Kurstag 3. Pufferlösungen, Herstellung eines Essigsäure-Acetat-Puffers

Ähnliche Dokumente
Kurstag 3. Pufferlösungen, Herstellung eines Essigsäure-Acetat-Puffers

ph-wert Berechnung für starke Säuren / Basen

Zusammenfassung vom

Protokoll. Basismodul Chemie I, Praktikum: Säure-Base Gleichgewichte

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014

Säure-Base-Titrationen

Elektrolyte. (aus: Goldenberg, SOL)

Puffersysteme. Diese Lerneinheit befasst sich mit den Grundlagen der Puffersysteme: Was ist der Pufferbereich und wovon ist er abhängig?

3.2. Aufgaben zu Säure-Base-Gleichgewichten

3.2. Fragen zu Säure-Base-Gleichgewichten

Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler

Aufgabe 1: Geben Sie die korrespondierenden Basen zu folgenden Verbindungen an: a) H 3 PO 4 b) H 2 PO 4

VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15)

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Säuren- und Basendefinition nach Arrhenius

ph-wert Berechnung für starke Säuren / Basen starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1

Dissoziation, ph-wert und Puffer

(Atommassen: Ca = 40, O = 16, H = 1;

Dr. Kay-Uwe Jagemann - Oberstufengymnasium Eschwege - Januar Versuch: Wirkung eines Essigsäure-Acetat-Puffers Aufbau

Sommersemester 2016 Seminar Stöchiometrie

Arbeitsblatt. Puffer

Einteilung der Maßanalyse

7. Chemische Reaktionen

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9

Säure-Base Titrationen

Wintersemester 2016 Seminar Stöchiometrie

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure.

Wintersemester 2017 Seminar Stöchiometrie

Titration von Aminosäuren, Lösung. 1. Aufnahme der Titrationskurve

Teil 2. Puffersysteme. Puffersysteme. Puffersysteme. MTA-Schule

3. Säure-Base-Beziehungen

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH -

Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Chemische Gleichgewichte, Säuren und

DEFINITIONEN REINES WASSER

Säuren und Basen. Säure-Base- Definition n. Arrhenius

3. Säure-Base-Titration

Martin Raiber Chemie Protokoll Nr Gruppe 2 (Schrankseite) Untersuchung von Glycin

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 2,

Vertiefende Überlegungen zum ph-wert A ph-werte von Säuren und Basen

Gliederung. Puffersysteme. Wofür Puffersysteme? Wofür Puffersysteme? Wofür Puffersysteme? ph-verhältnisse im Körper. Puffersysteme

Konzentrationsbestimmung mit Lösungen

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH)

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Kurstag 2 Maßanalyse 2. Teil

Säure Base Reaktionen

Themen heute: Säuren und Basen, Redoxreaktionen

[H3O+] [A-] [M+] - [Y-] >> [HA] [OH-] [Y - ] = Menge an M + (Base) welche zur Neutralisation der starkesäure gebraucht wurde!

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7

7. Tag: Säuren und Basen

Ungefähre Zusammensetzung des Blutes und des Blutplasmas. Die häufigsten Bestandteile des Blutplasmas (Mittelwerte)

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

b) Berechnen Sie den Verbrauch an Maßlösung und den Massenanteil der Essigsäure.

1 Säuren und Basen. 1.1 Denitionen. 1.2 Protolyse und Autoprotolyse des Wassers

Chemie Protokoll. Versuch 2 6 (SBG) Säure Base Gleichgewichte. Stuttgart, Sommersemester 2012

E3: Potentiometrische Titration

Stoffe oder Teilchen, die Protonen abgeben kånnen, werden als SÄuren bezeichnet (Protonendonatoren).

Wiederholungen. Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers. ph-wert-berechnungen. Titrationskurvenberechnung

Versuch 3: Säure-Base Titrationen Chemieteil, Herbstsemester 2008

Anorganisch-chemisches Praktikum für Human- und Molekularbiologen

Säuren und Basen. 18 UE Präsenz - Selbststudium 1,3 ECTS

C Säure-Base-Reaktionen

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17.

Chemie für Studierende der Biologie I

Praktikum Chemie für Mediziner und Zahnmediziner 21

Grundlagen der Chemie Säuren und Basen (2)

Das chemische Gleichgewicht

Bundesrealgymnasium Imst. Chemie Klasse 7. Säuren und Basen

Säure-Base-Titrationen

Wasser. Flora und Fauna. Wichtigste chemische Verbindung in Lebewesen. Menschen benötigt mindestens 1kg H 2 O pro Tag

Crashkurs Säure-Base

Kapiteltest 1.1. Kapiteltest 1.2

Musterklausur 1 zur Allgemeinen und Anorganischen Chemie

Versuch 6.14 ph-abhängigkeit eines Indikators am Beispiel Thymolblau

Übungsaufgaben zu Ionenreaktionen in wässriger Lösung

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2015/16 vom

SS Thomas Schrader. der Universität Duisburg-Essen. (Teil 7: Säuren und Basen, Elektrolyte)

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen

Biochemisches Grundpraktikum

Gefahrenstoffe. 2 Bechergläser (230 ml), Bürette, Magnetrührer, Trichter, Rührschwein, Pipette, Stativ, Muffe, ph-meter

Chemisches Grundpraktikum für Ingenieure. 2. Praktikumstag. Andreas Rammo

CHEMIE-PRAKTIKUM FÜR MEDIZINER WS 2010/2011

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Der ph-wert ist als der negative dekadische Logarithmus der Wasserstoffionenkonzentration

Übungsblatt zu Säuren und Basen

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2016/17 vom

SÄUREN, BASEN, ph-wert

Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS

Übungsaufgaben pk S / pk B / ph

(2-8): x = c 2 + c2 (3-3) [H + ] = K S

ph-wert ph-wert eine Kenngröße für saure, neutrale oder basische Lösungen

LMPG2 ÜB 13 LÖSUNG Seite 1 von 9

Säure - Base - Theorien

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

Technische Universität Chemnitz Chemisches Grundpraktikum

Lösung Sauerstoff: 1s 2 2s 2 2p 4, Bor: 1s 2 2s 2 2p 1, Chlor: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon: 1s 2 2s 2 2p 6

CHEMIE KAPITEL 4 SÄURE- BASE. Timm Wilke. Georg- August- Universität Göttingen. Wintersemester 2013 / 2014

Allgemeine Chemie I (AC) HS 2011 Übungen Serie 6

Transkript:

Kurstag 3 Pufferlösungen, Herstellung eines Essigsäure-Acetat-Puffers Stichworte zur Vorbereitung Pufferlösungen, Henderson-Hasselbalch, Pufferkapazität, Pufferoptimum, Herstellen eines Puffers, physiologische Puffersysteme Ziel des Versuchstags Kennen lernen der Pufferwirkung von Lösungen, Herstellen von Puffern mit vorgegebenem ph- Wert, Bestimmung der Pufferkapazität

Theorie Puffersysteme Unter einem Puffer versteht man ein wässrige Lösung (enthält in der Regel zwei Komponenten), die bei Zugabe von H + - bzw. OH - -Ionen ihren ph-wert nicht so stark wie ungepufferte Substanzen ändert, sondern diese Ionen sozusagen abfängt (abpuffert), sodass sich der ph-wert nur geringfügig ändert. Pufferlösungen sind Lösungen, die eine schwache Säure und ihre korrespondierende Base (z.b. Essigsäure und Acetat-Ionen) oder eine schwache Base und ihre korrespondierende Säure enthalten. Solche Puffersysteme werden in der Chemie und vor allem in der Biochemie häufig verwendet, um Reaktionen bei einem konstanten ph-wert ablaufen zu lassen. Auch in der lebenden Zelle spielen Puffersysteme eine große Rolle. Da die Enzyme in der Regel nur bei physiologischem ph (z.b. im Blut, in Zellen ph 7,4) optimale Reaktionsgeschwindigkeit aufweisen und da Substrate und Stoffwechselprodukte meist sauren oder basischen Charakter besitzen, muss ein lebender Organismus über ein oder mehrere Puffersysteme verfügen, die den ph konstant halten. Im Folgenden werden die Eigenschaften eines Puffersystems am Acetat-Essigsäure-Puffer erläutert. Wirkungsweise eines Puffersystems Die Fähigkeit einer Pufferlösung, den ph-wert bei Zugabe von H + - bzw. OH - -Ionen in einem gewissen Rahmen konstant zu halten, beruht auf der Tatsache, dass schwache Säuren in wässriger Lösung nur zu geringen Teilen dissoziieren also wenig Protonen erzeugen und schwache Basen dem Wasser nur wenige Protonen entziehen also wenig Hydroxid-Ionen erzeugen. Gibt man zu einer Pufferlösung Protonen in Form einer starken Säure, so werden diese zunächst vollständig von der Pufferbase aufgenommen (Reaktion 1). Die dabei entstandene korrespondierende, schwache Puffersäure dissoziiert (Reaktion 2) ihrerseits nur zu einem geringen Teil (siehe Theorie Kurstag 2), sodass die tatsächliche Anzahl der freien Protonen geringer ist als die zugegebene Menge. Beispiel: Zugabe von HCl zu Acetat/Essigsäure-Puffer (1) CH 3 -COO - + HCl CH 3 -COOH + Cl - (2) CH 3 -COOH + H 2 O CH 3 -COO - + H 3 O + Entsprechend gilt bei Zugabe einer starken Base: Gibt man zu einer Pufferlösung Hydroxid- Ionen, so werden diese zunächst vollständig von der Puffersäure aufgenommen (Reaktion 3). Die dabei entstandene korrespondierende, schwache Pufferbase reagiert (Reaktion 4) nur 2

zu einem geringen Teil mit Wasser, sodass die tatsächliche Anzahl der freien OH - -Teilchen geringer ist als die zugegebene Menge. Beispiel: Zugabe von NaOH zu Acetat/Essigsäure-Puffer (3) CH 3 -COOH + NaOH CH 3 -COO - + H 2 O + Na + (4) CH 3 -COO - + H 2 O CH 3 -COOH + OH - Will man einen Puffer herstellen, so ergeben sich zwei Möglichkeiten: 1. kann man die wässrigen Lösungen von Puffersäure und Pufferbase im gewünschten Verhältnis mischen 2. kann z.b. die Puffersäure vorgelegt und dann mit einer bestimmten Menge von NaOH versetzt werden, wobei eine der NaOH äquivalente Menge an Pufferbase entsteht. (Zur Herstellung eines 0,1M Acetatpuffers von ph 4,7 legt man 0,1M Essigsäure vor und titriert z.b. mit 1 M NaOH bis zu ph 4,7.) Soll die Pufferlösung einen bestimmten ph-wert besitzen, lässt sich das dafür benötigte Verhältnis von Base zu Säure mit Hilfe der Henderson-Hasselbalch-Gleichung (analog zu Kurstag 2) berechnen. Titriert man eine schwache Säure mit einer starken Base, so stellt man automatisch eine Pufferlösung her. Das Verhältnis von Pufferbase zu Pufferbase verändert sich durch die stete Zugabe von starker Base. Wird die Titration bei einem bestimmten ph-wert abgebrochen, hat man eine Pufferlösung mit entsprechendem ph vorliegen. An der Titrationskurve fällt auf, dass der ph-wert nur im ph-bereich um den pk S -Wert der eingesetzten Säure trotz kontinuierlicher Zugabe von starker Base annähernd konstant bleibt. Eine reale Pufferwirkung scheint also nur in diesem Bereich zu bestehen. Pufferoptimum Unter Pufferoptimum versteht man den ph-bereich eines Puffersystems, bei dem sich der ph-wert bei Zugabe von OH - - bzw. H + -Ionen am wenigsten verändert. Dieser ph-wert liegt am pk S -Wert der Puffersäure, weil dort laut Henderson-Hasselbalch Pufferbase und Pufferbase in gleichen Mengen vorliegen, das Verhältnis also 1:1 beträgt: ph = pk + lg = pk + lg = pk - CH3COO 1 S S S [ CH3COOH] 1 nicht dissoziiert An diesem Punkt liegen also gleich große Mengen von Pufferbase und säure vor, sodass sowohl H + - als auch OH - -Teilchen abgefangen werden können. Entfernt man sich mit dem ph-wert der Pufferlösung von dem pk S -Wert der Puffersäure, so - CH3COO wird das Verhältnis [ CH COOH] 3 nicht dissoziiert 1. 3

- CH3COO Ist der ph kleiner als der pk S, gilt: [ CH COOH] 3 nicht dissoziiert < 1, da mehr Puffersäure in der Lösung vorliegt. Folglich kann der Puffer zwar besser zugegebene OH - -Teilchen abfangen, aber weniger H +. - CH3COO Ist der ph größer als der pk S, gilt: [ CH COOH] 3 nicht dissoziiert > 1, da mehr Pufferbase in der Lösung vorliegt. Folglich kann der Puffer besser zugegebene H + -Teilchen abfangen, aber weniger OH -. Soll der Puffer effektiv sowohl gegen H + - als auch OH - -Teilchen puffern, gilt als Faustregel, dass sich der ph-wert der Pufferlösung um nicht mehr als ± 1 ph-einheit vom pks der Puffersäure unterscheiden sollte. Pufferkapazität Unter der Pufferkapazität eines Puffersystems versteht man die Menge an OH - - bzw. H + -Ionen in mol, die ein Puffersystem mit bestimmten ph-wert verkraftet, ohne dass sich der ph-wert merklich ändert. Da dies nicht ohne weiteres in Zahlen zu fassen ist, führt man eine so genannte theoretische Pufferkapazität ein: - Theoretische Pufferkapazität gegen Säuren entspricht der Stoffmenge an Base (Acetat- Ionen), die im Puffersystem vorhanden sind. - Theoretische Pufferkapazität gegen OH - -Ionen entspricht der Stoffmenge an schwacher Säure (Essigsäure) im Puffersystem. Beispiel Vorgegeben sind 100ml 0,1M Essigsäure entsprechend 10mmol Essigsäure. Neutralisiert man diese 100ml 0,1M Essigsäure zu 10% mit Natronlauge, erhält man einen Acetatpuffer von ph 3,79. Dieser Puffer enthält noch 90% = 9mmol nicht umgesetzte Essigsäure und bereits 10% = 1mmol Acetationen. Die theoretische Pufferkapazität dieses Acetatpuffers von ph 3,79 gegen H + -Ionen beträgt daher entsprechend der Menge an Acetationen 1 mmol, gegen OH - -Ionen entsprechend der Menge an Essigsäure 9 mmol. Neutralisiert man jetzt mit Natronlauge weiter bis zu 50% Neutralisation, so erhält man einen Acetatpuffer von ph 4,74. Dieser Puffer enthält jetzt je 50% = 5 mmol Acetationen und nicht umgesetzte Essigsäure. Die theoretische Pufferkapazität gegen H + -Ionen bzw. OH - -Ionen ist daher entsprechend der Molmenge an Acetationen bzw. Essigsäure 5 mmol. Neutralisiert man nun mit Natronlauge weiter bis zu 90% Neutralisation, erhält man einen Acetatpuffer von ph 5,69. Dieser Puffer enthält jetzt 90% = 9mmol und nur noch 10% = 1 mmol nicht umgesetzte Essigsäure. Die theoretische Pufferkapazität gegen H + -Ionen ist 4

daher entsprechend der Menge an Acetationen 9 mmol, gegen OH - -Ionen entsprechend der Menge an Essigsäure 1 mmol. Verdünnung eines Puffers Wird ein Puffer mit Wasser verdünnt, so ändert sich in erster Näherung die Säure- und Basenkonzentration im gleichen Verhältnis. Da nach der Henderson-Hasselbalch-Gleichung der ph-wert des Puffersystems von Verhältnis Base zu Säure abhängt, bleibt der ph-wert eines Puffers beim Verdünnen mit Wasser in erster Näherung konstant. Es ändert sich lediglich die Pufferkapazität, so hat z.b. 1 Liter 1M Puffer hat eine höhere Pufferkapazität als 1 Liter 0,1M Puffer. Geringfügige Änderungen können sich daraus ergeben, dass der Dissoziationsgrad einer schwachen Säure mit zunehmender Verdünnung zunimmt. Puffer in biologischen Systemen Der ph-wert des Blutplasmas und der Extrazellulärflüssigkeit beträgt 7,4. Dieser ph-wert wird unter Normalbedingungen bis auf weniger als ± 0,1 ph genau aufrecht erhalten und zwar durch Puffersysteme, im Blutplasma und der Extrazellulärflüssigkeit hauptsächlich durch das Hydrogencarbonat, Proteine und Phosphat, in den Erythrocyten vorwiegend durch das Hämoglobin. Das wichtigste davon ist das Hydrogencarbonat/Kohlensäure- Puffersystem. Kohlensäure ist eine zweiprotonige, schwache Säure, die sich durch das Lösen von CO 2 in H 2 O bildet: CO 2 + H 2 O H 2 CO 3 Sie dissoziiert im ersten Schritt mit Wasser zu Hydrogencarbonat: H 2 CO 3 + H 2 O HCO - 3 + H 3 O + Der pk-wert für diese Dissoziation liegt wenn man die gesamte Reaktion vom CO 2 zum Hydrogencarbonat berücksichtigt für 37 C bei 6,1. Daraus errechnet sich für das Verhältnis von HCO - 3 zu H 2 CO 3 für einen ph-wert von 7,4 nach der Henderson-Hasselbalch-Gleichung ein Wert von 20:1. Das Puffersystem wirkt also bevorzugt gegen H 3 O + -Ionen und hat eine schlechte Kapazität gegenüber OH - -Ionen. Die Besonderheit des Bicarbonat-CO 2 -Puffersystems liegt darin, dass die Puffersäure über CO 2 mit der Umgebung ausgetauscht werden kann. Fallen im Stoffwechsel vermehrt H 3 O + - Ionen an, bewirkt dies eine vermehrte Bildung von CO 2, dass dann durch verstärkte Atmung an die Umgebung abgegeben wird. Fällt mehr OH - an, so muss damit das Verhältnis von Bicarbonat und CO 2 konstant bleibt mehr CO 2 im Blut verbleiben, die Atmung wird also verlangsamt. 5

Allein durch den Austausch von CO 2 mit der Umgebung also die Atmung ist die Konstanz des Blut-pH-Wertes auch bei ständiger Belastung des Puffersystems gewährleistet. Ein offenes Puffersystem hat also im Vergleich zu einem geschlossenen Puffersystem eine größere bzw. unendlich große Pufferkapazität. Merke: - Entspricht der ph-wert eines Puffersystems dem pk-wert der entsprechenden Säure, ist die Pufferkapazität gegen H + - und OH - -Ionen gleich groß. Außerdem befindet man sich hier am Pufferoptimum. - Bei der Auswahl eines Puffersystems sollte man sich immer eine schwache Säure auswählen, deren pk-wert möglichst nahe am gewünschten ph-wert liegt. - Ist das Verhältnis von Pufferbase zu Puffersäure 1, ist die Pufferkapazität entweder gegen Säure oder Base erhöht. - Die theoretische Pufferkapazität kann nie voll ausgeschöpft werden, vgl. Titrationskurve, folglich sollte die Pufferkonzentration der Belastung entsprechend ausgewählt werden. Vorfragen 1. Warum ist es nicht möglich, aus einer starken Säure und einer starken Base ein Puffersystem herzustellen? 2. Erklären Sie, warum die Pufferkapazität im geschlossenen Puffersystem begrenzt ist. 3. Welche physiologischen Puffersysteme kennen Sie? Beschreiben Sie eines davon genauer. Übungsaufgaben 1. In welchem Verhältnis muss man 1M Lösungen von Essigsäure und Natriumacetat mischen, um einen Puffer von ph 4, 4,7 bzw. 6 zu erhalten? 2. Mit wie viel Natriumacetat*3 H 2 O (MG 136) muss man 50ml 0,2M Essigsäure versetzen, um einen ph-wert von 5,3 zu erhalten? 6

Durchführung 1. Aufgabe Demonstration der Pufferwirkung eines Acetatpuffers Man füllt in ein Reagenzglas 10ml Wasser und gibt 2 Tropfen Methylorangelösung zu. In ein zweites Reagenzglas füllt man 10ml 2M Natriumacetatlösung, 1ml 2M Essigsäure und ebenfalls zwei Tropfen Methylorangelösung. Beide Lösungen sollten jetzt die gleiche Farbe haben. Nun gibt man in beide Reagenzgläser tropfenweise 2M HCl, wobei die Lösung nach jeder Zugabe geschüttelt wird. Was beobachten Sie und wie erklären Sie die Beobachtungen? 2. Aufgabe Demonstration der Pufferwirkung eines NH 3 /NH + 4 -Puffers Man füllt wieder in ein Reagenzglas 10ml Wasser und einige Tropfen Thymolphthaleinlösung. In ein zweites Reagenzglas füllt man 10ml 2M Ammoniumchloridlösung, 1ml 2M Ammoniak und ebenfalls einige Tropfen Thymolphthaleinlösung. Beide Lösungen sollten wieder die gleiche Farbe haben. Was passiert bei tropfenweiser Zugabe von 2M NaOH? Begründen Sie die Unterschiede. Warum wird ein anderer Indikator als bei Versuch 1 verwendet? 3. Aufgabe Herstellung eines Essigsäure-Acetat-Puffers mit vorgegebenem ph-wert (Gruppenversuch) Jeder Arbeitsgruppe wird vom Assistenten der ph-wert einer herzustellenden Pufferlösung angegeben. Liegt dieser über ph 5, geht man von 10ml 1M Essigsäure aus, liegt er unter ph 5, geht man von 25ml 1M Essigsäure aus. Die Säuremenge wird in einen 50ml Messzylinder pipettiert. Anschließend berechnet man nach der Henderson-Hasselbalch-Gleichung die zur Herstellung von 50ml Pufferlösung benötigte Menge an Natriumacetat (pk = 4,74, MG (NaCH 3 COO 3H 2 O) = 136), wiegt diese Menge ab, gibt sie in den Messzylinder, füllt auf 50ml auf, rührt mit dem Glasstab gut durch und kontrolliert den ph-wert am ph-meter. Welcher ph-wert wurde tatsächlich erreicht, wie erklären Sie sich Abweichungen? 4. Aufgabe Bestimmung der Pufferkapazität der hergestellten Pufferlösung gegen Säuren und Basen Man pipettiert jeweils 10ml der hergestellten Pufferlösung in 2 Erlenmeyer, versetzt eine der Lösungen mit einigen Tropfen Phenolphthaleinlösung und titriert mit 0,1M NaOH bis zum Farbumschlag von farblos nach rot. Der Verbrauch wird mit der Essigsäuremenge 7

verglichen, die in den 10ml Pufferlösung enthalten war. Die Lösung im zweiten Erlenmeyer versetzt man mit einigen Tropfen Methylorange und gibt mit der Messpipette tropfenweise HCl dazu. Was beobachtet man? Warum erfolgt der Umschlag nicht genauso scharf wie beim Phenolphthalein? 5.Aufgabe: (Optional, erfordert kräftige Lungen und Durchhaltevermögen!) Vergleich von geschlossenem und offenem Puffersystem In einem Weithals-Erlenmeyerkolben stellt man 50 ml einer Lösung her, die 150 mm Natriumchlorid und 24.5 mm Natriumhydrogencarbonat enthält. Wieviel Feststoff muss jeweils eingewogen werden? g NaCl; g NaHCO 3 Mit einem ph-meter wird der ph-wert der Lösung gemessen. Wie erklären Sie sich den Wert? Danach wird mit einem Glasröhrchen konstant eigene Atemluft eingeblasen. Dabei ist darauf zu achten, dass nicht zu viel eingeatmet wird und die Atemluft erst nach halber Ausatmungszeit eingeblasen wird. Aufpassen, dass das Glasröhrchen die Elektrode nicht berührt. Nach jeder Minute wird der ph-wert der Lösung gemessen. Was beobachten Sie. Nach ca. 5-6 Minuten wird der ph-wert aufgenommen und dann ohne Begasung unter vorsichtigem Schwenken des Erlenmeyerkolbens 0.1M Milchsäure (Formel?) zugetropft, bis der ph-wert der Lösung sich auf ca. 6.5 (ca. 3ml) eingestellt hat. Anschließend wird erneut 5 Minuten lang mit Atemluft begast undjede Minute der ph gemessen. Was beobachten Sie? Vergleichen Sie sie die Pufferkapazität des geschlossenen Systems (direkt nach Zugabe der Säure mit der des offenen Systems (nach Einblasen!). Was bedeutet das für den Organismus? min O min 1 min 2 min 3 min ph-wert vor Milchsäure ph-wert nach Milchsäure Schaubild anfertigen. Entsorgung Die verwendeten Lösungen sind in den verwendeten Mengen nicht umweltbelastend und können dem Abwasser beigegeben werden. 8