderlich.

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

2. Wellenoptik Interferenz

2. Wellenoptik Interferenz . Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher

Mehr

Holografie - Grundlagen, Experimente und Anwendungen

Holografie - Grundlagen, Experimente und Anwendungen DEUTSCH TASCHENBÜCHER Band 19 Holografie - Grundlagen, Experimente und Anwendungen von JU. I. OSTROWSKI unter Mitarbeit von W. Osten 2., überarbeitete und erweiterte Auflage Mit 142 Abbildungen VERLAG

Mehr

Überlagerung monochromatischer Wellen/Interferenz

Überlagerung monochromatischer Wellen/Interferenz Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm

Mehr

WEIßLICHTHOLOGRAFIE. Technische Universität Ilmenau Fakultät für Maschinenbau Vertiefungspraktikum Technische Optik. Anleitung zum Versuch:

WEIßLICHTHOLOGRAFIE. Technische Universität Ilmenau Fakultät für Maschinenbau Vertiefungspraktikum Technische Optik. Anleitung zum Versuch: Technische Universität Ilmenau Fakultät für Maschinenbau Vertiefungspraktikum Technische Optik Anleitung zum Versuch: WEIßLICHTHOLOGRAFIE Durchführung des Versuchs am:. Bearbeiter:. Name Vorname Matrikel-Nr..

Mehr

8 Reflexion und Brechung

8 Reflexion und Brechung Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Optik. Drw. Physikalisch-technische Grundlagen und Anwendungen. von Heinz Haferkorn

Optik. Drw. Physikalisch-technische Grundlagen und Anwendungen. von Heinz Haferkorn Optik Physikalisch-technische Grundlagen und Anwendungen von Heinz Haferkorn Drw VEB Deutscher Verlag der Wissenschaften Berlin 1980 Inhaltsverzeichnis 1. Einleitung 11 1.1. Arbeitsgebiet Optik 11 1.1.1.

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische

Mehr

Optische Systeme. Einbettung in das Studienmodell 10. Martina Gerken 22.10.2007. Universität Karlsruhe (TH) 1.2

Optische Systeme. Einbettung in das Studienmodell 10. Martina Gerken 22.10.2007. Universität Karlsruhe (TH) 1.2 Optische Systeme Martina Gerken 22.10.2007 Universität Karlsruhe (TH) Einbettung in das Studienmodell 10 1.2 Voraussetzungen und Zielgruppe 1.3 Festes Modellfach im Studienmodell 10: Optische Technologien

Mehr

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die

Mehr

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen

Mehr

Übungsblatt 4 Grundkurs IIIa für Physiker

Übungsblatt 4 Grundkurs IIIa für Physiker Übungsblatt 4 Grundkurs IIIa für Physiker Othmar Marti, othmar.marti@physik.uni-ulm.de 3. 6. 2002 1 Aufgaben für die Übungsstunden Reflexion 1, Brechung 2, Fermatsches Prinzip 3, Polarisation 4, Fresnelsche

Mehr

4. Elektromagnetische Wellen

4. Elektromagnetische Wellen 4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.

Mehr

Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT)

Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT) Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker Versuch: Optische Kohärenz-Tomographie (OCT) Grundlagen der Optischen Kohärenz-Tomographie (OCT) Bei der Optischen Kohärenz-Tomographie

Mehr

1 Was ist Licht?... 1

1 Was ist Licht?... 1 Inhaltsverzeichnis 1 Was ist Licht?... 1 2 Erzeugung und Messung von Licht... 9 2.1 ElektromagnetischesSpektrum... 9 2.2 Strahlungsphysikalische Größen(Radiometrie)... 10 2.3 Lichttechnische Größen(Fotometrie)...

Mehr

Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7)

Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7) Vorlesungsskript zur Vorlesung: Angewandte Physik II Klassische Optik (PHY-PFTECHP-062-V-7) Dienstag: 10:00 11:30 Uhr in Raum: 46-270 Freitag: 10:00 11:30 Uhr in Raum: 46-270 Prof. Dr. Egbert Oesterschulze

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

Vorlesung Experimentalphysik Elektrizität&Optik. SS 2006/14 Universität Rostock Heinrich Stolz

Vorlesung Experimentalphysik Elektrizität&Optik. SS 2006/14 Universität Rostock Heinrich Stolz Vorlesung Experimentalphysik Elektrizität&Optik SS 2006/14 Universität Rostock Heinrich Stolz Hier werden die Phänomene diskutiert, die auf der Wellennatur des Lichtes (bzw. der elektromagnetischen Wellen)

Mehr

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle

Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Diffraktive Optik (O9)

Diffraktive Optik (O9) 5. Juni 08 Diffraktive Optik (O9) Ziel des Versuches Das Prinzip der diffraktiven Optik, die Beugung und Interferenz von Licht ausnutzt, soll an einer fresnelschen Zonenplatte kennen gelernt werden. Bestimmte

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter

m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen! Kapiteltest Optik 2 Lösungen Der Kapiteltest Optik 2 überprüft Ihr Wissen über die Kapitel... 2.3a Brechungsgesetz und Totalreflexion 2.3b Brechung des Lichtes durch verschiedene Körper 2.3c Bildentstehung

Mehr

Auswertung des Versuches Holographie

Auswertung des Versuches Holographie Auswertung des Versuches Holographie Andreas Buhr 9. Januar 006 Inhaltsverzeichnis 1 Formales 3 Überblick über den Versuch 4 3 Grundlagen der Holographie 4 3.1 Idee und Prinzip................................

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Linsen und Optische Geräte

Linsen und Optische Geräte AB4 Linsen und optische Geräte 1 Linsen und Optische Geräte Öffne diese Website 1 und lies dir das Gespräch durch. Dann versuche mit Hilfe der Geschichte und den angegebenen Links die folgenden Arbeitsaufgaben

Mehr

Inhaltsverzeichnis Theoretische Grundlagen der Laserdiagnostik Laser f ur messtechnische Aufgaben Messtechnisch nutzbare Information

Inhaltsverzeichnis Theoretische Grundlagen der Laserdiagnostik Laser f ur messtechnische Aufgaben Messtechnisch nutzbare Information Inhaltsverzeichnis 1 Theoretische Grundlagen der Laserdiagnostik... 1 1.1 Strahlungseigenschaften, Definitionen... 1 1.1.1 Vergleichende Bewertung von Lasern und thermischen Strahlungsquellen... 1 1.1.2

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010

Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010 Fachhochschule München FK06 Sommersemester 2010 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik IV (PHB4) Freitag 9. Juli 2010 Zulassungsvoraussetzungen:./. Zugelassene Hilfsmittel:

Mehr

Grundlagen der Lichtmikroskopie

Grundlagen der Lichtmikroskopie Lehrerfortbildung Nanobiotechnologie Grundlagen der Lichtmikroskopie Juliane Ißle 03.04.03 Universität des Saarlandes Fachrichtung Experimentalphysik Inhalt Prinzipieller Mikroskopaufbau Köhler sche Beleuchtung

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Vorlesung Do Uhr, wöchentlich, Newtonstr. 15, Raum 1 201

Vorlesung Do Uhr, wöchentlich, Newtonstr. 15, Raum 1 201 40320 Experimentalphysik III (Pk2.2) WiSe 2017/2018 Lesende: Prof. Dr. Simone Raoux (HUB und HZB) Übungsleiter: NN Vorlesung Do. 9-11 Uhr, wöchentlich, Newtonstr. 15, Raum 1 201 Übung Do. 11-13 Uhr, Newtonstr.

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen ) . Vorlesung EP (. Vorlesung: III) Elektrizität und Magnetismus. Wechselstrom. Elektromagnetische Wellen ) IV) Optik = Lehre vom Licht. Licht = sichtbare elektromagnetische Wellen 3. Geometrische Optik

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008

Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Fachhochschule München FK06 Sommersemester 2008 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Zugelassene Hilfsmittel: Formelsammlung (wird

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der

Mehr

Polarisationszustände

Polarisationszustände Polarisationszustände Natürliches Licht: Unpolarisiertes Licht = zufällig polarisiert Linear polarisiertes Licht: P-Zustand; Zirkular polarisiertes Licht: Linkszirkular polarisiert: L-Zustand Rechtszirkular

Mehr

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Inhalte Prisma & Regenbogen Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer

Mehr

Mathematische Optik. von. Dr. J. Classen. Assistent am physikalischen Staatslaboratorium zu Hamburg. Mit 52 Figuren

Mathematische Optik. von. Dr. J. Classen. Assistent am physikalischen Staatslaboratorium zu Hamburg. Mit 52 Figuren Sammlung Schubert XL Mathematische Optik von Dr. J. Classen Assistent am physikalischen Staatslaboratorium zu Hamburg Mit 52 Figuren Leipzig G. J. Göschensche Verlagshandlung 1901 Inhaltsverzeichnis. Seit«Erstes

Mehr

Digitale holografische Mikroskopie an rauen Oberflächen. Dissertation. Doktoringenieur (Dr.-Ing.)

Digitale holografische Mikroskopie an rauen Oberflächen. Dissertation. Doktoringenieur (Dr.-Ing.) Digitale holografische Mikroskopie an rauen Oberflächen Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) vorgelegt der Fakultät für Maschinenbau der Technischen Universität

Mehr

Auf dem Foto siehst du das Gebäude der Inselsbergklinik in Tabarz/Thüringen kurz vor dem Sonnenuntergang.

Auf dem Foto siehst du das Gebäude der Inselsbergklinik in Tabarz/Thüringen kurz vor dem Sonnenuntergang. Reflexion Auf dem Foto siehst du das Gebäude der Inselsbergklinik in Tabarz/Thüringen kurz vor dem Sonnenuntergang. 1) Warum scheint das eine Fenster so auffallend hell? Begründe! 2) Begründe, warum die

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

Bericht zum Versuch Holographie

Bericht zum Versuch Holographie Bericht zum Versuch Holographie Michael Goerz, Anton Haase 4. Dezember 2006 Freie Universität Berlin Fortgeschrittenenpraktikum Teil A Tutor: H. Fidder Inhalt 1 Einführung 2 1.1 Michelson-Morley-Interferometer..................

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

W Lauterborn T. Kurz M. Wiesenfeldt. Kohärente Optik. Grundlagen für Physiker und Ingenieure

W Lauterborn T. Kurz M. Wiesenfeldt. Kohärente Optik. Grundlagen für Physiker und Ingenieure W Lauterborn T. Kurz M. Wiesenfeldt Kohärente Optik Grundlagen für Physiker und Ingenieure Mit 183 Abbildungen, 1 Hologramm, 73 Aufgaben und vollständigen Lösungen Physikalische Bibliothek Fachbereich

Mehr

Grimsehl Lehrbuch der Physik

Grimsehl Lehrbuch der Physik Grimsehl Lehrbuch der Physik BAND 3 Optik 16., völlig neu bearbeitete Auflage mit 614 Abbildungen BEGRÜNDET VON PROF. E. GRIMSEHL WEITERGEFÜHRT VON PROF. DR. W. SCHALLREUTER NEU BEARBEITET VON PROF. DR.

Mehr

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Teilskript zur LV Optik 1 Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1 Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte

Mehr

Intensitätsverteilung der Beugung am Spalt ******

Intensitätsverteilung der Beugung am Spalt ****** 5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau

Mehr

Medium Luft zueinander, wenn diese Linse ein reelles, gleich großes und umgekehrtes Bild eines Medium Luft zueinander, wenn diese Linse ein reelles, verkleinertes und umgekehrtes Bild eines Medium Luft

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 16. 07. 2009

Mehr

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht. 4 Optische Linsen 4.1 Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus Glas oder transparentem Kunststoff hergestellt ist. Die Linse ist von zwei Kugelflächen begrenzt (Kugelflächen

Mehr

5.1 Das HuygensschePrinzip u. das KirchhoffscheBeugungsintegral

5.1 Das HuygensschePrinzip u. das KirchhoffscheBeugungsintegral 5. Beugung 5.1 Das Huygenssche Prinzip und das Kirchhoffsche Begungsintegral 5.2 Fraunhofer- und Fresnel-Näherung 5.3 Fourier-Optik 5.4 Optische Elemente im Wellenbild 5.5 Holografie Beugung (Diffraktion)

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

PHYSIKTEST 4C April 2016 GRUPPE A

PHYSIKTEST 4C April 2016 GRUPPE A PHYSIKTEST 4C April 2016 GRUPPE A SCHÜLERNAME: PUNKTEANZAHL: /20 NOTE: NOTENSCHLÜSSEL 18-20 Sehr Gut (1) 15-17 Gut (2) 13-14 Befriedigend (3) 10-12 Genügend (4) 0-9 Nicht Genügend (5) Aufgabe 1. (2 Punkte)

Mehr

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes

Inhaltsverzeichnis. Vorwort. Gliederung des Gesamtwerkes V Vorwort X Gliederung des Gesamtwerkes XII Historische Aspekte zur Lichtausbreitung 1 Das Heron sche Prinzip Reflexion an ebenen und gekrümmten Flächen 1 2 Ansätze von Descartes, Anwendungen auf Brechung

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Lichtwellen und Optik http://www.nanocosmos.de/lietz/mtv Inhalt Lichtwellen Optik Abbildung Tiefenschärfe Elektromagnetische Wellen Sichtbares Licht Wellenlänge/Frequenz nge/frequenz

Mehr