Data-Warehouse-Technologien
|
|
|
- Katharina Stein
- vor 10 Jahren
- Abrufe
Transkript
1 Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche Informationssysteme Letzte Änderung: c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
2 Organisatorisches Überblick 1 Einführung & Grundbegriffe 2 Data-Warehouse-Architektur 3 Multidimensionales Datenmodell 4 Extraktion, Transformation und Laden 5 Anfragen an Data Warehouses 6 Speicherstrukturen 7 Indexstrukturen 8 Anfrageverarbeitung und -optimierung 9 Materialisierte Sichten 10 Business Intelligence Anwendungen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
3 Organisatorisches Lehrbuch zur Veranstaltung Köppen Saake Sattler Veit Köppen Gunter Saake Köppen, V.; Saake, G.; Sattler, K.-U.: Data Warehouse Technologien 2. Auflage, mitp-verlag, Seiten, 29,99 e Data Warehouse Technologien Data Warehouse Technologien Kai-Uwe Sattler 2. Auflage c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
4 Organisatorisches Weitere Literatur W. Lehner. Datenbanktechnologie für Data-Warehouse-Systeme. dpunkt.verlag, Heidelberg, 2003 W.H. Inmon. Building the Data Warehouse. 4 th Edition, Wiley & Sons, New York, 2005 A. Bauer, H. Günzel. Data Warehouse Systeme Architektur, Entwicklung, Anwendung. 3. Auflage, dpunkt.verlag, Heidelberg, 2008 G. Saake, K. Sattler, A. Heuer. Datenbanken: Implementierungstechniken. 3. Auflage, mitp-verlag, Bonn, 2009 R. Kimball, L. Reeves, M. Ross, W. Thornthwaite. The Data Warehouse Lifecycle Toolkit Wiley & Sons, New York, 1998 c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
5 Teil I Einführung
6 Einführung & Grundbegriffe 1 Motivation 2 Anwendungen 3 Abgrenzung 4 Begriff Data Warehouse 5 Themen 6 Benchmarks c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
7 Motivation Szenario: Getränkemarkt Umsatz, Portfolio Werbung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
8 Motivation DB-Schema Produkt (0,*) geliefert von Lieferant kauft (0,*) Menge Kunde c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
9 Motivation DB-Nutzung Anfragen: Wie viele Flaschen Cola wurden letzten Monat verkauft? Wie hat sich der Verkauf von Rotwein im letzten Jahr entwickelt? Wer sind unsere Top-Kunden? Von welchem Lieferanten beziehen wir die meisten Kisten? Probleme Nutzung externer Quellen (Kundendatenbank, Lieferantendatenbank,... ) Daten mit zeitlichem Bezug c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
10 Motivation Erweitertes Szenario Altmarkkreis Salzwedel Stendal Börde MD Jerichower Land Harz Burgenlandkreis Mansfeld- Südharz HAL Saalekreis Salzlandkreis DE Anhalt- Wittenberg Bitterfeld Sachsen-Anhalt Thüringen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
11 Motivation DB-Nutzung (2) Anfragen Verkaufen wir in Ilmenau mehr Bier als in Erfurt? Wie viel Cola wurde im Sommer in ganz Thüringen verkauft? Mehr als Wasser? Problem Anfragen über mehrere Datenbanken c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
12 Motivation Lösungen Variante 1: Verteilte DB Globale Anfrage über mehrere DBs Sicht mit Union Nachteil: aufwendige verteilte Anfrageausführung Variante 2: Zentrale DB Änderungen über einer zentralen DB Nachteil: lange Antwortzeiten im operativen Betrieb c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
13 Motivation Data Warehouse-Lösung DB Magdeburg DB Ilmenau DB Erfurt Umsatz, Portfolio Asynchrone Aktualisierung Redundante Datenhaltung Werbung Transformierte, vorberechnete Daten Data Warehouse c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
14 Motivation Gegenstand der Vorlesung Data Warehouse: Sammlung von Daten und Technologien zur Unterstützung von Entscheidungsprozessen Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung und Verwaltung, Anfragebearbeitung) Datenmodellierung (Zeitbezug, mehrere Dimensionen) Integration heterogener Datenbestände Schwerpunkt Datenbanktechniken von Data Warehouses c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
15 Motivation c Sattler / Saake / Köppen Data-Warehouse-Technologien [nach Chaudhuri&Dayal Letzte Änderung: ] 1 10 Überblick Monitoring & Administration Metadaten- Repository OLAP-Server Externe Quellen Data Warehouse Analyse Bereinigen Entity Query/ Reporting Data Mining Operative Datenbanken Data Marts OLAP-Server Data-Warehouse-System
16 Anwendungen Betriebswirtschaftliche Anwendungen Informationsbereitstellung Daten und Informationen als Grundlage von Entscheidungen (z.b. Kennzahlen) Einfluss auf zukünftiges Betriebsergebnis und auf Abwicklung von Geschäftsprozessen Anwender: Manager, Abteilungsleiter, Fachkräfte Formen der Bereitstellung: Query-Ansätze: frei definierbare Anfragen und Berichte (individuelle Lösungsstrategie) Reporting: Zugriff auf vordefinierte Berichte (fixes Lösungsangebot) Redaktionell aufbereitete, personalisierte Informationen Domänenspezifische Datensichten Vorberechnete Kenngrößen (z.b. durch Data Mining Algorithmen) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
17 Anwendungen Betriebswirtschaftliche Anwendungen (2) Analyse Detaillierte Analyse der Daten zur Untersuchung von Abweichungen oder Auffälligkeiten Szenariotechniken (What-If-Analysen) Anwender: Spezialisten (z.b. Controlling, Marketing) Planung Unterstützung durch explorative Datenanalyse Aggregierung von Einzelplänen Prognoseverfahren (z.b. statistische saisonale Modelle) Kampagnenmanagement Unterstützung strategischer Kampagnen Kundenanalyse, Portfolio- und Risikoanalyse c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
18 Anwendungen Wissenschaftliche und Technische Anwendungen Wissenschaftliche Anwendungen Statistical und Scientific Databases technische Wurzeln des DW Beispiel: Projekt Earth Observing System (Klima- und Umweltforschung) Täglich ca. 1,9 TB meteorologischer Daten Aufbereitung und Analyse (statistisch, Data Mining) Technische Anwendungen Öffentlicher Bereich: DW mit Umwelt- oder geographischen Daten (z.b. Wasseranalysen) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
19 Anwendungen Einsatzbeispiel Wal-Mart ( Marktführer im amerikanischen Einzelhandel Unternehmensweites Data Warehouse Größe: ca. 300 TB (2003), 480 TB (2004), heute: geschätzt 8 PB Täglich etwa DW-Anfragen Hoher Detaillierungsgrad (tägliche Auswertung von Artikelumsätzen, Lagerbestand, Kundenverhalten) Basis für Warenkorbanalyse, Kundenklassifizierung,... c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
20 Anwendungen Fragestellungen und Aufgaben (Bsp.) Überprüfung des Warensortiments zur Erkennung von Ladenhütern oder Verkaufsschlagern Standortanalyse zur Einschätzung der Rentabilität von Niederlassungen Untersuchung und Prognose von Marketing-Aktionen Auswertung von Kundenbefragungen, Reklamationen bzgl. bestimmter Produkte etc. Analyse des Lagerbestandes Warenkorbanalyse mit Hilfe der Kassendaten (wirt. Transaktionen) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
21 Anwendungen Beispiel einer Anfrage Welche Umsätze sind in den Jahren 2009 und 2010 in den Warensegmenten Bier und Rotwein in den Bundesländern Sachsen-Anhalt und Thüringen angefallen? c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
22 Anwendungen Ergebnis (Würfel) Summe Rotwein Bier Produkt Kennzahl Umsatz (Wert = 52) Summe Zeitraum Sachsen- Anhalt Thüringen Summe Region c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
23 Anwendungen Ergebnis (2-dim. Würfeldarstellung) Umsatz Bier Rotwein Summe 2009 Sachsen-Anhalt Thüringen Summe Sachsen-Anhalt Thüringen Summe c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
24 Abgrenzung Aspekte von Data Warehouses Integration Vereinigung von Daten aus verschiedenen, meist heterogenen Quellen Überwindung der Heterogenität auf verschiedenen Ebenen (System, Schema, Daten) Analyse Bereitstellung der Daten in einer vom Anwender gewünschten Form (bezogen auf Entscheidungsgebiet) erfordert Vorauswahl, Zeitbezug, Aggregation c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
25 Abgrenzung Kurze Transaktion (OLTP) Kunde ID Name Vorname PLZ Ort Straße 4711 Saake Gunter Irgendwo Am Berg 3 42 Sattler K Hier Zufahrt Köppen Veit Dort Weg 9A SELECT vorname, name FROM Kunde WHERE id = 0800 Ergebnis Vorname Veit Name Köppen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
26 Abgrenzung Langandauernde Transaktion (OLAP) SELECT DISTINCT ROW Zeit.Dimension AS Jahr, Produkt.Dimension AS Artikel, AVG(Fact.Umsatz) AS Umsatzdurchschnitt, Ort.Dimension AS Verkaufsgebiet FROM (Produktgruppe INNER JOIN Produkt ON Produktgruppe. [Gruppen-Nr] = Produkt.[Gruppen-ID]) INNER JOIN ((((Produkt INNER JOIN [Fact.Umsatz] ON Produkt.[Artikel-Nr] = [Fact.Umsatz].[Artikel-Nr]) INNER JOIN Order ON [Fact.Umsatz].[Bestell-Nr]= Order.[Order-ID]) INNER JOIN Zeit.Dimension ON Orders.[Order-ID] = Zeit.Dimension.[Order-ID]) INNER JOIN Ort.Dimension ON Order.[Order-ID] = Ort.Dimension.[Order-ID]) ON Produktgruppe.[Gruppen-Nr] = Produkt.[Gruppen-ID] GROUP BY Produkt.Dimension.Gruppenname, Ort.Dimension.Bundesland, Zeit.Dimension.Jahr; c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
27 Abgrenzung Abgrenzung zu OLTP Klassische operative Informationssysteme Online Transactional Processing (OLTP) Erfassung und Verwaltung von Daten Verarbeitung unter Verantwortung der jeweiligen Abteilung Transaktionale Verarbeitung: kurze Lese-/ Schreibzugriffe auf wenigen Datensätzen Data Warehouse Online Analytical Processing (OLAP) Analyse im Mittelpunkt Langandauernde Lesetransaktionen auf vielen Datensätzen Integration, Konsolidierung und Aggregation der Daten c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
28 Abgrenzung Abgrenzung zu OLTP: Anfragen OLTP OLAP Fokus Lesen, Schreiben, Modifizieren, Lesen, periodisches Löschen Hinzufügen Transaktionsdauer und -typ kurze Lese- / Schreibtransaktionen langandauernde Lesetransaktionen Anfragestruktur einfach strukturiert komplex Datenvolumen einer wenige Datensätze viele Datensätze Anfrage Datenmodell anfrageflexibel analysebezogen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
29 Abgrenzung Abgrenzung zu OLTP: Daten OLTP OLAP Datenquellen meist eine mehrere Eigenschaften nicht abgeleitet, abgeleitet / konsolidiert, zeitaktuell, autonom, historisiert, integriert, stabil dynamisch Datenvolumen MByte... GByte GByte... TByte... PByte Zugriffe Einzeltupelzugriff Tabellenzugriff (spaltenweise) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
30 Abgrenzung Abgrenzung zu OLTP: Anwender OLTP OLAP Anwendertyp Ein-/Ausgabe durch Manager, Controller, Angestellte oder Analyst Applikationssoftware Anwenderzahl sehr viele wenige (bis einige hundert) Antwortzeit msecs... secs secs... min c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
31 Abgrenzung Abgrenzung: DBMS-Techniken Parallele Datenbanken Technik zur Realisierung eines DWH Verteilte Datenbanken I.d.R. keine redundante Datenhaltung Verteilung als Mittel zur Lastverteilung Keine inhaltliche Integration/Verdichtung der Daten Föderierte Datenbanken Höhere Autonomie und Heterogenität Kein spezifischer Analysezweck Keine Lesezugriffoptimierung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
32 Begriff Data Warehouse Data Warehouse: Begriff A Data Warehouse is a subject-oriented, integrated, non-volatile, and time variant collection of data in support of managements decisions. (W.H. Inmon 1996) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
33 Begriff Data Warehouse Data Warehouse: Charakteristika Fachorientierung (subject-oriented): Zweck ist Unterstützung bereichsübergreifender Auswertungsmöglichkeiten für unterschiedliche Domänen Zentralisierte Bereitstellung der Daten über Geschäftsobjekte (Themen) Integrierte Datenbasis (integrated): Verarbeitung von Daten aus mehreren verschiedenen (internen und externen) Datenquellen (z.b. operationalen DB oder Web) Nicht-flüchtige Datenbasis (non-volatile): stabile, persistente Datenbasis Daten im DW werden i. A. nicht mehr entfernt oder geändert Zeitbezogene Daten (time-variant): Vergleich der Daten über Zeit möglich (Zeitreihenanalyse) Speicherung über längeren Zeitraum c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
34 Begriff Data Warehouse Weitere Begriffe Data Warehousing Data-Warehouse-Prozess, d.h. alle Schritte der Datenbeschaffung (Extraktion, Transformation, Laden), des Speicherns und der Analyse Data Mart externe (Teil-)Sicht auf das Data Warehouse durch Kopieren anwendungsbereichsspezifisch OLAP (Online Analytical Processing) explorative, interaktive Analyse auf Basis des konzeptuellen Datenmodells Business Intelligence Data Warehousing + Reporting + Analyse (OLAP, Data Mining); auch automatisch erzeugte Reports in Unternehmen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
35 Begriff Data Warehouse Trennung operativer und analytischer Systeme: Gründe Antwortzeitverhalten: Analyse auf operativen Quelldatensystemen schlechte Performance Historisierung der Unternehmensdaten Langfristige Speicherung der Daten Zeitreihenanalyse Zugriff auf Daten unabhängig von operativen Datenquellen (Verfügbarkeit, Integrationsproblematik) Vereinheitlichung des Datenformats im DW Gewährleistung der Datenqualität im DW c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
36 Begriff Data Warehouse Historie: Wurzeln 60er Jahre: Executive Information Systems (EIS) qualitative Informationsversorgung von Entscheidern kleine, verdichtete Extrakte der operativen Datenbestände Aufbereitung in Form statischer Berichte Mainframe 80er Jahre: Management Information Systems (MIS) meist statische Berichtsgeneratoren Einführung von Hierarchieebenen für Auswertung von Kennzahlen (Roll-Up, Drill-Down) Client-Server-Architekturen, GUI (Windows, Apple) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
37 Begriff Data Warehouse Historie 1992: Einführung des Data-Warehouse-Konzeptes durch W.H. Inmon Redundante Haltung von Daten, losgelöst von Quellsystemen Beschränkung der Daten auf Analysezweck 1993: Definition des Begriffs OLAP durch E.F. Codd Dynamische, multidimensionale Analyse Weitere Einflussgebiete Verbreitung geschäftsprozessorientierter Transaktionssysteme (SAP R/3) Bereitstellung von entscheidungsrelevanten Informationen Data Mining WWW (Web-enabled Data Warehouse etc.) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
38 Themen Vorlesung: Zielstellungen Vermittlung von Kenntnissen zu Datenbanktechniken für Aufbau und Implementierung von Data Warehouses Anwendung bekannter DB-Techniken (siehe Vorlesung Datenbanksysteme ) Datenmodellierung Anfragesprachen und -verarbeitung DW-spezifische Techniken multidimensionale Datenmodellierung spezielle Anfragetechniken Indexstrukturen materialisierte Sichten Einsatzgebiete: Business Intelligence c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
39 Themen DW-Architektur Komponenten von DW und deren Aufgaben Datenbanken Datenquellen: Herkunftsort der Daten Datenbereinigungsbereich: temporäre Datenbank für Transformation Data Warehouse: physische Datenbank für Analyse Repository: Datenbank mit Metadaten Datenwürfel Extraktion Basisdatenbank Datenquellen Datenbereinigungsbereich Laden Befüllen Analyse Transformation c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
40 Themen DW-Architektur: Komponenten Data-Warehouse-Manager: zentrale Kontrolle und Steuerung Monitore: Überwachung der Quellen auf Veränderungen Extraktoren: Selektion und Transport der Daten aus Quellen in Datenbereinigungsbereich Transformatoren: Vereinheitlichung und Bereinigung der Daten Ladekomponenten: Laden der transformierten Daten in das DW Analysekomponenten: Analyse und Präsentation der Daten Datenfluss Kontrollfluss Ereignisse Transformation Monitor Data- Warehouse- Manager Metadaten- Manager Repository c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
41 Themen Multidimensionales Datenmodell Datenmodell zur Unterstützung der Analyse Fakten und Dimensionen Klassifikationsschema Würfel Operationen: Pivotierung, Roll-Up, Drill-Down, Drill-Across, Slice und Dice Notationen zur konzeptuellen Modellierung Relationale Umsetzung Star-Schema, Snowflake-Schema c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
42 Themen ETL-Prozess Prozess von Extraktion, Transformation und Laden Extraktion von Daten aus Quellen: Operative Datenbanken, Web, Dateien, etc. Laden von Daten in das DWH Aspekte der Datenqualität Begriff Probleme Data Cleaning c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
43 Themen Index- und Speicherstrukturen Klassifikation Wiederholung B-Baum und B+-Baum Mehrdimensionale Indexstrukturen R-Baum UB-Baum Bitmap-Index Vergleich Weitere Formen Multidimensionale Speicherung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
44 Themen Anfragen an Data Warehouses Gruppierung und Aggregation Supergroups, CUBE OLAP-Funktionen aus SQL:2003 Mehrdimensionale Erweiterungen von Anfragesprachen: MDX c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
45 Themen Anfrageverarbeitung und -optimierung Berechnung von Gruppierung und Cubes Star-Joins Weitere Optimierungsaspekte c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
46 Themen Materialisierte Sichten Materialisierte Sicht (engl. materialized view): vorab berechneter Ausschnitt aus einer Faktentabelle Verwendung: Anfrageersetzung Auswahl: Bestimmung der redundant gehaltenen Daten statische vs. dynamische Auswahlverfahren semantisches Caching Wartung und Aktualisierung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
47 Themen Anwendungen für Data Warehouses Reporting Datenexploration Klassifikation Warenkorbanalyse Prognose Anwendungsszenarien c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
48 Themen Big Data: 5 V s Volume - sehr hohe Datenmenge (Verdoppelung alle 2 Jahre) Variety - strukturierte sowie unstrukturierte Daten Velocity - vom Batch zur Echtzeit Veracity - Vertrauen in die Daten Value - Wert der (Geschäfts-)Daten c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
49 Themen Big Data und Data Warehouse Entwicklungsumgebung Business Intelligence Reduce Reduce Reduce Map Map Map Map Integrierte Datenbasis Integrierte Datenbasis File Copy Extract - Transform - Load Blog Doc Sensor Multimedia CRM SCM ERP 3rd Party Legacy c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
50 Benchmarks TPC-Benchmarks Vergleich der Leistungsfähigkeit von Datenbanken ( TPC-C: OLTP Benchmark TPC-H: Ad-hoc Decision Support (variable Anteile) TPC-R: Reporting Decision Support (feste Anfragen) TPC-W: ecommerce Transaktionsprocessing Vorgegebene Schemata (Lieferwesen) Schema-, Query- und Datengeneratoren Unterschiedliche DB-Größen TPC-H: 100 GB GB - 1 TB - 3 TB -10 TB c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
51 Benchmarks TPC-H: Schema REGION NATION CUSTOMER SUPPLIER ORDERS PART PARTSUPP LINEITEM c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
52 Benchmarks TPC-H: Anfragen SELECT c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, SUM (l_quantity) FROM customer, orders, lineitem WHERE o_orderkey IN (SELECT l_orderkey FROM lineitem GROUP BY l_orderkey HAVING SUM (l_quantity) > :1) AND c_custkey = o_custkey AND o_orderkey = l_orderkey GROUP BY c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice ORDER BY o_totalprice desc, o_orderdate c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
53 Benchmarks TPC-H: Zahlen ( GB) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
54 Benchmarks Produkte OLAP-Tools/Server MS Analysis Services, Hyperion, Cognos DW-Erweiterungen für RDBMS Oracle11g, IBM DB2, MS SQL Server: SQL-Erweiterungen, Indexstrukturen, mat. Sichten, Bulk-Load/Insert,... BI Accelerator lese-optimierte DBS-Lösungen: Hauptspeicher-Verarbeitung, spaltenorientierte Datenorganisation, MapReduce-Techniken, Cluster-Architekturen z.b. SAP TREX, Greenplum, Vertica, EXASOL,... ETL-Tools MS Integration Services, Oracle Warehouse Builder,... c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks
. Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland
fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien
Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung
OLAP und Data Warehouses
OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting
Einführungsveranstaltung: Data Warehouse
Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring
Einführung & Grundbegriffe
Teil I Einführung Einführung & Grundbegriffe 1 Motivation 2 Anwendungen 3 Abgrenzung 4 Begriff Data Warehouse 5 Themen 6 Benchmarks c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:
Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...
Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............
Einführung. Überblick. Data-Warehouse-Technologien. Vorlesung
Vorlesung Data-Warehouse-Technologien Wintersemester 2002/2003 [email protected] http://wwwiti.cs.uni-magdeburg.de/~sattler/hal/dw.html Einführung Gegenstand der Vorlesung Data Warehouse: Sammlung
Data-Warehouse-Technologien
Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche
Data Warehousing: Anwendungsbeispiel
Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale
Data Warehouse Technologien
mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de
Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)
Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian
Data-Warehouse-Systeme
Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm [email protected] Übersicht 1) Einführung
Data Warehousing und Data Mining
2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen
Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik
Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte
Vorlesung Datenbankmanagementsysteme
Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.
Kapitel 2 Terminologie und Definition
Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale
Business Intelligence Data Warehouse. Jan Weinschenker
Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data
Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle
??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle
Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel
Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich
Informationssysteme: Neuere Konzepte Teil II
Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser
1Ralph Schock RM NEO REPORTING
1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen
eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator
eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse
Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher
Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien
Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien 1 Einführung in Data- Warehouse-Systeme Die Verwaltung großer Datenbestände ist seit vielen Jahren im Bereich der Datenbanken
BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit
BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon
Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller
Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität
Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube
Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch
Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P
Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören
Data Warehouse Grundlagen
Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen
Das Multidimensionale Datenmodell
Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension
Möglichkeiten für bestehende Systeme
Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-
Datenbanktechnologie für Data-Warehouse-Systeme
Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...
DATA-WAREHOUSE-TECHNOLOGIEN
Vorlesung DATA-WAREHOUSE-TECHNOLOGIEN Wintersemester 2007/2008 Vorlesender: Eike Schallehn Vorlesung und Skript von: Prof. Dr.-Ing. habil. Kai-Uwe Sattler TU Ilmenau, FG Datenbanken und Informationssysteme
Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH
Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -
Einsatz des Microsoft SQL-Servers bei der KKH
Einsatz des Microsoft SQL-Servers bei der KKH Reporting Services und Analysis Services Kontaktdaten Detlef André Abteilungsleiter Data Warehouse E-Mail [email protected] Telefon 0511 2802-5700 Dr. Reinhard
Logische Modellierung von Data Warehouses
Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..
Seminar C02 - Praxisvergleich OLAP Tools
C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien
Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück
Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins
5.4 Benchmarks für Data Warehouses
5.4 Benchmarks für Data Warehouses Benchmark ( Massstab ) zum Vergleich der Leistungsfähigkeit von Systemen Für Datenbanken: Serie von Benchmarks des Transaction Processing Performance Council (www.tpc.org)
Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische
Entscheidungsunterstützungssysteme
Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II [email protected] Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business
Christian Kurze BI-Praktikum IBM WS 2008/09
Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS
Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII
Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte
Business Intelligence im Krankenhaus
Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence
Search-Driven Applications. Florian Hopf, freiberuflicher Softwareentwickler Tobias Kraft, exensio GmbH
Search-Driven Applications Florian Hopf, freiberuflicher Softwareentwickler Tobias Kraft, exensio GmbH Agenda Motivation Aufbau der Such-Datenstruktur Anwendungsfälle Fallstricke Was ist Suche? Was wollen
10. Vorlesung: Datenorganisation SS 2007
10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das
ENTERBRAIN Reporting & Business Intelligence
Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit
MIS by Franziska Täschler, Winformation GmbH [email protected] Ausgabe 01/2001
MIS Glossar by Franziska Täschler, Winformation GmbH [email protected] Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)
Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System
OLAP mit dem SQL-Server
Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1
Datenbanken. Prof. Dr. Bernhard Schiefer. [email protected] http://www.fh-kl.de/~schiefer
Datenbanken Prof. Dr. Bernhard Schiefer [email protected] http://www.fh-kl.de/~schiefer Wesentliche Inhalte Begriff DBS Datenbankmodelle Datenbankentwurf konzeptionell, logisch und relational
Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC
Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von
Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15
9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics
Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria
Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards
Objektorientierte Datenbanken
OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data
BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004
BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick
Business Intelligence
Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence
Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing
Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle
Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft
Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media
Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.
Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen
Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Schwierigkeiten bei der Umsetzung Josef Kolbitsch Manuela Reinisch Übersicht Schwierigkeiten bei der Umsetzung eines BI-Systems Schwierigkeiten der Umsetzung 1/13 Strategische Ziele
1 Einleitung. Betriebswirtschaftlich administrative Systeme
1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen
Themenblock: Erstellung eines Cube
Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen
Survival Guide für Ihr Business Intelligence-Projekt
Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren
1 Ihre BI-Galaxie von BITMARCK!
1 Ihre BI-Galaxie von BITMARCK! Die Summe aller Sterne ist die Galaxie Ihre BI-Galaxie von BITMARCK! Michael Heutmann, Peter Hernold, Markus Jankowski Neuss, 4. November 2013 Sie haben uns mit auf den
Definition Informationssystem
Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation
Mala Bachmann September 2000
Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine
Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link
Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas
Infografik Business Intelligence
Infografik Business Intelligence Top 5 Ziele 1 Top 5 Probleme 3 Im Geschäft bleiben 77% Komplexität 28,6% Vertrauen in Zahlen sicherstellen 76% Anforderungsdefinitionen 24,9% Wirtschaflicher Ressourceneinsatz
Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006
Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet
Kapitel 6. Vorlesung: PD Dr. Peer Kröger
Kapitel 6 Einführung in Data Warehouses Vorlesung: PD Dr. Peer Kröger Dieses Skript basiert auf den Skripten zur Vorlesung Datenbanksysteme II an der LMU München Dieses Skript basiert auf den Skripten
DWH Szenarien. www.syntegris.de
DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen
Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3
vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2
WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'
Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel
SQL Server 2012 und SharePoint im Unternehmenseinsatz. Referent Daniel Caesar
SQL Server 2012 und SharePoint im Unternehmenseinsatz Referent Daniel Caesar sqlxpert Daniel Caesar Publikationen Themen SQL Server Admin, Entwicklung SharePoint Admin, Entwicklung.NET Entwicklung Rechtssichere
Data Warehouses. Alexander Fehr. 23. Dezember 2002
Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen
Grundlagen von Datenbanken
Grundlagen von Datenbanken Aufgabenzettel 1 Grundlagen Datenbanken: Kurzer historischer Überblick (1) Anwendung 1 Anwendung 2 Datei 1 Datei 2 Datei 3 Zugriff auf Dateien ohne spezielle Verwaltung 2 Exkurs:
Aufgabe 1: [Logische Modellierung]
Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines
Allgemeines zu Datenbanken
Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,
Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC
Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie
Einführung. Informationssystem als Abbild der realen Welt
Was ist ein Datenbanksystem? Anwendungsgrundsätze Betrieb von Datenbanksystemen Entwicklung von Datenbanksystemen Seite 1 Informationssystem als Abbild der realen Welt Modellierung (Abstraktion) Sachverhalte
Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014
Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: [email protected] Marius Eich Email: [email protected] Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester
Datawarehouse Architekturen. Einheitliche Unternehmenssicht
Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA
Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch
Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht
Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u
Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen
Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP
Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen
Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste
Datenbanken und Informationssysteme
Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012
Business Intelligence für Controller
Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe
Business Intelligence in NRW
Fragebogen zur Erhebung von Unternehmensdaten für die Business Intelligence Studie in Nordrhein-Westfalen ishot, wwwphotocasede Sehr geehrte Teilnehmerin, sehr geehrter Teilnehmer, wir führen für das Land
Business Intelligence Center of Excellence
Center of Excellence Eine Businessinitiative von Systematika und Kybeidos Werner Bundschuh Was ist das? In der Praxis versteht man in den meisten Fällen unter die Automatisierung des Berichtswesens (Reporting).
ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.
ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.de insight und dynasight sind eingetragene Markenzeichen der
Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung
Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA
Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.
Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen
