funktionale Abhängigkeiten: Semantik funktionale Abhängigkeiten: Syntax

Größe: px
Ab Seite anzeigen:

Download "funktionale Abhängigkeiten: Semantik funktionale Abhängigkeiten: Syntax"

Transkript

1 funktionale Abhängigkeiten: Syntax < R U F > ein Relationenschema mit R ein Relationensymbol, U eine Menge von Attributen, F eine Menge von funktionalen Abhängigkeiten (über R und U) Eine funktionale Abhängigkeit (functional dependency) ist eine Formel, die wir in Kurzform aufschreiben als X ª Y mit X U, Y U. Diese Kurzform ist eine Abkürzung für die wie folgt gebildete Menge von Horn-Klauseln K = { K 1,...,K l }, wobei mit den Bezeichnungen U = { A 1,...,A n }, X = { A i1,...,a ik }, Y = { A j1,...,a jl } für jedes Attribut A je Y mit e = 1,...,l K e a je = a je :- R (A 1 : a 1,...,A n : a n ), R (A 1 : a 1,...,A n : a n ), a i1 = a i1,...,a ik = a ik. eine gleichheitsbestimmende Klausel sei. Diese Klauseln drücken jeweils aus, daß zwei auf den X-Attributen übereinstimmende Tupel aus (der Ausprägung zu) R auch auf dem Attribut A je übereinstimmen. funktionale Abhängigkeiten: Semantik Eine funktionale Abhängigkeit X ª Y heißt gültig in einer Relation r mit dom r = U (oder r ist Instanz von X ª Y) :gdw für alle µ,ν r: wenn µ X = ν X, dann µ Y = ν Y. Eine Menge von funktionalen Abhängigkeiten F = { X 1 ª Y 1,...,X p ª Y p } heißt gültig in einer Relation r mit dom r = U (oder r ist Instanz von F) :gdw alle X i ª Y i aus F sind gültig in r

2 funktionale Abhängigkeiten: Pragmatik logische Implikationen Mit einer funktionalen Abhängigkeit X ª Y kann man als semantische Bedingung ausdrücken, daß in den Instanzen zu einem Relationenschema die X-Werte eines Tupels die Y-Werte eindeutig bestimmen sollen. Diese Bedingung ist typischerweise die Formalisierung einer Gegebenheit auf der Ebene der Modellierung der folgenden Art: ein durch die X-Werte identifiziertes Seiendes bestimmt eindeutig die durch die Y-Werte beschriebenen Eigenschaften, bzw. ein durch die X-Werte identifiziertes Seiendes steht mit genau einem durch die Y-Werte identifizierten Seienden in Beziehung. In dem vorgegebenen Relationenschema < R U F > wird als semantische Bedingung ausdrücklich vereinbart, welche funktionalen Abhängigkeiten gültig sein sollen. Darüber hinaus werden in Instanzen von F im allgemeinen noch weitere, nicht ausdrücklich genannte funktionale Abhängigkeiten gültig sein. Wir betrachten dann diejenigen funktionalen Abhängigkeiten, die in allen Instanzen von F gültig sind: F impliziert (logisch) X ª Y, F = X ª Y :gdw für alle r mit dom r = U : wenn F in r gültig ist, dann ist auch X ª Y in r gültig. F + := { X ª Y F = X ª Y }

3 Reflexivität, Transitivität und Erweiterung Die folgenden Implikationen sind für die Klasse der funktionalen Abhängigkeiten korrekt: [Reflexivität] Ø = X ª Y für alle Y X. [Transitivität] { X ª Y, Y ª Z } = X ª Z. [Erweiterung] { X ª Y } = X W ª Y Z für alle W Z. Aus diesen logischen Implikationen kann man einen Entscheidungsalgorithmus für das Problem X ª Y F + gewinnen. Abschluß einer Attributmenge unter funktionalen Abhängigkeiten F Menge von funktionalen Abhängigkeiten X U Menge von Attributen Der Abschluß (closure) von X unter F, cl (F,X), ist die (bezüglich ) kleinste Menge mit den folgenden Eigenschaften: 1. X cl (F,X). 2. Wenn R cl (F,X) und R ª S F, dann ist auch S cl (F,X). Dieser erzeugt für die linke Seite X der zu betrachtenden funktionalen Abhängigkeit schrittweise alle Attribute A mit X ª A F + und prüft, ob Y ganz in der Menge der so erzeugten Attribute enthalten ist. Satz logische Implikation für funktionale Abhängigkeiten 1. X ª cl (F,X) F X ª Y F + genau dann, wenn Y cl (F,X)

4 Beweis: 1. Wir betrachten eine Berechnung von cl (F,X), d.h. eine Folge von Attributmengen X =: X 0,...,X k := cl (F,X) und eine Folge von funktionalen Abhängigkeiten R i ª S i für i = 0,...,k-1 mit R i X i, R i ª S i F, X i+1 = X i S i. Für diese Folge beweisen wir durch Induktion über i, daß X ª X i F +. Für i = 0 ist die Behauptung, X ª X F +, gerade ein Spezialfall der Reflexivität. Für i+1 prüfen wir die Behauptung, X ª X i+1 F +, anhand der Definition von impliziert. Sei also r mit dom r = U eine Relation, so daß (1) F in r gültig ist. Gemäß Induktionsannahme ist dann auch (2) X ª X i in r gültig. Es seien dann µ,ν r Tupel mit (3) µ X = ν X. Aus (2) folgt dann (4) µ X i = ν X i. Wegen R i X i gilt also auch (5) µ R i = ν R i. Aus (1) folgt dann (6) µ S i = ν S i. Wegen X i+1 = X i S i besagen (4) und (6) gerade µ X i+1 = ν X i+1, was für µ,ν zu zeigen war

5 2. [Korrektheit]: Sei Y cl (F,X). Gemäß 1. gilt X ª cl (F,X) F + und damit offensichtlich auch X ª Y F +. [Vollständigkeit in Kontraposition]: Sei Y cl (F,X). Wir konstruieren uns eine (sogenannte Armstrong-) Relation r, für die wir dann zeigen, daß a) F in r gültig ist, aber b) X ª Y in r nicht gültig ist, d.h. r ist ein Gegenbeispiel dafür, daß X ª Y von F impliziert wird. Die Relation r enthalte genau zwei Tupel µ und ν, die wie folgt definiert seien: µ(a) := 1 für alle A U, ν(a) 1 falls A cl (F,X) := 0 falls A U \ cl (F,X) r cl U \ cl (F,X) (F,X) µ ν Gemäß Voraussetzung gibt es ein Attribut A 0 Y \ cl(f,x), und damit ist insbesondere µ verschieden von ν. Also gilt Eigenschaft b). Um Eigenschaft a) nachzuweisen, betrachten wir eine funktionale Abhängigkeit R i ª S i aus F. Falls (für die einzigen zwei Tupel aus r) µ R i = ν R i gilt, so muß nach Konstruktion von r R i cl (F,X) gelten, woraus aber nach Definition des Abschlusses auch S i cl (F,X) folgt. Nach Konstruktion von r bedeutet dies aber gerade, daß µ S i = ν S i, was für µ,ν zu zeigen war

6 Beispiel U = { Id, Geschlecht, DaPa, Arzt, DaAr, ArtPro } F = { Id ª Geschlecht, Id ª DaPa, Arzt ª DaAr, Id,Arzt ª ArtPro }. cl(f,{id, Arzt}) kann etwa wie folgt berechnet werden: X 0 = { Id, Arzt }, X 1 = { Id, Geschlecht, Arzt } vermöge Id ª Geschlecht, X 2 = { Id, Geschlecht, DaPa, Arzt } vermöge Id ª DaPa, X 3 = { Id, Geschlecht, DaPa, Arzt, DaAr } vermöge Arzt ª DaAr, X 4 = { Id, Geschlecht, DaPa, Arzt, DaAr, ArtPro } vermöge Id,Arzt ª ArtPro. Also gilt { Id, Arzt } ª U F +. Ferner gilt cl (F,{Id}) = { Id, Geschlecht, DaPa } und cl (F,{Arzt}) = { Arzt, DaAr }, also insbesondere Id ª U F + und Arzt ª U F +. Schlüssel Wir können nun genau beschreiben, was wir auf der Ebene eines Relationenschemas unter einem Schlüssel verstehen: dies ist eine minimale Attributmenge, deren Werte ein Tupel innerhalb einer Ausprägung schon eindeutig bestimmen. Definition Sei < R U F > ein Relationenschema. 1. Eine Menge von Attributen X U heißt Schlüssel (key) von < R U F > :gdw 1. [Eindeutigkeit]X ª U F [Minimalität] Für alle Y X gilt: Y ª U F Ein Attribut A U heißt Schlüsselattribut von < R U F > :gdw es gibt einen Schlüssel X von < R U F > mit A X. 3. Ein Attribut A U heißt Nichtschlüsselattribut von < R U F > :gdw A kommt in keinem Schlüssel von < R U F > vor

7 Beispiel: Für U = { Id, Geschlecht, DaPa, Arzt, DaAr, ArtPro } und F = { Id ª Geschlecht, Id ª DaPa, Arzt ª DaAr, Id,Arzt ª ArtPro } gilt: { Id, Arzt } ª U F +, aber Id ª U F + und Arzt ª U F +. Also ist { Id, Arzt } ein Schlüssel von < U F >. Im allgemeinen kann ein Relationenschema mehrere Schlüssel besitzen. Zum Beispiel sind in einem Relationenschema mit U = { A,B,C } und F = { A,B ª C, C ª B } sowohl { A,B } als auch { A,C } Schlüssel. In diesem Fall sind darüber hinaus alle Attribute Schlüsselattribute. Relationenschemas mit genau einem Schlüssel Sei < R U F > ein Relationenschema, und sei ex (U,F) := { A A U, U \ {A} ª A F + } die Menge der Extremalattribute. Dann sind äquivalent: 1. < R U F > besitzt genau einen Schlüssel. 2. ex (U,F) ist Schlüssel von < R U F >. 3. ex (U,F) ª U F +. Beweis: Wir zeigen zunächst, daß die Extremalattribute in allen Schlüsseln enthalten sind, genauer: (4) für alle X mit X ª U F + gilt: ex (U,F) X. Dazu betrachten wir ein Attribut A U \ X. Wegen X ª U F + gilt insbesondere X ª A F + und also auch U \ {A} ª A F +, d.h. A ex (U,F)

8 1. 2. : Sei X der einzige Schlüssel von < R U F >. Gemäß (4) gilt ex (U,F) X : Gemäß Definition von Schlüssel. Um die umgekehrte Inklusion zu zeigen, sei andererseits A ex (U,F). Nach Definition folgt U \{A} ª A F +. Also erfüllt U \ {A} die Eindeutigkeitseigenschaft von Schlüsseln. Dann enthält U\{A} eine minimale Teilmenge mit dieser Eindeutigkeitseigenschaft: diese Teilmenge ist ein Schlüssel. Nach Voraussetzung ist diese Teilmenge gerade X, d.h. es gilt X U \{A} und damit insbesondere A X : Sei ex (U,F) ª U F +. Angenommen < R U F > besitzt zwei verschiedene Schlüssel X1 X2. Gemäß (4) gilt dann (5) ex (U,F) X1 X2. Wegen der Minimalitätseigenschaft von Schlüsseln können X1 und X2 nicht ineinander enthalten sein, d.h. es gilt (6) X1 X2 X1 und X1 X2 X2. (5) und (6) zusammen widersprechen aber der Minimalitätseigenschaft von X1 bzw. X

9 3. Normalform und Boyce / Codd-Normalform Formalisierung der Entwurfsheuristik Trennung von Gesichtspunkten. Zeichnet diejenigen Relationenschemas aus, in denen die linken Seiten aller (vereinbarter oder implizierter) funktionaler Abhängigkeiten einen Schlüssel enthalten. Die einzigen durch funktionale Abhängigkeiten ausdrückbaren Strukturen innerhalb des Relationenschemas sind also durch Schlüssel und die jeweils von ihnen funktional abhängigen Attribute gegeben. Definition 1. Ein Relationenschema < R U F > heißt in 3.Normalform :gdw für alle Z U, für alle Nichtschlüsselattribute A U: wenn Z ª A F + und A Z, dann Z ª U F Ein Relationenschema < R U F > heißt in Boyce / Codd-Normalform :gdw für alle Z U, für alle A U: wenn Z ª A F + und A Z, dann Z ª U F +. Boyce / Codd-Normalform ist offensichtlich eine Verschärfung von 3.Normalform, weil für mehr Attribute (nämlich alle, einschließlich der Schlüsselattribute) die Normalformeigenschaft gefordert wird. Das Beispiel < R { A,B,C } { A,B ª C, C ª B } > zeigt, daß die Verschärfung echt ist. Dieses Schema ist in 3.Normalform, weil es überhaupt keine Nichtschlüsselattribute besitzt. Dieses Schema ist nicht in Boyce / Codd-Normalform, weil C ª B F F +, aber C ª A F +. Obwohl die schärfere Eigenschaft der Boyce / Codd- Normalform die eigentlich wünschenswerte ist, muß man sich dennoch manchmal mit der schwächeren Eigenschaft der 3.Normalform begnügen, weil nur die schwächere, aber nicht die stärkere zusammen mit weiteren, noch zu erörternden Eigenschaften immer verträglich ist

10 In einem Relationenschema in Boyce / Codd-Normalform können offensichtlich insbesondere die beiden folgenden Situationen nicht auftreten: partielle Abhängigkeiten der Form: X ist Schlüssel, Y X, d.h. insbesondere Y ª X F +, A Y und Y ª A F + (d.h. das Attribut A ist nur von einer echten Teilmenge des Schlüssels X funktional abhängig.) transitive Abhängigkeiten der Form: X ª Y F +, Y ª X F +, A Y und Y ª A F + (d.h. das Attribut A ist transitiv über Y von X abhängig, ohne daß Y funktional äquivalent mit X ist.) Relationenschemas in Boyce / Codd-Normalform Satz Ein Relationenschema < R U F > ist in Boyce / Codd- Normalform genau dann, wenn für alle X ª Y F mit Y X gilt X ª U F +. Beweis: : Sei < R U F > in Boyce / Codd-Normalform. Sei ferner X ª Y F mit Y X. Dann gibt es ein Attribut A Y \ X mit X ª A F +. Gemäß Definition von Boyce / Codd-Normalform folgt X ª U F

11 (in Kontraposition): Sei < R U F > nicht in Boyce / Codd-Normalform. Dann gibt es eine Attributmenge Z U und ein Attribut A U \ Z mit Z ª A F +, aber Z ª U F +. Wir betrachten eine Berechnung von cl (F,Z), d.h. eine Folge von Attributmengen Z =: X 0,...,X k := cl (F,Z) und eine Folge von funktionalen Abhängigkeiten R i ª S i für i = 0,...,k-1 mit R i X i, R i ª S i F, X i+1 = X i S i. Weil einerseits A X 0 und andererseits Z ª A F + und deshalb A cl (F,Z), gibt es ein i mit A S i \ X i, d.h. A wird durch R i ª S i F erstmals als Element von cl (F,Z) erzeugt. Denn zum einen gilt S i R i wegen R i X i und A S i \ X i. Und zum anderen wäre R i ª U F +, so würde mit Z ª X i F + (siehe Beweis des Satzes über logische Implikationen für funktionale Abhängigkeiten) wegen R i X i auch Z ª R i F + gelten, woraus dann aufgrund der Transitivität der logischen Implikation auch Z ª U F + folgen würde, was aber einen Widerspruch zur Wahl von Z ergibt. Wir behaupten, daß für diese funktionale Abhängigkeit R i ª S i F die im Satz genannte Eigenschaft nicht gilt

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Fuzzy Funktionale Abhängigkeiten (FFD) Julie Orzea Betreuer: Heiko Schepperle

Fuzzy Funktionale Abhängigkeiten (FFD) Julie Orzea Betreuer: Heiko Schepperle Fuzzy Funktionale Abhängigkeiten (FFD) Julie Orzea Betreuer: Heiko Schepperle Fuzzy Funktionale Abhängigkeiten Fuzzy Datenbanken (FFD) Verschiedene (fuzzy) Funktionale Abhängigkeiten Inferenz-Regeln, Schlüssel

Mehr

Teil VI Relationale Theorie

Teil VI Relationale Theorie Teil VI Relationale Theorie Relationale Theorie 1 Formalisierung 2 Rechnen mit FDs 3 Mehr zu Normalformen 4 Entwurfsverfahren Sattler / Saake Datenbanksysteme Letzte Änderung: Okt. 2016 6 1 Lernziele für

Mehr

Kapitel DB:IV (Fortsetzung)

Kapitel DB:IV (Fortsetzung) Kapitel DB:IV (Fortsetzung) IV. Logischer Datenbankentwurf mit dem relationalen Modell Das relationale Modell Integritätsbedingungen Umsetzung ER-Schema in relationales Schema DB:IV-46 Relational Design

Mehr

Datenmanagement Übung 5

Datenmanagement Übung 5 Datenmanagement Übung 5 Normalisierung (1.-3. NF) AUFGABE 1 1 Definitionen 1. NF Eine Relation befindet sich in 1. NF, wenn jeder Attributwert atomar ist und alle Nicht-Schlüsselattribute funktional vom

Mehr

Entwurfstheorie relationaler Datenbanken 7. Entwurfstheorie relationaler Datenbanken

Entwurfstheorie relationaler Datenbanken 7. Entwurfstheorie relationaler Datenbanken 7. Entwurfstheorie relationaler Datenbanken Wie sieht ein gutes konzeptionelles Schema der Datenbank aus? Wie kann die Güte eines Datenbankschemas beurteilt werden? Beispiel: Kunde(KName, KAdr, Kto) Auftrag(KName,

Mehr

5. Relationaler Datenbankentwurf. Relationaler DB-Entwurf: Überblick. Bücher-Relation mit Redundanzen

5. Relationaler Datenbankentwurf. Relationaler DB-Entwurf: Überblick. Bücher-Relation mit Redundanzen 5. Relationaler Datenbankentwurf Relationaler DB-Entwurf: Überblick Funktionale Abhängigkeiten Schema-Eigenschaften Transformationseigenschaften Entwurfsverfahren Mehrwertige Abhängigkeiten Weitere Abhängigkeiten

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Seminar: Imperfektion und Datenbanken

Seminar: Imperfektion und Datenbanken Universität Karlsruhe Betreuer: Heiko Schepperle Seminar: Imperfektion und Datenbanken Fuzzy funktionale Abhängigkeiten (FFD) Inhaltsverzeichnis I) EINFÜHRUNG ZU FUZZY DATENBANKEN... 3 1) MOTIVATION...

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme Relationaler Datenbankentwurf II Vorlesung Datenbankmanagementsysteme Relationaler Datenbankentwurf II M. Lange, S. Weise Folie #6-1 Wiederholung Relationaler Datenbankentwurf

Mehr

Programmierung und Datenbanken II

Programmierung und Datenbanken II Programmierung und Datenbanken II Wiederholung Was haben wir bisher getan? Anwendungsbereich analysiert Datenobjekte + Beziehungen identifiziert Modelle erstellt Modellhafte Aufbereitung der Analyse (ERM/SERM)

Mehr

Kapitel DB:IV (Fortsetzung)

Kapitel DB:IV (Fortsetzung) Kapitel DB:IV (Fortsetzung) IV. Logischer Datenbankentwurf mit dem relationalen Modell Das relationale Modell Integritätsbedingungen Umsetzung ER-Schema in relationales Schema DB:IV-45 Relational Design

Mehr

Relationale Entwurfstheorie (Teil 2)

Relationale Entwurfstheorie (Teil 2) Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken (Teil 2) Dr. Gerd Gröner Wintersemester 2013/14 Gliederung Funktionale Abhängigkeiten Dekomposition der Relationenschemata:

Mehr

DBS1: Übungsserie Normalformen und relationale Algebra Structured Query Language (SQL)

DBS1: Übungsserie Normalformen und relationale Algebra Structured Query Language (SQL) DBS1: Übungsserie 3 + 4 Normalformen und relationale Algebra Structured Query Language (SQL) Sascha Szott Fachgebiet Informationssysteme Aufgabe 1a: Bestimmung von 2 gegeben: Relation R mit Attributen

Mehr

Lösungen der Übungsaufgaben von Kapitel 12

Lösungen der Übungsaufgaben von Kapitel 12 Lösungen der Übungsaufgaben von Kapitel 12 1. Betrachten Sie wieder unsere Telefondatenbank aus dem Abschnitt 5.6 des 5. Kapitels. Ich modelliere unsere Tabelle PERSONTELEFON jetzt folgendermaßen: Hier

Mehr

Rückblick: Relationales Modell

Rückblick: Relationales Modell Rückblick: Relationales Modell Relationales Modell als vorherrschendes Datenmodell Relationen (Tabellen) besitzen Attribute (Spalten) mit Wertebereichen und beinhalten Tupel (Zeilen) Umsetzung eines konzeptuellen

Mehr

Datenbanksysteme Übungsblatt 1

Datenbanksysteme Übungsblatt 1 Datenbanksysteme Übungsblatt 1 Sommersemester 2003 AIFB Institut für Angewandte Informatik und Formale Beschreibungsverfahren 1 Aufgabe 1a (1/2) Änderungsanomalie: Wenn eine Änderung nicht überall ordnungsgemäß

Mehr

3. Normalform. Redundanz: Land mehrfach gespeichert Anomalien?

3. Normalform. Redundanz: Land mehrfach gespeichert Anomalien? 3. Normalform Motivation: Man möchte zusätzlich verhindern, dass Attribute von nicht-primen Attributen funktional abhängig sind. Beispiel: LieferAdr (LNr, LName, LStadt, LLand) 001 Huber München Deutschland

Mehr

Czap, Grundlagen betrieblicher IS - 1. Inhalt

Czap, Grundlagen betrieblicher IS - 1. Inhalt Czap, Grundlagen betrieblicher IS - 1 Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf Kap. 3 Datenbankarchitektur Kap. 4 Die Datenbanksprache SQL Kap. 5 Konzepte

Mehr

Kapitel 7: Normalformen

Kapitel 7: Normalformen Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Vorlesung: Dr. Peer Kröger Übungen: Karsten

Mehr

Cognitive Interaction Technology Center of Excellence

Cognitive Interaction Technology Center of Excellence Kanonische Abdeckung Motivation: eine Instanz einer Datenbank muss nun alle funktionalen Abhängigkeiten in F + erfüllen. Das muss natürlich immer überprüft werden (z.b. bei jedem update). Es reicht natürlich

Mehr

1 Einführung, Architektur

1 Einführung, Architektur 1 Einführung, Architektur Ausgangspunkt IS werden an vielen Stellen eingesetzt Problem Was genau ist ein IS? Unter welchen Aspekten werden IS hier behandelt? Lösung Definition von IS; Blickwinkel auf IS,

Mehr

Eigenschaften von Datenbanken, insbesondere

Eigenschaften von Datenbanken, insbesondere Eigenschaften von Datenbanken In diesem Abschnitt beschreiben wir wünschenswerte Eigenschaften von Datenbanken, insbesondere Relationenschemata: Normalformen, die auf mathematischen Modellen beruhen und

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Relationaler Datenbank-Entwurf. Kapitel 7: Normalformen. Schrittweises Vorgehen:

Relationaler Datenbank-Entwurf. Kapitel 7: Normalformen. Schrittweises Vorgehen: Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2003/2004 Abteilung für Datenbanksysteme 2002 Christian

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2014 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Homotopie von Abbildungen und Anwendungen

Homotopie von Abbildungen und Anwendungen Homotopie von Abbildungen und Anwendungen Proseminar Fundamentalgruppen und ihre Anwendungen Bearbeitung: Daniel Schliebner Herausgabe: 04. Juli 2007 Daniel Schliebner Homotopie von Abbildungen und Anwendungen

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Kapitel 2: Das Relationale Modell

Kapitel 2: Das Relationale Modell Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Datenbanksysteme I Wintersemester 2012/2013 Kapitel 2: Das Relationale

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Zerlegung einer Relation

Zerlegung einer Relation Normalformen Normalisierung Normalformen definieren Qualitätskriterien (Vermeidung der Inkonsistenzen) Redundanz ist oft die Ursache von Schemata Probleme (keine FDs keine Redundanz) Normalisierung: Jede

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Große Mengen und Ultrafilter. 1 Große Mengen

Große Mengen und Ultrafilter. 1 Große Mengen Vortrag zum Seminar zur Analysis, 31.10.2012 Marcel Marnitz In diesem Vortrag wird das Konzept mathematischer Filter eingeführt. Sie werden in späteren Vorträgen zur Konstruktion der hyperreellen Zahlen

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Kapitel 2: Das Relationale Modell

Kapitel 2: Das Relationale Modell Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Kapitel 2: Das Relationale Modell Vorlesung:

Mehr

5. Normalisierung von Relationen

5. Normalisierung von Relationen 5. Normalisierung von Relationen Einführung Funktionale Abhängigkeiten Bestimmung von Schlüsselkandidaten Äquivalenzbeziehungen Zerlegung von Relationen zur Beseitigung von Anomalien Korrektheitskriterien

Mehr

5. Ordinalzahlen (Vorlesung 11)

5. Ordinalzahlen (Vorlesung 11) EINFÜHRUNG IN DIE LOGIK UND MENGENLEHRE 29 5.. Grundlegende Eigenschaften. 5. Ordinalzahlen (Vorlesung ) Definition 5. (Wohlordnung). Eine lineare Ordnung < auf einer Menge a heißt Wohlordnung, wenn jede

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Kapitel 7: Normalformen

Kapitel 7: Normalformen Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2013/2014 Vorlesung: Prof. Dr. Christian Böhm Übungen:

Mehr

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y Kapitel 7 Normalformen und DB-Entwurf Kap. 7.1 Normalformen Theorie Funktionale Abhängigkeit: f X Y f als Relation, d.h. Menge von Paaren {(x,y)} x: Definitions-Stelle, y: Funktionswert f ist Funktion

Mehr

Normalformen. Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich. Keine Einfüge-, Lösch-, Änderungsanomalien

Normalformen. Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich. Keine Einfüge-, Lösch-, Änderungsanomalien Normalformen Was sind Kriterien eines guten Entwurfs? So wenig Redundanz wie möglich Keine Einfüge-, Lösch-, Änderungsanomalien IX-19 Erste und Zweite Normalform Beispiel: (nicht 1. Normalform) vorrat

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 215/216 Lineare Algebra und analytische Geometrie I Vorlesung 27 In der letzten Vorlesung haben wir die Haupträume zu einem Eigenwert λ zu einem Endomorphismus ϕ als Kern

Mehr

Vorlesung Datenbanktheorie. Church-Rosser-Eigenschaft der Verfolgungsjagd. Berechnung von chase(t, t, Σ) Vorlesung vom Mittwoch, 05.

Vorlesung Datenbanktheorie. Church-Rosser-Eigenschaft der Verfolgungsjagd. Berechnung von chase(t, t, Σ) Vorlesung vom Mittwoch, 05. Vorlesung Datenbanktheorie Nicole Schweikardt Humboldt-Universität zu Berlin Sommersemester 2006 Vorlesung vom Mittwoch, 05. Juli 2006 Letzte Vorlesung: Kurze Bemerkungen zum Armstrong-Kalkül The Chase:

Mehr

2. Normalisierung von Relationen

2. Normalisierung von Relationen 2. Normalisierung von Relationen Einführung Funktionale Abhängigkeiten Bestimmung von Schlüsselkandidaten Äquivalenzbeziehungen Zerlegung von Relationen zur Beseitigung von Anomalien Korrektheitskriterien

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Grundlagen: Datenbanken

Grundlagen: Datenbanken Grundlagen: Datenbanken 1. Zentralübung Harald Lang FAQs Ist der Prüfungtermin schon bekannt? Termin: Mi. 18.02.2015, 08:00 Uhr FAQs Gilt der Bonus auch für die Nachholklausur? Ja. Selbst dann, wenn die

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Kapitel DB:VII (Fortsetzung)

Kapitel DB:VII (Fortsetzung) Kapitel DB:VII (Fortsetzung) VII. Entwurfstheorie relationaler Datenbanken Informelle Entwurfskriterien für Relationenschemata Funktionale Abhängigkeiten Normalformen Dekompositionseigenschaften von Relationen

Mehr

Kapitel DB:VII. VII. Entwurfstheorie relationaler Datenbanken

Kapitel DB:VII. VII. Entwurfstheorie relationaler Datenbanken Kapitel DB:VII VII. Entwurfstheorie relationaler Datenbanken Informelle Entwurfskriterien für Relationenschemata Funktionale Abhängigkeiten Normalformen Dekompositionseigenschaften von Relationen Relationale

Mehr

Relationale Entwurfstheorie. Kapitel 5 201 / 510

Relationale Entwurfstheorie. Kapitel 5 201 / 510 Kapitel 5 Relationale Entwurfstheorie 201 / 510 Relationale Entwurfstheorie Ein schlecht entworfenes Schema führt zu folgenden Anomalien Updateanomalien: bei Änderungen eines Fakts müssen viele Tupel angefaßt

Mehr

5. Normalisierung von Relationen

5. Normalisierung von Relationen 5. Normalisierung von Relationen Einführung Funktionale Abhängigkeiten Bestimmung von Schlüsselkandidaten Äquivalenzbeziehungen Zerlegung von Relationen zur Beseitigung von Anomalien Korrektheitskriterien

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

4 Relationentheorie - Abhängigkeiten, Normalformen, Data Design

4 Relationentheorie - Abhängigkeiten, Normalformen, Data Design 4 Relationentheorie - Abhängigkeiten, Normalformen, Data Design 4.1 Motivation für den systematischen Entwurf von Relationen... 2 4.1.1 Ziele/Probleme beim Aufbau relationaler Datenbanken... 2 4.1.2 Schlussfolgerungen...

Mehr

3. Grundlagen relationaler Datenbanksysteme

3. Grundlagen relationaler Datenbanksysteme 3. Grundlagen relationaler Datenbanksysteme Hier nur kurze Rekapitulation, bei Bedarf nachlesen 3.1 Basiskonzepte des Relationenmodells 1 Darstellung der Miniwelt in Tabellenform (DB = Menge von Relationen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 7 Aufgabe 29 (8 Punkte). Für eine Menge M ist die Potenzmenge von M definiert als P(M) := {X X M},

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Relationales Datenmodell

Relationales Datenmodell Relationales Datenmodell Spezialfall der logikorientierten Datenmodelle: Anfrageprogramme : Sichtrelationen : semantische Bedingungen : nur bezüglich Basisrelationen kein Relationensymbol wird rekursiv

Mehr

Datenbanksysteme 1 Sommersemester Juni 2006

Datenbanksysteme 1 Sommersemester Juni 2006 Lehrstuhl für Praktische Informatik III Prof. Dr. Carl-Christian Kanne Email: cc@pi3.informatik.uni-mannheim.de Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de

Mehr

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik Grundbegriffe aus Logik und Mengenlehre Prädikatenlogik wohlverstandene Grundlagen, eine formale Sprache zur Beschreibung statischer und dynamischer Gesichtspunkte eines Unternehmens syntaktisch und semantisch

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

7.1.2 Membership-Test - fortgesetzt

7.1.2 Membership-Test - fortgesetzt 7. Formaler Datenbankentwurf 7.1. Funktionale Abhängigkeiten Seite 1 7.1.2 Membership-Test - fortgesetzt Membership-Test: X Y F +? (Attribut-)Hülle X + von X (bzgl. F) X + = {A A V und X A F + }. Membership-Test

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Kapitel 7: Normalformen

Kapitel 7: Normalformen Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2005/2006 Vorlesung: Dr. Matthias Schubert Übungen: Elke

Mehr

Kapitel 7: Normalformen

Kapitel 7: Normalformen Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2008/2009 Vorlesung: Prof. Dr. Christian Böhm Übungen:

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

4. Normalformen. Qualitätsanforderungen an Tabellen. Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen

4. Normalformen. Qualitätsanforderungen an Tabellen. Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen 4. Normalformen Qualitätsanforderungen an Tabellen Klassische Normalformen (1,. 2., 3.) Spezielle Normalformen 79 Normalisierungsgründe Verständlicheres Datenmodell für Anwender und Entwickler Vermeidung

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 07 Übung zur Vorlesung Grundlagen: Datenbanken im WS15/16 Harald Lang, Linnea Passing (gdb@in.tum.de)

Mehr

Datenbanksysteme 2015

Datenbanksysteme 2015 Datenbanksysteme 2015 Kapitel 12: Relationale Entwurfstheorie Oliver Vornberger Institut für Informatik Universität Osnabrück Funktionale Abhängigkeiten ist funktional abhängig von r, t R : r. = t. r.

Mehr

FGIS SS Datenbanktheorie 1.2. Enthaltensein-Problem

FGIS SS Datenbanktheorie 1.2. Enthaltensein-Problem kanonische Instanz Sei Q eine konjunktive Anfrage der Form ans( U) R 1 ( U 1 ),..., R n ( U n ) über einem Datenbank-Schema R. Die kanonische Instanz I Q zu Q wird wie folgt gebildet. I Q ist eine Instanz

Mehr

5.2 Logische Gültigkeit, Folgerung, Äquivalenz

5.2 Logische Gültigkeit, Folgerung, Äquivalenz 5.2 Logische Gültigkeit, Folgerung, Äquivalenz Durch Einsetzung von PL1-Formeln für die Metavariablen in AL-Gesetzen erhält man PL1-Instanzen von AL-Gesetzen. Beispiele: φ φ AL PL1-Instanzen: Pa () Pa

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr