Statische Timing-Analyse
|
|
|
- Miriam Meissner
- vor 10 Jahren
- Abrufe
Transkript
1 2.6 Statische Timing Analyse Statische Timing-Analyse Überblick Delay Elmore-Delay Wire-Load-Modell Pfad-Problem Pfade/Cones Kritischer Pfad Setup- und Hold- Zeit Ein- und Ausgänge Falsche Pfade Slack Close
2 2.6.1 Statische Timing Analyse Input: Netzliste Delaymodell sowie -parameter aller Verbindungen Verzögerungszeiten der Elemente Taktschema, -perioden input arrival time, input slew rate, output capacitance load Einzuhaltende Bedingungen: Setup-, Hold-Time-Bedingungen der Speicherelemente output required arrival time Output: Aussage, ob Bedingungen eingehalten werden Kritischer Pfad Path-Slack-Histogramm
3 2.6.2 Daley Schaltungen zur Realisierung von logischen Gatterfunktionen verhalten sich, wie bereits in vorigen Kapiteln erwähnt, nicht ideal. Die Realität ist durch folgende wesentliche Schaltungseigenschaften gekennzeichnet: Die Werte der Spannungen und Ströme sowie die Zeit sind kontinuierliche Größen. Außerdem sind die wirkenden elektrischen und magnetischen Felder über der Zeit stetig. Beides führt dazu, dass Ströme und Spannungen ebenfalls stetig sind, also jede Wertänderung Zeit benötigt. Die Grafik zeigt eine Schaltung mit einem AND-Gatter. Die steigende Flanke am Eingang x bewirkt eine zeitlich verzögerte Flanke am Ausgang a. Allgemein bezeichnet das Delay die Verzögerung eines Signals zwischen einem Ein- und einem Ausgang eines Systems. Ein Beispiel ist das so genannte 50%-Delay. Es ist definiert als die Zeitdifferenz zwischen den 50%-Schwellen der Signalübergänge beschreibt. Betrachtet man das Ausgangssignal genauer, stellt man fest, dass es nicht einfach durch eine Verschiebung um den Wert des Delays aus dem Eingangssignal hervorgegangen ist. Zusätzlich hat sich auch die Kurvenform verändert. Es ist daher eine genauere Definition des Delays nötig.
4 2.6.3 Elmore-Delay Ein weiteres Beispiel für eine genauere Delay-Definition ist das so genannte Elmore-Delay. Es ist in folgender Weise definiert: Das System wird am Eingang mit einem Einheitssprung erregt. Die Ausgangskurve y(t) wird nach der Zeit abgeleitet. Der Flächenschwerpunkt dieser Ableitung ist das Elmore-Delay (Formel). Wird das reale System durch ein lineares Modell beschrieben, so kann das Elmore-Delay in folgender Weise interpretiert werden: h(t)=dy(t)/dt sei die Impulsantwort des linearen Systems und H(s) seine Systemübertragungsfunktion. H(s) kann als Potenzreihenentwicklung von s dargestellt werden (Taylor-Reihe). Dabei werden die Koeffizienten als Momente i-ter Ordnung bezeichnet. Das Elmore-Delay ist identisch mit dem Moment erster Ordnung. Seine Berechnung ist für Netzwerke aus R und C direkt durch Summen- und Produktbildung möglich.
5 2.6.4 Wire-Load-Model Ein weiteres Problem entsteht, wenn das Delay einer mehrstufigen Logik aus den Delays der einzelnen Gatter berechnet werden soll. Die Delays von Teilsystemen können nur dann addiert werden, wenn es sich um rückwirkungsfreie Systeme handelt. Gatterschaltungen werden deshalb sinnvollerweise am Eingang eines Gatters aufgetrennt, da sich der Eingangstransistor im Wesentlichen rückwirkungsfrei verhält. Große Fehler entstünden, wenn statt dessen an den Ausgängen der Gatter aufgetrennt würde, da sich die Last eines Gatters i.a. nicht rückwirkungsfrei verhält. Unter Last versteht man hier die Impedanz der Leitungen und die Eingangskapazitäten der angeschlossenen Gatter. Außerdem ist das Delay i.a. abhängig von der Flankenform. Diese wird bei der Delaybestimmung der einzelnen Gatter an Aus- und Eingang häufig als identisch angenommen. Ein vereinfachtes Ersatzmodell für ein Gatter zeigt das Bild. Das Gatter selbst ist als Spannungsquelle mit Innenwiderstand modelliert. Der Innenwiderstand entsteht u.a. durch die Kanalwiderstände der Transistoren. Der Widerstand RL repräsentiert den Leitungswiderstand und die Kapazitäten CL und CG die Kapazität der Leitungen und der Gates der Transistoren. Das Delay hängt maßgeblich von der Last ab, d.h. von der Leitung und den angeschlossenen Gattern. Da Untersuchungen des Zeitverhaltens einer Schaltung bereits durchgeführt werden müssen, wenn noch kein Layout vorliegt, sind die Leitungseigenschaften noch nicht bekannt. Es werden daher zunächst übliche Werte aufgrund statistischer Untersuchungen verwendet. Dies wird als Wire Load Model bezeichnet. Sobald das Layout vorliegt, können aus den Geometrien exaktere Modelle für diese Lasten extrahiert und in das Schaltungsmodell annotiert werden. Programme, die aus elektrischen Ersatzmodellen ein Delay errechnen, nennt man Delay-Calculator.
6 2.6.5 Pfad-Problem Das Bild zeigt einen Ausschnitt aus dem Digitalteil der Ampelsteuerung. Aus dem zum Taktzeitpunkt ta in FF1 gespeicherten Zustandswert wird durch das Gatter ein neuer Wert erzeugt, der im folgenden Taktzeitpunkt tb von FF2 übernommen werden soll. Das Beispiel enthält einen kombinatorischen Pfad beginnend beim Ausgang Q1 über den Inverter bis zu Eingang D2. Berücksichtigt man eine Verzögerung, die auf diesem Pfad besteht, so ergeben sich die dargestellten Signale über der Zeit. Die gewünschte Funktion wird nur dann erfüllt, wenn das Pfad-Delay kleiner als die Taktperiode ist.
7 2.6.6 Pfade/Cones Das Bild stellt einen anderen, größeren Ausschnitt der Schaltung dar. Ein Signalwechsel an Q2 kann sich auf die Ausgangssignale aller folgenden Gatter auswirken. Da der Ausgang eines Gatters wie im Beispiel mit Eingängen mehrerer anderer Gatter verbunden sein kann, gibt es mehrere Pfade, die von Q2 ausgehen. Es ergibt sich ein sich verbreiterndes Bündel von Pfaden. Dieses wird Cone (Kegel) genannt. In der Abbildung sieht man, dass ein Gatter oder Netz in mehreren Cones und damit auch in mehreren Pfaden enthalten sein kann. Allgemein ist ein Pfad eine Folge von miteinander in Signalflussrichtung verbundenen Gattern. Pfade beginnen an externen Eingängen oder Flip-Flop- Ausgängen und enden an externen Ausgängen oder Flip-Flop-Eingängen. Um sicher zu stellen, dass die Schaltung die gewünschte Funktion ausführt, muss für jeden Pfad die Verzögerung kleiner als die Taktperiode sein.
8 2.6.7 Kritischer Pfad Zur Untersuchung des Zeitverhaltens wird eine synchrone digitale Schaltung in einen gerichteten azyklischen Graphen (DAG: Directed Acyclic Graph) umgewandelt. Die Ein- und Ausgänge der Schaltung und der Flip-Flops sowie die Logikgatter werden als Knoten modelliert. Für jede Verbindung zweier Schaltelemente wird eine gerichtete Kante eingeführt. Ein zusätzlicher Knoten Q (Quelle) wird mit allen Eingangsknoten und ein Knoten S (Senke) mit allen Ausgangsknoten über gerichtete Kanten verbunden. Die Kanten erhalten Gewichte, die die Zeitverzögerung zwischen den durch die adjazenten Knoten bezeichneten Signalen angeben. Das Bild zeigt eine Schaltung und ihren zugehörigen DAG. Die Suche nach dem längsten Pfad von Q nach S liefert den kritischen Pfad. Die Länge ist dabei die Summe der Kantengewichte entlang des Pfads. Der kritische Pfad bestimmt die maximale Taktfrequenz.
9 2.6.8 FlipFlop/Setup- Hold-Zeit Untersucht man ein reales flankengesteuertes Flip-Flop, so fallen zwei Situationen auf, in denen es sich anders verhält, als man vom idealen Flip-Flop erwartet: 1. Wechselt der Wert am Dateneingang erst sehr kurz vor der steigenden Taktflanke, dann wechselt der Ausgang Q nicht wie erwartet. Dies geschieht nur dann, wenn der Wechsel eine ausreichende Zeit vor der Taktflanke den neuen zu übernehmenden Wert besitzt. 2. Wechselt der Wert am Dateneingang sehr kurz nach der steigenden Taktflanke, so wechselt der Ausgang Q nicht wie erwartet. Also muss der Wert auch eine bestimmte Zeit lang nach der Taktflanke noch den beabsichtigten Wert beibehalten. Diesen Problemen wird durch zwei Bedingungen an das Timing begegnet: Das Eingangssignal muss bereits um die Setup-Zeit ts vor und um die Hold-Zeit th nach der steigenden Taktflanke den gewünschten Wert haben. Die Setup-Zeit ist eingehalten, wenn das Delay des kritischen Pfads kleiner oder gleich der Taktperiode minus der Setup-Zeit beträgt. Um zu prüfen, ob die Hold-Zeit eingehalten wird, muss das minimale Delay berechnet werden. Es muss also nicht nur der längste, sondern auch der kürzeste Pfad im DAG gefunden werden. Das minimale Delay (Länge des kürzesten Pfades) muss mindestens die Hold-Zeit betragen.
10 2.6.9 Ein- und Ausgänge Weitere Timing-Bedingungen entstehen aus der Interaktion der zu untersuchenden Schaltung mit der Umgebung. Sind die Eingangssignale gegen den Takt versetzt, so wird dies als input arrival time bezeichnet. Sie kann im DAG durch Gewichtung der von Q ausgehenden Kanten berücksichtigt werden. In entsprechender Weise lässt sich eine output required arrival time in den Kanten berücksichtigen, die auf S weisen. Die Kurvenform an den Eingängen wirkt sich auf das Delay aus. Dem wird in der Praxis durch Angabe einer input slew rate, also der Steigung von Signalwechseln an den Eingängen Rechnung getragen. An den Ausgängen bestimmt die angeschlossene Last das Delay, diese kann durch Angabe einer output capacitance load beschrieben werden.
11 Sensibilisierbarkeit Das Bild zeigt einen Ausschnitt aus einem Addierer. Unabhängig vom Wert des Eingangs x 1 kann entlang des Pfads x 1 -a-b-y 1 -y 2 kein Signalwechsel stattfinden. Diesen Pfad nennt man einen falschen Pfad. Er ist nicht statisch sensibilisierbar. Ein Pfad ist dann statisch sensibilisierbar, wenn es eine Wertebelegung aller Signale gibt, die nicht zum Pfad gehören, so dass ein Wechsel am ersten Signal im Pfad eine Änderung der Signale entlang des Pfads verursacht. Um falsche Pfade erkennen zu können, ist die Kenntnis der Logikfunktionen der Elemente erforderlich. Falsche Pfade können mit dem D-Algorithmus erkannt werden, der im Abschnitt Test beschrieben wird. Dort ist das Ziel, Signalwechsel über Pfade hinweg zu sensibilisieren und zu beobachten. In Zusammenhang mit falschen Pfaden geht es darum, die Sensibilisierbarkeit von Pfaden zu überprüfen. Der D-Algorithmus leistet beides.
12 Slack-Histogramm Als Slack wird die Zeit bezeichnet, die ein Pfad länger sein könnte, ohne die Timing-Bedingungen zu verletzen. Ein negativer Slack bedeutet, dass ein Pfad zu lang, die Setup-Zeit also unterschritten wird. Im Slack-Histogramm ist über dem Slack-Wert die Anzahl der diesen Slack-Wert besitzenden Pfade aufgetragen. Aus diesem Diagramm ist ersichtlich, ob nur wenige Pfade negativen Slack besitzen, und daher lokale Optimierungen sinnvoll sind, oder ob im anderen Fall grundlegende Architekturänderungen erforderlich sind, um ein Design zu erhalten, das die Timing-Bedingungen einhält.
Statische Timing-Analyse
Navigation Statische Timing-Analyse Delay Elmore-Delay Wire-Load-Modell Pfad-Problem Pfade/Cones Kritischer Pfad... Breitensuche Setup- und Hold-Zeit Ein- und Ausgänge Sensibilisierbarkeit Slack-Histogramm
Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren?
Aufgabensammlung Digitale Grundschaltungen 1. Aufgabe DG Gegeben sei folgende Schaltung. Am Eingang sei eine Spannung von 1,5V als High Pegel und eine Spannung von 2V als Low Pegel definiert. R C = 300Ω;
Zu DT Übung 11.1 FF oben links. (Lösungsvorschlag)
Zu DT Übung 11.1 FF oben links RS-FF ungetaktet, dominierender Setzeingang A Kein Takteingang und keine direkt wirkenden Setz- und Rücksetzeingänge. Die Signale T und C haben deshalb hier keine Wirkung.
Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.
Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn
Versuch 3. Frequenzgang eines Verstärkers
Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert
Versuch 3: Sequenzielle Logik
Versuch 3: Sequenzielle Logik Versuchsvorbereitung 1. (2 Punkte) Unterschied zwischen Flipflop und Latch: Ein Latch ist transparent für einen bestimmten Zustand des Taktsignals: Jeder Datensignalwechsel
Übung 1 RS-FFs mit NOR- oder NAND-Gattern
Übung 1 RS-FFs mit NOR- oder NAND-Gattern Übungsziel: Aufbau eines RS-Flipflops mit NOR- oder NAND-Gattern Wahrheitstabelle: S (Setzen) R (Rücksetzen) Q m (Aktueller Zustand) Q m+1 (Nächster Zustand) 0
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Elektrische Logigsystem mit Rückführung
Mathias Arbeiter 23. Juni 2006 Betreuer: Herr Bojarski Elektrische Logigsystem mit Rückführung Von Triggern, Registern und Zählern Inhaltsverzeichnis 1 Trigger 3 1.1 RS-Trigger ohne Takt......................................
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS
Eine Logikschaltung zur Addition zweier Zahlen
Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
Fachbereich Physik Dr. Wolfgang Bodenberger
UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
9 Multiplexer und Code-Umsetzer
9 9 Multiplexer und Code-Umsetzer In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code- Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Beispiel
Technical Note Nr. 101
Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften
Grundlagen der Technischen Informatik. Sequenzielle Netzwerke. Institut für Kommunikationsnetze und Rechnersysteme. Paul J. Kühn, Matthias Meyer
Institut für Kommunikationsnetze und Rechnersysteme Grundlagen der Technischen Informatik Paul J. Kühn, Matthias Meyer Übung 2 Sequenzielle Netzwerke Inhaltsübersicht Aufgabe 2.1 Aufgabe 2.2 Prioritäts-Multiplexer
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Schaltungen Jörg Roth 197
Schaltungen Jörg Roth 197 2.2.2 Flipflops Flipsflops sind einfache rückgekoppelte Schaltungen, die jeweils ein einzelnes Bit speichern können. Es gibt verschiedene Typen, die sich im "Komfort" der Ansteuerung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Festigkeit von FDM-3D-Druckteilen
Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der
Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel
Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 4 Datum: 21.6.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - digitales Experimentierboard (EB6) - Netzgerät
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Aufgaben Wechselstromwiderstände
Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Abamsoft Finos im Zusammenspiel mit shop to date von DATA BECKER
Abamsoft Finos im Zusammenspiel mit shop to date von DATA BECKER Abamsoft Finos in Verbindung mit der Webshopanbindung wurde speziell auf die Shop-Software shop to date von DATA BECKER abgestimmt. Mit
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Simulation LIF5000. Abbildung 1
Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles
2.5.1 Das Basis-Flipflop
2.5 Die Flipflops 137 2.5.1 Das Basis-Flipflop Basis-Flipflops sind nicht taktgesteuerte FF. ie sollen die Funktionen etzen, Löschen und peichern aufweisen. 1 - etzeing. (et) - Löscheing. (eset) 2 etzen:
Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum
Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen
1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4
1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung
Wechselstromkreis mit verschiedenen Bauteilen
Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf
Mean Time Between Failures (MTBF)
Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
Simulink: Einführende Beispiele
Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
Skalierung des Ausgangssignals
Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis
Datenanalyse Auswertung Der Kern unseres Projektes liegt ganz klar bei der Fragestellung, ob es möglich ist, Biere von und geschmacklich auseinander halten zu können. Anhand der folgenden Grafiken, sollte
Übungsaufgaben zum 5. Versuch 13. Mai 2012
Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell
Markus Kühne www.itu9-1.de Seite 1 30.06.2003. Digitaltechnik
Markus Kühne www.itu9-1.de Seite 1 30.06.2003 Digitaltechnik Markus Kühne www.itu9-1.de Seite 2 30.06.2003 Inhaltsverzeichnis Zustände...3 UND austein ; UND Gatter...4 ODER austein ; ODER Gatter...5 NICHT
P = U eff I eff. I eff = = 1 kw 120 V = 1000 W
Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten
Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)
Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
3.2 Spiegelungen an zwei Spiegeln
3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen
9 Flipflops (FF) Basis-FF. (Auffang-FF, Latch) praxis verstehen chancen erkennen zukunft gestalten 9-1
9 Flipflops (FF) Digitale chaltungen Unterteilung der Flipflops: Es gibt bistabile, monostabile und astabile Kippstufen. Bistabile FF s werden als Flipflops bezeichnet. FF s weisen zwei stabile Zustände
Laborübung Gegentaktendstufe Teil 1
Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers
Eigenschaften von Zählerschaltungen (1) 1 1. Richtung
Eigenschaften von Zählerschaltungen (1) 1 1. Richtung Vorwärts Vorwärtszählen entspricht einer fortlaufenden 1-Addition Rückwärts Rückwärtszählen entspricht einer fortlaufenden 1-Subtraktion 2. Verwendeter
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Labor Mikroelektronik. Prof. Dr.-Ing. Frank Kesel Dipl.-Ing.(FH) Manuel Gaiser Dipl.-Ing.(FH) Uwe Halmich. Versuch 2: CMOS-Inverter
Labor Mikroelektronik Prof. Dr.-Ing. Frank Kesel Dipl.-Ing.(FH) Manuel Gaiser Dipl.-Ing.(FH) Uwe Halmich Versuch 2: CMOS-Inverter Stand: 19.4.2010 1 Aufgabenstellung Sie sollen in diesem Versuch einen
Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität
Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in
Technische Informatik Basispraktikum Sommersemester 2001
Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall
Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite
Wintersemester 2001/2002. Hardwarepraktikum. Versuch 4: Sequentielle Systeme 1. - Toralf Zemlin - Swen Steinmann - Sebastian Neubert
Hardwarepraktikum Wintersemester 2001/2002 Versuch 4: Sequentielle Systeme 1 - Toralf Zemlin - Swen Steinmann - Sebastian Neubert Aufgabenstellung: 2.1. Untersuchen Sie theoretisch und praktisch die Wirkungsweise
Kurzanleitung. MEYTON Aufbau einer Internetverbindung. 1 Von 11
Kurzanleitung MEYTON Aufbau einer Internetverbindung 1 Von 11 Inhaltsverzeichnis Installation eines Internetzugangs...3 Ist mein Router bereits im MEYTON Netzwerk?...3 Start des YAST Programms...4 Auswahl
10. Elektrische Logiksysteme mit
Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 10. Elektrische Logiksysteme mit Rückführung Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 22. Juni
Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine
Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 5. Digitale Speicherbausteine Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).
1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung
R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1
Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum Versuch 24: Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen 1 Allgemeines Alle in diesem
Aber zuerst: Was versteht man unter Stromverbrauch im Standby-Modus (Leerlaufverlust)?
Ich habe eine Umfrage durchgeführt zum Thema Stromverbrauch im Standby Modus! Ich habe 50 Personen befragt und allen 4 Fragen gestellt. Ich werde diese hier, anhand von Grafiken auswerten! Aber zuerst:
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
1. Theorie: Kondensator:
1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und
Praktikum Digitaltechnik
dig Datum : 1.06.2009 A) Vorbereitungsaufgaben 1) Was unterscheidet sequentielle und kombinatorische Schaltungen? Kombinatorische ~ Sequentielle ~ Ausgänge sind nur vom Zustand der Eingangsgrößen abhängig
Einteilung der Kippschaltungen (Schaltwerke) (=Flipflops)
6. Sequentielle Schaltungen: 6.1. Grundsätzliche Aussage zu Flipflop Unterschiede zwischen kombinatorischen und sequentiellen Schaltungen: Kombinatorische Schaltungen: - Ausgänge sind nur vom Zustand der
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Die Online-Meetings bei den Anonymen Alkoholikern. zum Thema. Online - Meetings. Eine neue Form der Selbsthilfe?
Die Online-Meetings bei den Anonymen Alkoholikern zum Thema Online - Meetings Eine neue Form der Selbsthilfe? Informationsverhalten von jungen Menschen (Quelle: FAZ.NET vom 2.7.2010). Erfahrungen können
Tutorial: Homogenitätstest
Tutorial: Homogenitätstest Eine Bank möchte die Kreditwürdigkeit potenzieller Kreditnehmer abschätzen. Einerseits lebt die Bank ja von der Vergabe von Krediten, andererseits verursachen Problemkredite
Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten
Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während
Local Control Network
Netzspannungsüberwachung (Stromausfallerkennung) Die Aufgabe Nach einem Stromausfall soll der Status von Aktoren oder Funktionen wieder so hergestellt werden, wie er vor dem Stromausfall war. Die Netzspannungsüberwachung
11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1
TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
How-to: Webserver NAT. Securepoint Security System Version 2007nx
Securepoint Security System Inhaltsverzeichnis Webserver NAT... 3 1 Konfiguration einer Webserver NAT... 4 1.1 Einrichten von Netzwerkobjekten... 4 1.2 Erstellen von Firewall-Regeln... 6 Seite 2 Webserver
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung
Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Das Mathematik-Abitur im Saarland
Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die
Anbindung des eibport an das Internet
Anbindung des eibport an das Internet Ein eibport wird mit einem lokalen Router mit dem Internet verbunden. Um den eibport über diesen Router zu erreichen, muss die externe IP-Adresse des Routers bekannt
8. Berechnung der kalkulatorischen Zinsen
8. Berechnung der kalkulatorischen Zinsen 8.1. Allgemeines In der laufenden Rechnung werden im Konto 322.00 Zinsen nur die ermittelten Fremdkapitalzinsen erfasst. Sobald aber eine Betriebsabrechnung erstellt
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Elektrischer Widerstand
In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren
