Abzählen von Färbungen Das Cauchy-Frobenius- oder Burnside-Lemma

Ähnliche Dokumente
Abzählen von Färbungen Das Cauchy-Frobeniusoder Burnside-Lemma

Der Polyasche Abzählsatz und Färbungen regulärer Polyeder

Das Skalarprodukt und seine Anwendungen

Komplexe Zahlen. Axel Schüler, Leipzig Juli 2003

Trigonometrische Funktionen

Heinrich-Hertz-Oberschule, Berlin. Immanuel-Kant-Oberschule, Berlin

Komplexe Zahlen und Geometrie

Lineare Algebra und analytische Geometrie II

Zahlentheorie. Lisa Sauermann. März 2013

Bewegungsgeometrie. Hans-Gert Gräbe, Leipzig. 23. Januar 2000

Einführung in die Algebra

GRUPPENTHEORIE AUFGABEN ZUR PRÜFUNGSVORBEREITUNG II

Matrikelnummer. Klausur 1

D-MATH Tommaso Goldhirsch. Serie 3

Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe.

2.2 Operationen von Gruppen

Klausur zur Algebraischen Kombinatorik

Lösung zur Aufgabe Würfel färben von Heft 20

Semestralklausur Einführung in die Algebra für M, MCS, LaG

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt

D-MATH Tommaso Goldhirsch. Ferienserie

Programm des Hauptseminars Symmetrie

TECHNISCHE UNIVERSITÄT MÜNCHEN

Einführung in die Algebra 3. Übung

Invariantentheorie. Bewegungen

KAPITEL 6. Algebra Gruppen

Einführung in die Algebra

Einführung in die Algebra

Gruppentheorie I. Nils Gerding WS 2008 / Proseminar Lineare Algebra - O. Bogopolski Technische Universität Dortmund

Abitur Mathematik Baden-Württemberg 2012

D-MATH Tommaso Goldhirsch. Serie 2. Man bezeichnet dies als Assoziativität der Verknüpfung von Abbildungen.

Das Invarianzprinzip

10 Dynkin-Diagramme und Klassifikation

17. Berliner Tag der Mathematik 2012 Wettbewerb Stufe III: Klassen 11 bis 12/13

6.2 Gruppenoperationen, der Satz von Sylow

Lösungsvorschlag zur Nachklausur. Zeigen Sie die folgenden voneinander unabhängigen Aussagen:

Elemente der Algebra

Von Gruppen, Würfeln und Perlenketten

5. Äquivalenzrelationen

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Simpliziale Bäume. Cora Welsch. Seminar SS2015 WWU Münster

Einführung in die Diskrete Mathematik

5. Äquivalenzrelationen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

1 Anmerkungen zu den Korrekturen

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 2 (WS 2010/2011) Abgabetermin: Donnerstag, 28. Oktober.

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

Die. Ramsey-Zahlen

Musterlösung Serie 8

2.6 Ergänzungen und Beispiele: Semidirekte Produkte

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Satz von Sarkovskii und Periode 3 impliziert Chaos

2.4 Gruppenoperationen

3. Untergruppen. 3. Untergruppen 23

Multiple Choice Quiz: Lösungen

Einführung in die Algebra Blatt 1

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Seminar zum Thema Kryptographie

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

Zum Begriff der Gruppe, dem Satz von Lagrange und den Sätzen von Fermat und Euler

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

Invariantentheorie. Vorlesung 2. Gruppenoperationen

Anmerkungen zu Mengen und Abbildungen

Die Permutationsgruppe

Satz 94 Sei b N 0 und p N eine Primzahl. Dann gilt:

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 4 (WS 2015/16) 1. Abgabetermin: Donnerstag, 19. November.

6.5 Konstruktion und Zufallserzeugung von Repräsentanten

Beispiel: Aufgaben: T-Stein-Problem Kann ein 10 x 10 Schachbrett mit folgenden T-Steinen ausgelegt werden?

Serie 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

Aufgabe 2 Die Abbildung zeigt den Graphen einer ganzrationalen Funktion f.

1.5 Kongruenz und Ähnlichkeit

Wiederholungsblatt zur Gruppentheorie

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Julius-Maximilians-Universität Würzburg

Symmetrie als fundamentale Idee Bezeichnungen (in dieser Vorlesung):

Hilfsmittel bei Geometrieaufgaben. Ein Kompendium für Klasse 8

GRUPPEN UND RUBIK S WÜRFEL

Hausaufgabenüberprüfung 1 zu Mathematische Strukturen Hagen Knaf, SS 2016

Man kann Aufgabe 1 auch mit Hilfe kombinatorischer Überlegungen lösen. Allerdings ist dann die Verwendung der entsprechenden Formel zu motivieren.

Geometrische Form des Additionstheorems

Aufgabe S 1 (4 Punkte)

Einführung in die Algebra

Friesmuster in der Mathematik

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

Skript und Übungen Teil II

3 Strukturen aus der Algebra: Gruppe, Ringe, Körper

Färbungen von Graphen: Die chromatische Zahl und der Satz von Brooks

Plan für Heute/Morgen

Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y

Sudoku-Rätsel und Rainbow-Looms. November 2015

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2018/2019

Aufgabenblatt 1: Abgabe am vor der Vorlesung

2.1. GRUPPEN Definition (Gruppoide, Halbgruppen, Monoide, Gruppen)

Aufgaben für die Klassenstufen 11/12

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Transkript:

Abzählen von Färbungen Das Cauchy-Frobenius- oder Burnside-Lemma Axel Schüler Leipzig, 2006 Wir wollen hier das Burnside Lemma formulieren und beweisen. Dann wollen wir es anwenden auf das Abzählen von Färbungen eines symmetrischen Körpers. Hierbei wollen wir nicht den Begriff des Zyklenzeigers verwenden. 1 Bezeichnungen Im folgenden sei X eine Menge, G eine endliche Gruppe, die auf X wirkt, das heißt, jedem Gruppenelement g G entspricht eine Abbildung, bezeichnet durch g., von X in X mit e.x = x und (gh).x = g.(h.x) für alle g,h G und alle x X. Für jedes g G bezeichne X g = {x X g.x = x}, die Teilmenge der Elemente von X, die unter der Wirkung von g fest bleiben. Für jedes x X sei G x = {g G g.x = x} der Stabilisator von x (G x ist eine Untergruppe in G) und G(x) = {g.x g G} das Orbit von x unter G. Schließlich sei X/G die Menge der Orbits der Gruppenwirkung. Die Anzahl der Elemente einer Menge A sei mit A bezeichnet. Lemma 1 Es sei G eine endliche Gruppe, die auf der Menge X wirkt. Dann gilt für jedes x X G = G(x) G x. Beweis: Wir benutzen das doppelte Abzählen der Relation S = {(g,y) G X y = g.x}. Klar ist, für jedes g G gibt es genau ein y X mit y = g.x und somit ist S = G. Umgekehrt gibt für y G(x), etwa y = g 0.x, genau G x Elemente h G mit h.x = y. Das sind nämlich genau die Elemente h = g 0 g mit g G x. Liegt y nicht im Orbit von x, This material belongs to the Public Domain KoSemNet data base. It can be freely used, distributed and modified, if properly attributed. Details are regulated by the Creative Commons Attribution License, see http://creativecommons.org/licenses/by/3.0. For the KoSemNet project see http://www.lsgm.de/kosemnet. 1

so gibt es kein (g,y) S. Folglich ist S = G = y G(x) G x = G(x) G x. Lemma 2 Unter den Voraussetzungen von Lemma 1 gilt X g = G x. (1) g G x X Beweis: Wir benutzen das doppelte Abzählen für die Relation T = {(g,x) G X g.x = x}. Für ein festes h G ist {(h,x) x X h } gerade die Menge der Paare in T mit erster Koordinate gleich h. Umgekehrt ist für ein festes z X die Menge der Paare in T mit zweiter Koordinate gleich z gerade {(g,z) g G z }. Folglich gilt X h = T = G z. z X h G Lemma 3 (Lemma von Burnside) Für die Anzahl der Orbits X/G der Gruppenwirkung von G auf X gilt X/G = 1 G X g. (2) Beweis: Wir benutzen die Formel (1) und sortieren die Summanden auf der rechten Seite nach gleichen Stabilisatoren; insbesondere haben alle Elemente y G(x) eines Orbits gleich große Stabilisatoren G x. In der Tat, wenn g G x und y = g 0.x, dann ist g.x = x und damit (g 0 g).x = g 0.x, also (g 0 gg0 1 ).(g 0.x) = g 0.x. Durchläuft also g den Stabilisator G x, so durchläuft g 0 G x g0 1 den Stabilisator von y = g 0.x. Diese Mengen sind aber gleich groß, sie haben G x Elemente. Nach Lemma1 ist G x = G / G(x) und weiter: X h = h G A X/G x A G x = A X/G g G A G A = A X/g G = X/G G. Teilt man durch G, so erhält man die Behauptung. Bemerkung: William Burnside schrieb diese Formel um 1900 auf. Mathematikhistoriker jedoch fanden diese Formel auch schon bei Cauchy (1845) und Frobenius (1887). Daher wird diese Formel auch mitunter bezeichnet als die Formel, die nicht von Burnside stammt. 2

2 Anwendungen Beispiel 1 Wir wählen als G die drei Drehungen eines Würfels ABCDEF GH um die Raumdiagonale AG und X sei die Eckenmenge des Würfels. Dann ist X e = E, X D 2π/3 = X D 4π/3 = {A,G}. Folglich ist die Anzahl der Orbits gleich X/G = 1 (8+2+2) = 4. 3 In der Tat sind die vier Orbits gleich {A}, {G}, {B,E,D} und {C,F,H}. Aufgabe 1 (Känguru-Wettbewerb 2006, Klasse 11/13, A26) Auf wie viele Arten lassen sich die sechs Flächen eines Würfels mit sechs verschiedenen Farben färben? Jede Farbe tritt dabei genau einmal auf. Zwei Färbungen heißen gleich, wenn sie durch Drehung ineinander überführt werden können. Lösung: Es sei G = S 4 die Würfelgruppe bestehend aus den 24 Drehungen des Würfels und X die Menge der 6! verschiedenen Färbungen der Seitenflächen. Bei jeder echten Drehung bleibt keine Färbung fixiert, also ist X g = für alle g e. Für das Einselement hingegen ist X e = X. Somit gibt es verschiedene Färbungen. X/G = X G = 6! 4! = 30 Aufgabe 2 Bestimme alle möglichen Färbungen der Würfelecken mit rot und blau, wobei zwei Ecken rot und sechs Ecken blau gefärbt sein sollen. Lösung: Es ist klar, dass es nur drei solche Färbungen geben kann, denn die beiden roten Ecken können entweder benachbart sein, oder sie sind flächendiagonal gegenüberliegend oder raumdiagonal gegenüberliegend. Wir wollen trotzdem das Burnside Lemma anwenden. WiederistG = S 4 diewürfelgruppeundx diemengeder ( 8 2) = 28rot-blau-Färbungender Eckenmenge. Bei jeder ±90 -Drehung bleibt keine Färbung fix. Bei jeder der 9 Drehungen um180 bleibenimmervierfärbungenfixundzwargibtesimmervierpaarevonecken,die gegenseitig auf sich abgebildet werden, immer ein Paar kann man als rotes Paar auswählen. Schließlichgibtesbeidenacht±120 -DrehungenjeweilseinefestbleibendeFärbung,wobei die beiden diagonalen Punkte auf der Drehachse rot gefärbt sind. Folgich erhalten wir als Anzahl der Orbits 1 (28+9 4+8 1) = 3. 24 Aufgabe 3 Bestimme die Anzahl aller möglichen Färbungen der Würfelflächen mit drei Farben. 3

Lösung: Es sei G = S 4 die Würfelgruppe und X die Menge aller 6 3 Färbungen der sechs Würfelflächen mit drei Farben. Wir betrachten die Fixelemente der einzelnen Würfeldrehungen: Drehung g konj. El. einfarbig X g Identität 1 egal 3 6 Drehung um 90 6 Deckel(1), Boden(1), Mantel(4) 3 3 Drehung um 180 um Achsen 3 Deckel(1), Boden(1), M(2), M(2) 3 4 Drehungen um 120 8 Deckel(3), Boden(3) 3 2 Drehungen um 180 6 Deckel(2), Mantel(2), Boden(2) 3 3 Die Anzahl der Färbungen beträgt daher 1 ( 3 6 +6 3 3 +3 3 4 +8 3 2 +6 3 3) = 57. 24 = = Aufgabe 4 (Lochkartenproblem) Aus quadratischen 3 3- Kärtchen sollen durch Ausstanzen von genau zwei Löchern Identitätskarten hergestellt werden. Wie viele unter Drehen und Wenden verschiedene Karten lassen sich herstellen? Lösung: Es ist G = D 4 die Diedergruppe mit D 4 = 8 Elementen. Der Konfigurationsraum X besteht aus den ( 9 2) = 36 möglichen Kombinationen von zwei Löchern auf 9 Feldern. In G gibt es fünf verschiedene Klassen von Elementen: die Identität e, zwei Drehungen d + und d, um 90 bzw. um 90, eine Drehung d 2 um 180, zwei Spiegelungen an achsenparallenen Geraden und zwei Spiegelungen an Diagonalen. Wie immer lässt die Identität alle X = 36 Elemente fix, wogegen die beiden Drehungen d ± gar keine Konfiguration fest lassen, da genau ein Kästchen in sich geht und alle anderen 8 Kästchen erst nach vier Drehungen wieder an ihrem Ort sind. Bei der 180 -Drehung bleiben genau die nebenstehenden vier Muster fest Bei den Diagonal- und Achsenspiegelungen bleiben jeweils 6 Muster fix. Damit ergeben sich nach dem Lemma von Burnside X/G = 1 8 (36+4+4 6) = 64 8 = 8 verschiedene Muster. Dies sind genau die neben stehenden. 4

Aufgabe 5 Wie viele verschiedene Perlenketten lassen sich aus zwei roten, drei blauen und vier grünen Perlen zusammenstellen, wenn a) die Ketten einen Anfang und ein Ende haben (lineare Kette) bzw. b) die Ketten geschlossen sein sollen (zyklisch). Lösung: Der Konfigurationsraum X besteht aus allen 9! 2!3!4! = 9 8 7 6 5 2 3 2 = 63 20 = 1260 Permutationen von 9 Elementen mit Wiederholung. a) Die Symmetriegruppe ist G = 2, denn man kann nur Anfang und Ende der Kette vertauschen das sei g 2. Wir ermitteln die Mutser, die unter g fest bleiben. Da eine ungerade Anzahl von blauen Perlen existieren, muss die mittelste Perle blau sein und die vier ersten Positionen mit zwei grünen und jeweils einer blauen und roten Perle besetzt 4! sein. Dafür gibt es = 12 Möglichkeiten. Nach Frobenius gibt es also 1!1!2! 1 1272 (1260+12) = 2 2 = 636 verschiedene Ketten. b) Bei einer geschlossenen Kette ist die Symmetriegruppe die D 9 mit 18 Elementen 9 Drehungen und 9 Spiegelungen. Da es keine Drehung der Ordnung 2 gibt, kann keine Anordnung der zwei roten Kugeln stabilisiert werden. Bei den 9 Spiegelungen muss in der Mitte (auf der Spielgelungsachse) wieder eine blaue Perle sein und rechts von der Achse wieder zwei grüne, eine blaue und eine rote Perle, was wie in a) 12 Anordnungen liefert. Demnach gibt es 1 9 7 20 (1260+9 12) = +6 = 76 18 2 9 verschiedene Muster für geschlossenen Ketten. Literatur [1] W. Burnside, Theory of Groups of Finite Order, 2 ed., Dover Publications, New York, 1955. [2] R. Tarjan G. Pólya and D. R. Woods, Notes on introductory combinatorics, Progress in Computer Science, no. 4, Birkhäser, Boston, 1983. [3] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937), 145 254. 5

[4] G. Pólya and R. C. Read, Combinatorial enumeration of groups, graphs, and chemical compounds, Springer-Verlag, New York, 1987. Siehe auch http://lsgm.uni-leipzig.de/kosemnet/pdf/graebe-05-2.pdf http://encyclopedia.thefreedictionary.com/cauchy-frobenius%20lemma 6