Seminar über mathematische Logik Der Repräsentationssatz

Ähnliche Dokumente
Repräsentierbarkeit arithmetischer Prädikate

Die Ableitungsbedingungen

Einführung in die mathematische Logik

Darstellungstheorie endlicher Gruppen

Einführung in die mathematische Logik

Einführung in die mathematische Logik

Peano-Axiome und Peano-Strukturen

Notengebung. Teilnote Kreuzerlliste: 60% 69% 4; 70% 79% 3; 80% 89% 2; 90% 100% 1. Falls Sie weitere Fragen haben, bitte melden Sie sich bei mir.

Vortrag 8: Einbettungssatz von Jech und Sochor und Konsistenz der Negation von AC. 1 Der Einbettungssatz von Jech und Sochor

Einführung in die mathematische Logik

Einführung in die Logik

Handout zu Gödel: Die Unvollständigkeitssätze

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik

Logik und Beweisbarkeit

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Unvollständigkeit der Arithmetik

Grundlagen der Arithmetik und Zahlentheorie

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen

Hilberts zweites Problem: Die Widerspruchsfreiheit der arithmetischen Axiome

Mathematische Logik. Spracherweiterung. Sara Svaluto-Ferro. 21. März 2012

Mathematische Logik Zermelo-Fränkel Axiome der Mengenlehre

Kongruenz ist Äquivalenzrelation

Der erste Gödelsche Unvollständigkeitssatz

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

Konstruktion reeller Zahlen aus rationalen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Konvergenz, Filter und der Satz von Tychonoff

Klausur zur Vorlesung: Mathematische Logik SS 2011

Konvexe Optimierungsprobleme

Lösung 7: Lineare Abbildungen: Kern, Bild, Rang und Darstellung durch Matrizen

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Tilman Bauer. 4. September 2007

Das starke Banach-Tarski Paradox und Satz von Tarski (Teil I)

Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik

WS 2009/10. Diskrete Strukturen

Mengenlehre und vollständige Induktion

Einführung in die Theoretische Informatik

Prädikatenlogiken. Mathematische Logik. Vorlesung 11. Alexander Bors. 1. & 8. Juni A. Bors Logik

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

Aufbau der Projektiven Geometrie

Logik erster Stufe FO

Grundbegriffe für dreiwertige Logik

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

5 Teilmengen von R und von R n

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Das Lemma von Gauß und Quotientenringe

14. Rekursiv aufzählbare Mengen

Das Transferprinzip und Nichtstandardeinbettungen

Einführung in die Theoretische Informatik

7 Der kleine Satz von Fermat

13 Auswahlaxiom und Zornsches Lemma

Axiomatische Mengenlehre

Seminarvortrag aus Reiner Mathematik Zweierpotenzen als Moduln und Satz von Wilson

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Folgen und Reihen Folgen

Beweis des Satzes von Euler

3.1 Sukzessive Minima und reduzierte Basen: Resultate

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Einführung in die mathematische Logik

1 Zahlentheorie. 1.1 Kongruenzen

Analysis I - Reelle Zahlen

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

15 Grundlagen der Idealtheorie

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

10. Der Äquivalenzsatz

Rekursive und primitiv-rekursive Funktionen

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Übungsblatt 1. Lorenz Leutgeb. 30. März 2015

Topologische Grundbegriffe II. Inhaltsverzeichnis

Weitere Beweistechniken und aussagenlogische Modellierung

Kapitel 1. Grundlegendes

Satz 1.18 (Kompaktheitssatz der Aussagenlogik)

Relativierte Berechnungen und die arithmetische Hierachie

Übungen zur VP Mathematische Logik

1 0, x C X (A). = 1 χ A(x).

Grundlagen der Programmierung

Skriptum Konstruierbare Zahlen. Projekttage Mathematik 2007

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Hilbertpolynom von I, i.z. a HP I.

Von den rationalen zu den reellen Zahlen

3. Vortrag: Arithmetische Relationen und Gödelisierung

Große Mengen und Ultrafilter. 1 Große Mengen

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Hilbert-Kalkül (Einführung)

Analysis für Informatiker

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

SS Juli Übungen zur Vorlesung Logik Blatt 11

D-MATH Algebra I HS 2015 Prof. Richard Pink. Musterlösung 1. Ringe, Polynome, Potenzreihen. x(y z) = x(y + ( z)) = xy + x( z) = xy + ( xz) = xy xz.

Transkript:

Seminar über mathematische Logik Der Repräsentationssatz Dimitri Wyss 16. 5. 2012 Die folgenden Ausführungen sind eine geringfügig veränderte Exposition des Abschnitts 6.4 aus [1]. Das wichtigste Resultat dieses Abschnitts wird folgender Satz sein. Satz 1 (Repräsentationssatz). Jede rekursive Funktion und somit auch jedes rekursive Prädikat ist in PA repräsentierbar. Im Folgenden soll repräsentierbar immer repräsentierbar in PA bedeuten. Unter natürlichen Zahlen verstehen wir die Menge N = {0,1,2,...}. Einige Resultate, die wir für den Beweis von Satz 1 brauchen, wurden bereits im Vortrag über Repräsentierbarkeit arithmetischer Prädikate bewiesen. Wir fassen diese hier noch einmal zusammen: Lemma 2. (a) Es sei P N n+1 repräsentiert durch α( x,y), sowie z / freiα. Dann repräsentieren ( z y)α( x,z) und ( z y)α( x,z) die Prädikate Q und R mit Q( a,b) ( c b)p( a,c) bzw. R( a,b) ( c b)p( a,c). (b) Die Menge aller repräsentierbaren Funktionen ist abgeschlossen unter Oµ. (c) Die Menge aller repräsentierbaren Funktionen ist abgeschlossen unter Oc. Wegen (b) und (c) müssen wir für den Beweis von Satz 1 also nur noch die Repräsentierbarkeit der Anfangsfunktionen und Abgeschlossenheit unter Op nachweisen. Für Letzteres brauchen wir einige Vorbereitungen. 1

Wir werden nun eine repräsentierbare Funktion β F 2 konstruieren mit der Eigenschaft, dass zu jedem n N und jeder Zahlenfolge c 0,...,c n eine Zahl c existiert mit β(c,i) = c i für i = 0,...,n. Die Idee dazu liefert folgender Satz aus der Zahlentheorie: Proposition 3 (Chinesischer Restsatz). Gegeben seien natürliche Zahlen c i < d i für i = 0,...,n und seien d 0,...,d n paarweise teilerfremd. Dann existiert ein a N mit rest(a,d i ) = c i für i = 0,...,n. Beweis. Für n = 0 folgt die Aussage mit a = c 0. Wir schliessen nun induktiv und nehmen an, dass a N existiert mit rest(a.d i ) = c i für alle i < n. Da k = kgv{d i i < n} und d n teilerfremd sind, existieren nach dem Lemma von Bézout x,y N mit xk + 1 = yd n. Multipliziert man beide Seiten mit c n (k 1)+a folgt x k +c n (k 1)+a = y d n mit neuen Werten x,y N. Setze a = (x +c n )k +a = y d n +c n. Dann ist rest(a,d i ) = rest(a,d i ) = c i für alle i < n, aber auch rest(a,d n ) = c n, denn c n < d n. Als nächstes konstruieren wir zu gegebenen c 0,...,c n Zahlen d 0,...,d n, sodass die Voraussetzungen für Proposition 3 erfüllt sind. Seid dazu m = max{n,c 0,...,c n } und b = KgV{i+1 i < m}. Dann gilt Lemma 4. Die Zahlen d i = 1 + (1 + i)b für i = 0,...,n sind paarweise teilerfremd und d i > c i. Beweis. Nach Konstruktion ist sicher b i > c i für i = 0,...,n. Nehme nun an p sei ein Primteiler von d i und d j für i < j. Dann gilt p d j d i = (j i)b. Wegen j i n m gilt auch j i b, also insgesamt p b. Andererseits gilt auch b d i 1 und somit p d i 1, ein Widerspruch. Dies motiviert die Definition einer Funktion α F 3 als α(a,b,i) = rest(a,(1+(1+i)b)), welche repräsentierbar ist, da das dazugehörige Prädikat gegeben ist durch α(a,b,i) = k ( c a)[a = c(1+(1+i)b)+k k < 1+(1+i)b]. Um schliesslich eine Funktion β F 2 zu erhalten, verwenden wir noch die Tatsache, dass es eine repräsentierbare Bijektion zwischen N 2 und N gibt. Dies liefert zum Beispiel die Funktion p(a,b) = a+ 1 2 (a+b)(a+b+1), welche durch folgende Formel repräsentiert wird 2

p(a,b) = c 2c = 2a+(a+b)(a+b+1). Wirbezeichnenmitx 1,x 2 dieumkehrfunktionenvonp,dasheisstp(x 1 k,x 2 k) = k. Die explizite Darstellung von x 1,x 2 ist hier unwichtig, man beachte aber die Ungleichungen x 1 k,x 2 k k. Somit erhalten wir schliesslich Proposition 5 (Die β-funktion). Die Funktion β F 2 definiert als β(c,i) = α(x 1 c,x 2 c,i), ist repräsentierbar und erfüllt die folgende Eigenschaft: Zu jedem n N und jeder Folge von natürlichen Zahlen c 0,...,c n existiert eine Zahl c mit β(c,i) = c i für i = 0,...,n. Beweis. Es gilt β(c,i) = k ( a c)( b c)[p(a,b) = c α(a,b,i) = k], alsoistβ repräsentierbar.sindnunc 0,...,c n gegeben,sowählenwirzunächst b und d 0,...,d n wie in Lemma 4 und anschliessend verwenden wir Proposition 3 um ein passendes a zu erhalten. Dann gilt für c = p(a,b) schliesslich β(c,i) = α(a,b,i) = rest(a,d i ) = c i. Beweis von Satz 1. Für die Anfangsfunktionen 0,S,Ik n haben wir die Formeln v 0 = 0,v 1 = Sv 0 und v n = v k. Wie bereits erwähnt, müssen wir wegen Lemma 2 nur noch zeigen, dass die Menge der repräsentierbaren Funktionen unter Op abgeschlossen ist. Seien also g, h repräsentierbar und f bestimmt durch f( a,0) = g a und f( a,sb) = h( a,b,f( a,b)). Definiere nun das Prädikat P als P( a,b,c) β(c,0) = g a ( v < b)β(c,sv) = h( a,v,β(c,v)). Mit Lemma 2 (a) und (c) folgt, dass P repräsentierbar ist. Wenn wir nun die Definition von f einsetzen lässt sich P auch schreiben als P( a,b,c) β(c,i) = f( a,i) für i = 0,...,b. NunwendenwirProposition5mitc i = f( a,i)anunderhalten a b cp( a,b,c). Nach Lemma 2 (b)ist deshalb f : ( a,b) µcp( a,b,c) repräsentierbar und somit auch β(f ( a,b),b) = f( a,b). 3

Definition 6. Der Gödelterm von φ L ar ist φ = n, wobei n = φ die Gödelzahl von φ ist. Beispielsweise ist v 0 = 0 = v 0 = 0 = 2 22 3 2 5 14. Analog ist auch Φ für einen Beweis Φ definiert, indem man einfach seine entsprechende Gödelzahl als Term in PA auffasst. Als Korollar der Representationssatzes betrachten wir die Prädikate bew T und bwb T aus dem Vortrag über die Gödelisierung von Formeln. Dort wurde gezeigt, dass bew T p.r. ist und daher nach Satz 1 repräsentierbar, sagen wir durch bew(x,y). Definiere weiter bwb(x) = ybew(y,x). Dann gilt Korollar 7. Für φ L ar gilt φ bew(n, φ ) für ein n (daher φ bwb( φ )) und φ bew(n, φ ) für alle n. Beiwes. Per Definition von φ existiert ein Beweis Φ mit den Axiomen aus PA, also bew( Φ,φ). Dann können wir n = Φ wählen. Die Umkehrung folgt durch Kontraposition. Als nächstes wollen wir untersuchen, wann die Umkehrung von Satz 1 gilt. Auch dazu müssen wir zuerst ein wenig ausholen. Die Churchsche Theses besagt, dass die rekursiven Funktionen bereits alle berechenbaren Funktionen ausschöpfen. Dabei stellen wir uns eine Funktion f alsberechenbar vor,fallseseinenalgorithmusgibt, derzujedema Nden Wert f a in endlich vielen Schritten berechnet. Die These ist also keine exakte mathematische Aussage, allerdings liefert sie oft sehr intuitive Beweise. Wir wollen dies an folgendem Satz erläutern, welcher auch in einem späteren Vortrag noch einmal wichtig wird. Satz 8. Jede vollständig axiomatisierbare Theorie T ist rekursiv Wir erklären nun zuerst, wie man dies mit Hilfe der Churchschen These beweisen könnte. Als erstes bemerken wir, dass es eine Aufzählung α 0,α 1,... aller in T beweisbaren Aussagen gibt, da T axiomatisierbar ist (Dies ist eine Interpretation von Satz 6.2.4 aus [1]). Unser Entscheidungsverfahren besteht nun darin, für gegebenes α L 0 die Aussagen α und α im n-ten Schritt mir α n zu vergleichen. Dieses Verfahren terminiert wegen der Vollständigkeit von T. Daher ist T entscheidbar, i.e. χ T ist berechenbar, was mit der Churchschen These gleichbedeutend ist mit rekursiv. Dieses Argument lässt sich auch formalisieren: Beweis. Wegen der Vollständigkeit ist die Funktion f mit f(a) = µb[a L 0 bew(b,a) bew(b, a)] 4

wohldefiniert. Denn bezeichnet P(a, b) das p.r. Prädikat in eckigen Klammern, gilt offenbar a bp(a,b), wobei für a / L 0 bereits P(a,0) zutrifft. Gemäss Oµ ist f also rekursiv. Es genügt nun zu zeigen a T a L 0 bew(fa,a). Sei zuerst a T, dann gilt sicher a L 0. Da T konsistent ist, gibt es überhaupt kein b mit bew(b, a) und daher insbesondere bew(fa,a). Die Rückrichtung ist offensichtlich. Schliesslich kommen wir zur Umkehrung von Satz 1. Satz 9. Jedes repräsentierbare Prädikat P N n ist rekursiv. Sei α( x) eine repräsentierende Formel für P. Da PA axiomatisierbar ist, können wir wieder eine Liste aller beweisbaren Aussagen erstellen. Für gegebenes a können wir dann einfach warten, bis entweder α( a) oder α( a) erscheint. Also ist P entscheidbar. In [1] wird erwähnt, dass man diesen Beweis ähnlich wie in Satz 8 formalisieren kann. Dem Autor ist allerdings nicht klar, wie das genau funktioniert. Schliesslich kommen wir noch einmal auf die Substitution zurück. Im Vortrag über die Gödelisierung von Formeln, wurde die p.r. Funktion (m, i, k) [m] k i definiert, mit der Eigenschaft [ ξ]ṫẋ = (ξ t ) für ξ T L,x Var,t T. x Weiter bezeichne zf a = ȧ die Gödelzahl der Terms a = S a 0. Dann ist a zf a p.r., da zf 0 = 0 und zf Sa = Ṡ zf a. Sei sb x(m,a) = [m] zf ẋ a, sowie sb x F n+1 induktiv über die Länge von x Var n, erklärt durch sb (m) = m und sb xx (m, aa) = sb x (sb x (m, a),a). Dabei seien x 1,...,x m,x paarweise verschieden. Als Verknüpfung von p.r. Funktionen sind alle sb x ebenfalls p.r. Schliesslich definieren wir noch α( a) als die Gödelzahl von α( a). Dann gilt Satz 10. Für beliebiges α( x) L und für alle a N n ist sb x ( α, a) = α( a) Beweis. Weil α( a) durch schrittweise Ausführung einfacher Substitutionen entsteht, müssen wir lediglich sb x ( α,a) = α(a) für alle a N zeigen. Dies gilt wegen sb x ( α,a) = [ α] zf ẋ a = [ α]ȧ ẋ = [α] a x = (α(a)) = α(a). 5

Literatur [1] W.Rautenberg, EinführungindieMathematischeLogik,Vieweg-Teubner, 2008 6