Friesmuster in der Mathematik

Größe: px
Ab Seite anzeigen:

Download "Friesmuster in der Mathematik"

Transkript

1 Friesmuster in der Mathematik Karin Baur Karl-Franzens-Universität Graz 7. Februar 03 Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

2 Muster I Muster Friese Ein Fries ist ein lineares Stilelement. Schmaler Streifen, oft dekorativ an Bauwerken. Dabei tritt ein Muster/ein Bildelement immer wieder auf, meist horizontal. Muster Fries Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

3 Beispiele Muster Friese Quelle: Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 3 / 6

4 Muster Parkettierungen Muster II Eine Parkettierung (Pflasterung) ist eine Überdeckung der Ebene durch sich wiederholende Teilflächen. Bei periodischen Parkettierenden wiederholen sich die Muster regelmässig, in zwei Richtungen in der Ebene. Zum Beispiel: damit: nicht: Spiegelungen, Verschiebungen, Rotationen, Gleitspiegelungen. 7 verschiedene Arten von periodischen Parkettierungen. lückenlos, ohne Überschneidungen Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 4 / 6

5 Muster Parkettierungen Beispiele (a) (b) (c) Alhambra M.C. Escher Hexagone, Quadrate und Dreiecke. (a) (b) (c) by regular polygons Karin Baur (Karl-Franzens-Universita t Graz) Friesmuster in der Mathematik 7. Februar 03 5 / 6

6 Abbildungen Muster Friesgruppen Die Bewegungen in der Ebene, die ein Fries auf sich selbst abbilden heissen Symmetrien. Sie bilden die Friesgruppen. Immer drin: Verschiebung. Ausserdem: Spiegelungen, Rotationen, Gleitspiegelungen. Man unterscheidet sieben Arten von Symmetrien, abhänging davon, welche Bewegungen ein Fries erhalten. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 6 / 6

7 Symmetrien Muster Friesgruppen Verschiebungen (Pfeil) zusammen mit Rotationen (80 ) - (keine weiteren) horizontaler Achse Gleitspiegelung Rotat., Gleitspieg., vert. Achse vertikaler Spiegelungsachse... allen obigen... Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 7 / 6

8 Muster Friesgruppen Gleitspiegelung Eine Gleitspiegelung ist eine Kombination einer Spiegelung mit einer Verschiebung parallel zur Spiegelungsachse. echt: Verschiebung Nullvektor,unecht:Spiegelung Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 8 / 6

9 Friesmuster Conway-Coxeter Friesmuster Ein (Conway-Coxeter) Friesmuster ist ein unendlicher Streifen in der Ebene, gebildet aus endlich vielen Zeilen von positiven Zahlen, die versetzt untereinander angeordnet sind. Die erste und die letzte Reihe bestehen aus Einsen. Im Zahlenmuster soll zudem die Diamantregel gelten: Für jedes Quadrat a b c d sei ad bc =. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 9 / 6

10 Beispiel Friesmuster Die Ordnung des Friesmusters ist definiert als eins mehr als die Anzahl der Zeilen. Hier also : Ordnung 6. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 0 / 6

11 Friesmuster Eigenschaften Ein Friesmuster ist durch die zweite Zeile eindeutig gegeben (Diamantregel). Conway und Coxeter haben gezeigt: Ein Friesmuster der Ordnung n hat Periode n. Es ist invariant unter einer Gleitspiegelung. Je n aufeinanderfolgende Zahlen a, a,...,a n bestimmen das Friesmuster. Sie werden Quiddity-Zykel genannt. Ein Fundamentalbereich bestimmt es ebenso. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

12 Friesmuster Fundamentalbereich und Quiddity-Zykel (Friesmuster der Ordnung 6). Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

13 Friesmuster Beispiel Ordnung 5: Die Gleitspiegelung Wir nehmen ein Friesmuster mit positiven Zahlen x 0, x, x,... x 0 x x 4 x 6 x x 3 x 5 Nach der Diamantregel gilt: x 0 x =+x, x x 3 =+x, x x 4 =+x 3, x 3 x 5 =+x 4. Damit kann man zeigen, dass x 5 = x 0 und x 6 = x gilt. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 3 / 6

14 n-eck Triangulierungen Wir betrachten (regelmässige) Polygone mit n Ecken, geschreiben P n. Eine Triangulierung von P n ist eine Unterteilung das Vielecks in Dreiecke mit Hilfe von Diagonalen Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 4 / 6

15 Eigenschaften Triangulierungen Jede Triangulierung von P n benötigt n 3 Diagonalen, liefert n Dreiecke. Die Anzahl der verschiedenen Triangulierungen eines n-ecks 3 ist C n,diecatalan-zahlc n = ) n = (n 4)! ( (n 4) (n ) (n )!(n )! Anzahl Ecken C n für n 3 Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 5 / 6

16 Triangulierungen Triangulierungen und Friesmuster Triangulierung Quiddity-Zykel Sei T eine Triangulierung von P n.dieeckpunktevonp n werden durchnummeriert (Gegenuhrzeigersinn,,...,n). Sei a i die Menge der Dreiecke, die an die Ecke i anstossen (i =,...,n). Das gibt n positive Zahlen a,...,a n Z >0. Mindestens zwei Zahlen unter a,...,a n,sindgleicheins 4. Wir schreiben a,...,a n versetzt unter eine Zeile von Einsen. Mit Hilfe der Diamantregel berechnen wir weitere Zeilen. Conway-Coxeter (973): das liefert ein Friesmuster der Ordnung n, d.h. die (n )-te Zeile besteht aus lauter Einsen. Dieses Friesmuster ist eindeutig durch die Triangulierung festgelegt. 4 man sagt, jede Triangulierung habe mindestens zwei Ohren Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 6 / 6

17 Triangulierungen Triangulierungen und Friesmuster Beispiel (a,...,a 6 )=(,, 3,,, 3) Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 7 / 6

18 Triangulierungen Triangulierungen Friesmuster Triangulierungen und Friesmuster Haben Triangulierung von P n Friesmuster der Ordnung n. Drehungen einer Triangulierung verändern das Friesmuster nicht. Umkehrung: Conway und Coxeter haben auch gezeigt, dass jedes Friesmuster der Ordnung n von einer Triangulierung eines n-ecks kommt. Der Quiddity-Zykel ist gerade die Anzahl der Dreiecke an den Eckpunkten von P n. J.H. Conway, H.S.M. Coxeter. Triangulated polygons and frieze patterns,math.gaz.,57:87-94,973. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 8 / 6

19 Triangulierungen Friesmuster und Determinanten Ein Friesmuster der Ordnung n liefert eine n n Matrix: Diese Matrix ist symmetrisch. Ihre Einträge sind nichtnegative ganze Zahlen. Sie hängt vom Friesmuster bzw. von entsprechenden der Triangulierung des n-ecks ab. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 9 / 6

20 Beispiel n =6 Triangulierungen Friesmuster und Determinanten liefert M = Man berechnet: det M = 6. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 0 / 6

21 Triangulierungen Invarianz der Determinante Friesmuster und Determinanten Satz (Broline-Crowe-Isaacs, 974) Sei T eine Triangulierung von P n und M(T ) die Matrix des entsprechenden Friesmusters. Dann gilt: det M(T )= ( ) n Die Matrix ist also unabhänging von der Wahl der Triangulierung! D. Broline, D.W. Crowe, M. Isaacs. The geometry of frieze patterns. Geom. Ded., 3:7-76, 974. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

22 Triangulierungen Beschriftungen einer Triangulierung Beweis für das Resultat von BCI Es sei T eine Triangulierung von P n, i ein Eckpunkt von P n.wir schreiben zur Ecke i eine Null hin. Zu jeder Ecke, die mit i direkt verbunden ist (via Diagonalen, Rand) schreiben wir eine Eins hin. Weiter dann: sind in einem Dreieck zwei Eckpunkte beschriftet, so kriegt der dritte als Label die Summe der beiden Zahlen. Wir schreiben [i, j] fürdas Label, das j unter dem Ausgangspunkt i kriegt. Zum Beispiel: [i, i] =0,[i, i ] = [i, i +]= [3, ] = [3, ] = [3, 4] =, [3, 6] =, [3, 5] = 3 Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 / 6

23 Triangulierungen Beweis für das Resultat von BCI Hilfsresultate Es ist [i, i +]=a i+, die Zahl der Dreiecke an der Ecke i. Die Label erfüllen die Diamantregel: [i, j] [i +, j +]=[i +, j] [i, j +]+(füri j). Damit bilden die Labels genau das Friesmuster der Triangulierung. Lemma Ist i ein Ohr von T und j / {i, i, i +} so gilt: [j, i ] + [j, i +]=[j, i] Begründung Da i ein Ohr ist, ist (i, i, i +)daseinzigedreieckandieser Ecke. Für die Beschriftungen von j aus ist also Definition das Label [j, i] ani gerade die Summe der Beschriftungen an i, i +, d.h. [j, i ] + [j, i +]. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 3 / 6

24 Triangulierungen Beweis (Determinantenresultat) Beweis für das Resultat von BCI Über Induktion (Anzahl der Eckpunkte). 0 Im Fall n = 3 ist die Matrix immer gleich, M = 0, esist 0 det M =und ( ) 3 =. Sei also n > 3 und die Behauptung stimme für Friesmuster der Ordnung n. Die Triangulierung hat mindestens zwei Ohren, sei i ein solcher Eckpunkt von P n. Wir entwickeln die Determinante nach der i-ten Spalte. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 4 / 6

25 Triangulierungen Beweis für das Resultat von BCI Beweis, Fortsetzung Es ist [i, i] =0undesgilt(Spalteni undi +): [j, i ] + [j, i +] = [j, i] j i [i, i ] + [i, i +] = += Wir bilden eine neue Matrix M: vonderi-ten Spalte ziehen wir die (i )-te und die (i + )-te Spalte ab. Die Matrix M ist fast gleich wie M, nur stehen in der i-ten Spalte eine (Zeilei) undnullensonst. M 0 sei die Matrix, die durch Streichen der Zeile i und der Spalte i entsteht. Da i ein Ohr ist, ist M 0 die Matrix der Triangulierung vom Polygon ohne dieses Ohr. Für M 0 gilt (Induktionsvoraussetzung) det M 0 = ( ) n 3. Es ist det M =det M und nach der Spaltenentwicklung gilt det M =( ) i+i+ det M 0 = ( ) n. Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 5 / 6

26 Literatur Triangulierungen Beweis für das Resultat von BCI D. Broline, D.W. Crowe, M. Isaacs. The geometry of frieze patterns. Geom. Ded., 3:7-76, 974. J.H. Conway, H.S.M. Coxeter. Triangulated polygons and frieze patterns, Math. Gaz., 57:87-94, 973. Und zusätzlich Ausführliche Diskussion von Catalanzahlen: R. P. Stanley Enumerative Combinatorics, CambridgeStudiesinAdvanced Mathematics (6), 99 Mehr Details zu verschiedenen Teilen dieses Vortrags: H. Vogel, Die Determinante eine Friesmusters, ZeitschriftWurzel0, erhältlich unter baurk/hvogel-friesmuster.pdf Karin Baur (Karl-Franzens-Universität Graz) Friesmuster in der Mathematik 7. Februar 03 6 / 6

Die Determinante eines Friesmuster

Die Determinante eines Friesmuster Die Determinante eines Friesmuster Die Determinante eines Friesmuster von Hannah Vogel,??? Einleitung Friesmuster (engl. Frieze Pattern ) gab es schon lange bevor sie in der Mathematik diskutiert wurden.

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Symmetrien und Pflasterungen. Alessandra Sarti Universität Mainz

Symmetrien und Pflasterungen. Alessandra Sarti Universität Mainz Symmetrien und Pflasterungen Alessandra Sarti Universität Mainz Symmetrien Schneeflocken und Sonnenblumen haben viele Symmetrien. Die Gesamtheit aller Transformationen, die eine Schneeflocke (oder eine

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Meisterklasse Dresden 2014 Olaf Schimmel

Meisterklasse Dresden 2014 Olaf Schimmel Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik Maurits Cornelis Escher (1898-1972) Kurzbiographie Schon früh an Kunst interessiert Studium der dekorativen Künste Lebensmittelpunkt im Süden Europa Lehrerfortbildung: Geschichte(n) der Mathematik Inspiration

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Escher s Wallpapers. Sophia Lee, Martin Swiontek Brzezinski. 8. April TU Berlin

Escher s Wallpapers. Sophia Lee, Martin Swiontek Brzezinski. 8. April TU Berlin Sophia Lee Martin Swiontek Brzezinski TU Berlin 8. April 2014 Übersicht Einführung 1 Einführung 2 3 Kurzbiographie Maurits Cornelis Escher 17.06.1898 in Leeuwarden 1919: 1-wöchiges Architektur-Studium

Mehr

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen.

Waben-Sudoku. Günter Aumann und Klaus Spitzmüller. Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Waben-Sudoku Günter Aumann und Klaus Spitzmüller Sudoku ist in. Oder ist es schon wieder langweilig? Es gibt Alternativen. Eine Vorüberlegung Reguläre Vierecke und Sechsecke zeichnen sich vor allen anderen

Mehr

Wie misst man Symmetrie?

Wie misst man Symmetrie? Wie misst man Symmetrie? Was ist Symmetrie? Beispiele Bewegungen Friesgruppen Verallgemeinerungen Was ist Symmetrie denn eigentlich? Kann man sie überhaupt messen? Symmetrie = Gleichmaß August Ferdinand

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Invariantentheorie. Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen

Invariantentheorie. Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 1 Wir beginnen mit einigen typischen Beispielen zur Invariantentheorie. Dreieckskongruenzen Beispiel 1.1. Wir betrachten Dreiecke

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Symmetrien und Pflasterungen

Symmetrien und Pflasterungen Symmetrien und Pflasterungen 2 Dies ist die ausformulierte Fassung meines Vortrags Symmetrien und Pflasterungen vom 7. Februar 2007 am Tag der offenen Tür an der Universität Mainz. Symmetrien Jeder von

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n.

Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. 1 Die Determinante Definition 1 Sei π ein Element aus der symmetrischen Gruppe S n der Permutationen aller natürlichen Zahlen von 1 bis n. a) Ein Fehlstand von π ist ein Paar (i, j) mit 1 i < j n und π(i)

Mehr

Geometrische Form des Additionstheorems

Geometrische Form des Additionstheorems Geometrische Form des Additionstheorems Jae Hee Lee 29. Mai 2006 Zusammenfassung Der Additionstheorem lässt sich mithilfe des Abelschen Theorems elegant beweisen. Dieser Beweis und die Isomorphie zwischen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

1 Rechnen mit 2 2 Matrizen

1 Rechnen mit 2 2 Matrizen 1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.

γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x. Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

2. Platonische Körper

2. Platonische Körper 2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter WS 2009/10 Isomorphie Zwei Graphen (V 1, E 1 ) und (V 2, E 2 ) heißen isomorph, wenn es eine bijektive, Kanten erhaltende und Kanten

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Sudoku und andere reguläre Strukturen. Universitätsprofessor Dr. Hans-Dietrich Gronau Institut für Mathematik 28. Oktober 2008

Sudoku und andere reguläre Strukturen. Universitätsprofessor Dr. Hans-Dietrich Gronau Institut für Mathematik 28. Oktober 2008 Sudoku und andere reguläre Strukturen Universitätsprofessor Dr. Hans-Dietrich Gronau Institut für Mathematik 28. Oktober 2008 1 7 8 1 4 8 9 2 5 6 3 8 7 9 6 4 5 2 2 2 5 6 9 3 1 4 7 8 3 9 4 5 8 7 6 1 2 7

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 0/06 Lineare Algebra und analytische Geometrie I Vorlesung... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen Beziehung zwischen Eigenräumen Wir

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Musterlösungen Klausur Geometrie

Musterlösungen Klausur Geometrie Musterlösungen Klausur Geometrie Aufgabe 1 (Total: 8 Punkte). Seien A, B, C die Eckpunkte eines nichtentarteten Dreiecks in der euklidischen Ebene. Seien D, E, F derart gewählt, dass folgende Teilverhältnisse

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber

Symmetrie. Wiederholung in der Geometrie. Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung. Martin Huber Symmetrie Wiederholung in der Geometrie Referat am Kolloquium Wiederholung der Schweiz. Ges. für Symbolforschung Martin Huber Symmetrie Wiederholung in der Geometrie Ablauf 1. Wiederholung in der Mathematik

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt:

7 Determinanten. D ist alternierend g.d.w. für alle i j gilt: 7 Determinanten Im folgenden betrachten wir quadratische Matrizen Wir schreiben dabei eine n n Matrix A (über dem Körper K) primär als Zeilenvektor, dessen Elemente die Spalten von A sind; also A = (a

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

10. Übung zur Linearen Algebra I -

10. Übung zur Linearen Algebra I - . Übung zur Linearen Algebra I - en Kommentare an [email protected] FU Berlin. WS 29-. Aufgabe 37 i Für welche α R besitzt das lineare Gleichungssystem 4 αx + αx 2 = 4x + α + 2x 2 = α genau eine,

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Ecken des Zuordnungsproblems

Ecken des Zuordnungsproblems Total unimodulare Matrizen Ecken des Zuordnungsproblems Definition.6 Ein Zuordnungsproblem mit den Vorzeichenbedingungen 0 apple x ij apple für i, j =,...,n statt x ij 2{0, } heißt relaxiertes Zuordnungproblem.

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

Billard auf polygonförmigen Tischen

Billard auf polygonförmigen Tischen Billard auf polygonförmigen Tischen Myriam Freidinger 1 Der Fagnano Billardstrahl im Dreieck Lemma 1. Sei ABC ein spitzwinkliges Dreieck und P,Q und R die Basispunkte der Höhen von A,B und C, dann beschreibt

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya Determinanten 3. Ordnung 1-E Ma 1 Lubov Vassilevskaya ) ( Determinanten 3. Ordnung a 11 x 1 + a 12 x 2 + a 13 x 3 c 1 a 21 x 1 + a 22 x 2 + a 23 x 3 c 2 a 31 x 1 + a 32 x 2 + a 33 x 3 c 3 ( a11 a12 a13

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Klausur HM I H 2005 HM I : 1

Klausur HM I H 2005 HM I : 1 Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5

1 Goldener Schnitt. und a = m + M. 1, und wird im Allgemeinen mit τ (griechisch: tau) bezeichnet. Das Verhältnis M m hat den Wert 1+ 5 1 Goldener Schnitt Definition und Satz 1.1 (Goldener Schnitt) Sei AB die Strecke zwischen den Punkten A und B. Ein Punkt S von AB teilt AB im Goldenen Schnitt, falls sich die größere Teilstrecke M (Major)

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Triangulierungen Dreiecke als Grundbausteine von Polygonen

Triangulierungen Dreiecke als Grundbausteine von Polygonen Triangulierungen Dreiecke als Grundbausteine von Polygonen Karin Baur ETH Zürich 5. März 20 Übersicht Triangulierungen Positive Matrizen Clusteralgebren Übersicht Vielecke Ein Dreieck ist - für den Beginn

Mehr

Lineare Algebra IIb Vorlesung - Prof. Dr. Daniel Roggenkamp. Klausuren: LAIIb, LAII (Lehramt): Freitag Uhr

Lineare Algebra IIb Vorlesung - Prof. Dr. Daniel Roggenkamp. Klausuren: LAIIb, LAII (Lehramt): Freitag Uhr Lineare Algebra IIb - 1. Vorlesung - Prof. Dr. Daniel Roggenkamp Klausuren: LAIIb, LAII (Lehramt): Freitag 09.0. 14 Uhr Gittervektor, keindann Vielfaches anen Gittervektors ist. sich Wende nun Formel jedes

Mehr

Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock

Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock Symmetrien erzeugen Zerlegungen S. Rosebrock Seite 1 Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock Zusätzliches Material zum Artikel in MU Auf dem Foto sieht man zwei im 45 Grad Winkel zueinander

Mehr

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden

12 Der Abstand eines Punktes von einer Geraden Seite 1 von Der Abstand eines Punktes von einer Geraden 12 Der Abstand eines Punktes von einer Geraden Seite 1 von 5 12 Der Abstand eines Punktes von einer Geraden Die Bestimmung des Abstands eines Punktes von einer Geraden gehört zu den zentralen Problemen

Mehr

Ornamente zeichnen und hyprbolisieren

Ornamente zeichnen und hyprbolisieren Ornamente zeichnen und hyprbolisieren Martin von Gagern TU München in Zusammenarbeit mit Prof. Jürgen Richter-Gebert www.mathe-vital.de u.a. mit Applet zu Sierpinski-Dreieck per IFS... ist nicht Thema

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 11.02.2015 Name: Vorname:

Mehr

von Zahlenfolgen, die bei Gebietsteilungsproblemen

von Zahlenfolgen, die bei Gebietsteilungsproblemen Zahlenfolgen bei Gebietsteilungsproblemen Karin Halupczok Oktober 005 Zusammenfassung Gesucht sind rekursive und explizite Bildungsgesetze von Zahlenfolgen, die bei Gebietsteilungsproblemen auftauchen:

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Parkettierungen lassen sich auf zweierlei Arten klassifizieren:

Parkettierungen lassen sich auf zweierlei Arten klassifizieren: 1 Ein bisschen Theorie 1.1 Definition Ein Parkett- oder Pflasterstein ist eine Figur, welche durch eine endlich lange und geschlossene Linie eingeschlossen ist, die sich weder schneidet noch irgendwo zusammenfällt.

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6 Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse

Mehr

3.4 Algebraische Strukturen

3.4 Algebraische Strukturen 3.4 Algebraische Strukturen 9 3.4 Algebraische Strukturen Man sagt, eine Menge hat eine algebraische Struktur, wenn in ihr eine Operation definiert ist, d.h. eine Verknüpfung von zwei Elementen der Menge,

Mehr