The purpose of computing is insight, not numbers. Richard Hamming ( )

Größe: px
Ab Seite anzeigen:

Download "The purpose of computing is insight, not numbers. Richard Hamming (1915-1998)"

Transkript

1 + Visual Analytics The purpose of computing is insight, not numbers. Richard Hamming ( )

2 + Aufbau n Einführung n Historie n Definition n Prozess n Verwandte Gebiete n Praktische Beispiele n IN-SPIRE n Finanzwesen n SAS n Fazit und Ausblick

3 + Einführung Historie n Terrorismusangst als Auslöser n US Department of Homeland Security (DHS) n Pacific Northwest National Laboratory (PNNL) n National Visualization and Analytics Center (NVAC) n Ergebnis 2008: Illuminating the Path - The Research and Development Agenda for Visual Analytics

4 + Einführung Historie n Junges Forschungsgebiet n Interdisziplinäres Forschungsgebiet n Umtriebiges Forschungsgebiet n Erste Anwendungen

5 + Einführung Definition Illuminating the Path The science of analytical reasoning facilitated by interactive visual interfaces. Quelle: Thomas, James J. & Cook, Kristin A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE CS Press, 2005 Mastering the information Age Visual Analytics combines automated analysis technique with interactive visualzations for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Quelle: Keim, Daniel; Kohlhammer, Jörn; Ellis, Geoffrey; Mansmann, Florian: Mastering the information age solving problems with visual analytics. Eurographics Association, 2010

6 + Einführung Prozess n Daten n Modelle n Visualisation n Paradigma: analyse first show the important zoom, filter and analyse details on demand

7 + Einführung Verwandte Gebiete n Data Mining n Informations-/Datenvisualisierung Quelle Definition Data Mining: ITWissen Das große Online-Lexikon für Informationstechnologie: Data Mining. URL:

8 + Praktische Beispiele IN-SPIRE n Software von PNNL n Verschiedenartige Daten n In Relation n Manipulierbar durch Anwender n Video

9 + Praktische Beispiele Finanzwesen n Risikoportfolio

10 + Praktische Beispiele SAS n Software-Unternehmen n Größter Anbieter von Business-Analytics n SAS = Statistical Analysis Systems n Video

11 + Fazit und Ausblick Fazit n Visual Analytics ist: n Viele Daten n Visuell dargestellt n Mehrere Ebenen auf einen Blick n Interaktiv/Manipulierbar

12 + Fazit und Ausblick Ausblick n Visual Analytics wird den Alltag erleichtern n Visual Analytics wird Einzug in die Medien halten

13 + Quellen n Bilder n Grafik Seite 4: Quelle: title=datei:visualanalyticsoverview.png&filetimestamp= & n Grafik Seite 6: Datei:VisualAnalyticsProcess.png n Grafik Seite 9: Quelle Bild: n Videos n Video Seite 8: PNNLgov: In-Spire Visual Document Analysis. YouTube-Video, unter: (abgerufen am ) n Video Seite 10: SAS Software: SAS Visual Analytics Software Demo. YouTube- Video, unter: (abgerufen am )

14 + Quellen n Referenzen n Thomas, James J. & Cook, Kristin A.: Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE CS Press, 2005 n Keim, Daniel; Kohlhammer, Jörn; Ellis, Geoffrey; Mansmann, Florian: Mastering the information age solving problems with visual analytics. Eurographics Association, 2010 n PNNL: FAQ. Unter: (abgerufen am ) n Hanrahan, Keim, Shneiderman, Card: The State of Visual Analytics: Views on what visual analytics is and where it is going. IEEE Symposium on Visual Analytics Science and Technology (VAST), 2010 n Kraus: Einführung in die Visual Analytics und Anwendung von Visual Analytics- Techniken im Wirtschafts- und Finanzbereich. Seminarausarbeitung Visual Analytics, TU Kaiserslautern, WS 2005/06 n SAS: Visual Analytics. Unter: BA_FS_Visual_Analytics.pdf (abgerufen am )

Seminar: Visual Analytics von sozialen Medien. Steffen Koch, Robert Krüger, Dennis Thom, Florian Haag, Thomas Ertl

Seminar: Visual Analytics von sozialen Medien. Steffen Koch, Robert Krüger, Dennis Thom, Florian Haag, Thomas Ertl Seminar: Visual Analytics von sozialen Medien Steffen Koch, Robert Krüger, Dennis Thom, Florian Haag, Thomas Ertl Organisatorisches Es besteht Anwesenheitspflicht bei allen Vorträgen Aktive Teilnahme (Fragen,

Mehr

Visual Analytics. Seminar. [Guo, 2006] [Wong, 2006] [Keim, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006]

Visual Analytics. Seminar. [Guo, 2006] [Wong, 2006] [Keim, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006] Seminar Visual Analytics [Guo, 2006] [Keim, 2006] [Wong, 2006] [Proulx, 2006] [Chang, 2007] [Kosara, 2006] Visual Analytics - Definitions Visual analytics is the science of analytical reasoning facilitated

Mehr

Sehen und Verstehen: Bekanntes belegen Unbekanntes entdecken

Sehen und Verstehen: Bekanntes belegen Unbekanntes entdecken Sehen und Verstehen: Bekanntes belegen Unbekanntes entdecken Autor: Alexander Schratt, Department für Information und Knowledge Engineering, Donau- Universität Krems Womit beschäftigt sich Visual Analytics?

Mehr

Ausarbeitung zur Ringvorlesung Next Media

Ausarbeitung zur Ringvorlesung Next Media Ausarbeitung zur Ringvorlesung Next Media Carolyn Moyé Visual Analytics Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science

Mehr

Management Information System SuperX status quo and perspectives

Management Information System SuperX status quo and perspectives Management Information System SuperX status quo and perspectives 1 Agenda 1. Business Intelligence: Basics 2. SuperX: Data Warehouse for Universities 3. Joolap: OLAP for Universities 4. Cooperative reporting

Mehr

Effektive Analyse großer Datenmengen im Public Sector

Effektive Analyse großer Datenmengen im Public Sector Effektive Analyse großer Datenmengen im Public Sector Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:

Mehr

Interaktive Visualisierung und Visual Analytics

Interaktive Visualisierung und Visual Analytics Interaktive Visualisierung und Visual Analytics Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax: +49 6151

Mehr

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS

DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS DATA ANALYSIS AND REPRESENTATION FOR SOFTWARE SYSTEMS Master Seminar Empirical Software Engineering Anuradha Ganapathi Rathnachalam Institut für Informatik Software & Systems Engineering Agenda Introduction

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Wenn das Netzwerk mitdenkt

Wenn das Netzwerk mitdenkt Peter Wippermann, Gründer Trendbüro Professor für Kommunikationsdesign an der Folkwang Universität, Essen Wenn das Netzwerk mitdenkt Die Zukunft der personalisierten Dienste 9. Europäischer Trendtag Gottlieb

Mehr

Big Data Das neue Versprechen der Allwissenheit

Big Data Das neue Versprechen der Allwissenheit Big Data Das neue Versprechen der Allwissenheit Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der

Mehr

Jeffrey Bohn For Your Eyes Only PPI Roadshow 2015

Jeffrey Bohn For Your Eyes Only PPI Roadshow 2015 Let s Get Visual! Komplexe Diagramme mit IBM RAVE Jeffrey Bohn For Your Eyes Only PPI Roadshow 2015 Agenda Der Wert von Datenvisualisierungen RAVE Was ist RAVE? Vorteile von RAVE für IBM Cognos IBM RAVE

Mehr

Visual Business Analytics Effektiver Zugang zu Daten und Informationen

Visual Business Analytics Effektiver Zugang zu Daten und Informationen Visual Business Analytics Effektiver Zugang zu Daten und Informationen Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151

Mehr

Background for Hybrid Processing

Background for Hybrid Processing Background for Hybrid Processing Hans Uszkoreit Foundations of LST WS 04/05 Scope Classical Areas of Computational Linguistics: computational morphology, computational syntax computational semantics computational

Mehr

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information

Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Sprachtechnologie in der Wissenschaft: Digital-Turn in evidenzbasierter Bildungsforschung und -information Iryna Gurevych Sprachtechnologie-Feuerwerk: Aktuelle Anwendungsbeispiele und Zukunftsvisionen

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Gegenwart und Zukunft

Gegenwart und Zukunft Gegenwart und Zukunft von Big Data Dieter Kranzlmüller Munich Network Management Team Ludwig Maximilians Universität München (LMU) & Leibniz Rechenzentrum (LRZ) der Bayerischen Akademie der Wissenschaften

Mehr

BIG DATA Impulse für ein neues Denken!

BIG DATA Impulse für ein neues Denken! BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

CAViT - Kurzvorstellung

CAViT - Kurzvorstellung CAViT - Kurzvorstellung Auswertung von Versuchs- und Simulationsdaten Martin Liebscher, März 2015 Copyright SCALE GmbH; Disclosure to third parties only in consultation with SCALE Einordnung / Motivation

Mehr

Faktenbasiert entscheiden auf Knopfdruck: Mythos oder Realität?

Faktenbasiert entscheiden auf Knopfdruck: Mythos oder Realität? Faktenbasiert entscheiden auf Knopfdruck: Mythos oder Realität? CommonSense Dr. Andreas Becks Senior Business Architect CoE Information Management & Analytics DACH SAS Institute Copyr i g ht 2012, SAS

Mehr

SAS TEXT ANALYTICS EVENT

SAS TEXT ANALYTICS EVENT SAS TEXT ANALYTICS EVENT DIENSTAG, 21. APRIL 2015 AGENDA Zeit Inhalt 16:00-16:30 Registrierung & Willkommenskaffee 16:30-16:45 16:45-17:15 17:15-17:45 Begrüssung und Einleitung ins Thema Text Analytics

Mehr

Visual Analytics Interaktive Visualisierung sehr großer Datenmengen

Visual Analytics Interaktive Visualisierung sehr großer Datenmengen Visual Analytics Interaktive Visualisierung sehr großer Datenmengen Seminar im SS 2014 Dr. Tatiana von Landesberger Dr. Sebastian Bremm Technische Universität Darmstadt Fachgebiet Graphisch-Interaktive

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Spezialisierungskatalog

Spezialisierungskatalog Spezialisierungskatalog Inhaltsverzeichnis: 1. Friedrich Schiller Universität 2. TU Ilmenau 3. FH Erfurt 4. FH Jena 5. FH Nordhausen 6. FH Schmalkalden 7. BA Gera 8. BA Eisenach 1. Friedrich-Schiller-Universität

Mehr

Visual Business Analytics Visueller Zugang zu Big Data

Visual Business Analytics Visueller Zugang zu Big Data Visual Business Analytics Visueller Zugang zu Big Data Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben

Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Ist das Big Data oder kann das weg? Outsourcing ja, aber geistiges Eigentum muss im Unternehmen bleiben Jürgen Boiselle, Managing Partner 16. März 2015 Agenda Guten Tag, mein Name ist Teradata Wozu Analytics

Mehr

Jakob Jünger, M.A. Till Keyling, M.A. Facepager. Ein Programm zur automatisierten Datenerhebung im Netz

Jakob Jünger, M.A. Till Keyling, M.A. Facepager. Ein Programm zur automatisierten Datenerhebung im Netz Jakob Jünger, M.A. Till Keyling, M.A. Ein Programm zur automatisierten Datenerhebung im Netz Agenda 1. Grundlagen der automatisierten Datenerhebung 2. Überblick über den 3. Fallstricke automatisierter

Mehr

DIE ZUKUNFT WARTET NICHT. ANALYSIERE SIE.

DIE ZUKUNFT WARTET NICHT. ANALYSIERE SIE. INFORMATION SCIENCE & BIG DATA ANALYTICS * MASTER OF SCIENCE (MSc ) FLORIAN KALCHER, NDU Student DIE ZUKUNFT WARTET NICHT. ANALYSIERE SIE. *in Akkreditierung DAS DATENUNIVERSUM MEISTERN In der digitalen

Mehr

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

Effective Stakeholder Management at the Technische Universität München Bologna, September, 2010

Effective Stakeholder Management at the Technische Universität München Bologna, September, 2010 Effective Stakeholder Management at the Bologna, September, 2010 Science, Technology, and the Media Growing public awareness for the last 10 years New print and web journals Large number of new TV shows

Mehr

Seminar (S2) Interaktive Visualisierung sehr großer Datenmengen Sommersemester 12

Seminar (S2) Interaktive Visualisierung sehr großer Datenmengen Sommersemester 12 Seminar (S2) Interaktive Visualisierung sehr großer Datenmengen Sommersemester 12 Prof. Dr. Dieter Fellner, Dr. Jörn Kohlhammer, Dr. Tatiana von Landesberger Jürgen Bernhard, Sebastian Bremm, James Davey,

Mehr

Interaktionen in der Office-Welt mit.net

Interaktionen in der Office-Welt mit.net Interaktionen in der Office-Welt mit.net Interaktionen in der Office-Welt mit.net Ihr Referent Lars Keller Gedanken zu MS Office Frage: Habe ich schon einmal über die tägliche Arbeit mit MS Office nachgedacht?

Mehr

HP Big Data Anwendungsfälle

HP Big Data Anwendungsfälle HP Big Data Anwendungsfälle Bernd Mussmann, Strategist & Senior Principal HP Analytics & Data Management Services Agenda HP Day @TDWI 1 09:00-10:15 - BI Modernization: BI meets unstructured data 2 10.45-12.00

Mehr

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. Fachbereich: Die richtigen Fragen SAS BIG DATA

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

IT-gestützte Unternehmenskommunikation am Beispiel der Nachhaltigkeitsberichterstattung

IT-gestützte Unternehmenskommunikation am Beispiel der Nachhaltigkeitsberichterstattung IT-gestützte Unternehmenskommunikation am Beispiel der Nachhaltigkeitsberichterstattung Carl von Ossietzky University Oldenburg School of Computing Science, Business Administration, Economics and Law Department

Mehr

A central repository for gridded data in the MeteoSwiss Data Warehouse

A central repository for gridded data in the MeteoSwiss Data Warehouse A central repository for gridded data in the MeteoSwiss Data Warehouse, Zürich M2: Data Rescue management, quality and homogenization September 16th, 2010 Data Coordination, MeteoSwiss 1 Agenda Short introduction

Mehr

Medical Image Processing MediGRID. GRID-Computing für Medizin und Lebenswissenschaften

Medical Image Processing MediGRID. GRID-Computing für Medizin und Lebenswissenschaften Medical Image Processing in Medical Image Processing Image Processing is of high importantance for medical research, diagnosis and therapy High storage capacity Volume data, high resolution images, screening

Mehr

CA - SaaS Lösungen. Vorteile überwiegen. Peter Säckel. 29. September 2009

CA - SaaS Lösungen. Vorteile überwiegen. Peter Säckel. 29. September 2009 CA - SaaS Lösungen Vorteile überwiegen Peter Säckel 29. September 2009 Agenda > Marktzahlen > Die CA SaaS Historie > CA SaaS Lösungen > Technologie Data Center > Vorteile SaaS Modell > SaaS im Detail >

Mehr

Software development with continuous integration

Software development with continuous integration Software development with continuous integration (FESG/MPIfR) ettl@fs.wettzell.de (FESG) neidhardt@fs.wettzell.de 1 A critical view on scientific software Tendency to become complex and unstructured Highly

Mehr

Eliciting Requirements for a Company-wide Data Leakage Prevention System

Eliciting Requirements for a Company-wide Data Leakage Prevention System Eliciting Requirements for a Company-wide Data Leakage Prevention System Stefan Gärtner, Svenja Schulz, and Kurt Schneider Software Engineering Group, Leibniz Universität Hannover, Germany Steffen Förster

Mehr

Social Monitoring. HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014

Social Monitoring. HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014 HAW Hamburg Hochschule für Angewandte Wissenschaften University of Applied Sciences Master Informatik - Anwendungen 1 WS 2013/2014 Abdul-Wahed Haiderzadah abdul-wahed.haiderzadah@haw-hamburg.de Betreuer:

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Big und Smart Data für Hochschulforschung und Hochschulmanagement

Big und Smart Data für Hochschulforschung und Hochschulmanagement Big und Smart Data für Hochschulforschung und Hochschulmanagement Möglichkeiten und Grenzen Struktur des Vortrags 1. Thema 2. Educational Data Mining für Hochschulmanagement 3. Educational Data Mining

Mehr

Swiss Networking Day 2014

Swiss Networking Day 2014 Swiss Networking Day 2014 Industrialization of IT: Optimal OPEX Reduction Marco Bollhalder, CEO ITRIS Enterprise AG Hochschule Luzern 8. Mai 2014 Agenda Industrialization of IT: OPEX Reduction Was bedeutet

Mehr

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives Visuelle Exploration Digitaler Bibliothken Prof. Dr. am Beispiel des Projektes MedioVis Harald.Reiterer@uni-konstanz.de Kurzvorstellung

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Master Data Management - Wege aus der Datenkrise

Master Data Management - Wege aus der Datenkrise Master Data Management - Wege aus der Datenkrise Conect 2008-04-03 Dr. Siegmund Priglinger Business Application Research Center (BARC) Steinbachtal 2b D-97082 Würzburg +49-931-8806510 www.barc.de Agenda

Mehr

Sicheres Cloud Computing Ein Oxymoron? Eine Provokation

Sicheres Cloud Computing Ein Oxymoron? Eine Provokation Sicheres Cloud Computing Ein Oxymoron? Eine Provokation Dirk Achenbach European Institute of System Security Institute of Cryptography and Security KIT University of the State

Mehr

Beschwerdemanagement / Complaint Management

Beschwerdemanagement / Complaint Management Beschwerdemanagement / Complaint Management Structure: 1. Basics 2. Requirements for the implementation 3. Strategic possibilities 4. Direct Complaint Management processes 5. Indirect Complaint Management

Mehr

TOGAF The Open Group Architecture Framework

TOGAF The Open Group Architecture Framework TOGAF The Open Group Architecture Ein Überblick Gesellschaft für Informatik, Regionalgruppe München Dr. Michael Bulenda München, 7.12.2009 Vorstellung Dr. M. Bulenda Seit 2001 bei Cirquent IT Management

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

#Big Data in #Austria

#Big Data in #Austria Mario Meir-Huber und Martin Köhler #Big Data in #Austria Big Data Herausforderungen und Potenziale 23.6.2014 Vorstellung Studie Studie #BigData in #Austria Start: 1.11.2013 30.04.2014 Projektpartner: IDC

Mehr

Abteilung Internationales CampusCenter

Abteilung Internationales CampusCenter Abteilung Internationales CampusCenter Instructions for the STiNE Online Enrollment Application for Exchange Students 1. Please go to www.uni-hamburg.de/online-bewerbung and click on Bewerberaccount anlegen

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

Students intentions to use wikis in higher education

Students intentions to use wikis in higher education Students intentions to use wikis in higher education Christian Kummer WI2013, 27.02.2013 Motivation Problem Web 2.0 changed the way that students search for, obtain, and share information Uncertainty about

Mehr

Köpfen? oder. Ablauf. Möglichkeiten für ein sinnvolleres Leben von "talking heads :

Köpfen? oder. Ablauf. Möglichkeiten für ein sinnvolleres Leben von talking heads : Talking heads Köpfen? oder ein sinnvolleres Leben geben? Patrick Kunz 1 Ablauf Möglichkeiten für ein sinnvolleres Leben von "talking heads : Didaktische Gegenmittel: Echte Interaktivität Technische Medizin:

Mehr

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli Scrum @FH Biel Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012 Folie 1 12. Januar 2012 Frank Buchli Zu meiner Person Frank Buchli MS in Computer Science, Uni Bern 2003 3 Jahre IT

Mehr

Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social

Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social Webinar: Mit TIBCO Spotfire wird Business Intelligence jetzt kollaborativ, mobil und social Mit TIBCO Spotfire können nun Geschäftsanwender jederzeit und überall ihre Analytics-Anwendungen selbst entwickeln,

Mehr

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher

Map Reduce on Hadoop Seminar SS09. Similarity Join. Tim Felgentreff, Andrina Mascher Map Reduce on Hadoop Seminar SS09 Similarity Join Tim Felgentreff, Andrina Mascher Gliederung 2!! Aufgabe!! Demo!! Algorithmus!! Performance!! Veränderte Aufgabenstellung:!! Vergleich mit 1 Seite!! Ausblick!!

Mehr

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit

Mehr

Workflow-basierte Verarbeitung und Archivierung von Ozeanbeobachtungsdaten

Workflow-basierte Verarbeitung und Archivierung von Ozeanbeobachtungsdaten Workflow-basierte Verarbeitung und Archivierung von Ozeanbeobachtungsdaten Prof. Dr. Wilhelm (Willi) Hasselbring Lehrstuhl Software Engineering http://se.informatik.uni-kiel.de/ Kompetenzverbund Software

Mehr

SAS und R -Ein ungleiches Paar-

SAS und R -Ein ungleiches Paar- SAS und R -Ein ungleiches Paar- 15. KSFE in Heidelberg 25. Februar 2011 Über uns HMS Analytical Software ist seit 21 Jahren IT-Spezialist für Datenanalysesysteme und Business Intelligence Leistungen Beratung,

Mehr

Integriertes Marketingmanagement 2013

Integriertes Marketingmanagement 2013 Integriertes Marketingmanagement 2013 Schneller sehen, verstehen und entscheiden Dr. Andreas Becks Senior Business Architect SAS Deutschland GmbH Agenda Integriertes Marketingmanagement 2013 Die neue Bank

Mehr

GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten

GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten GESCHÄFTSZAHLEN SCHMACKHAFT ZUBEREITET Franke Kitchen Systems erhöht mit IBM Cognos die Flexibilität bei der Analyse von SAP-Daten Thomas Ehret, Franke Kitchen Systems Group (Aarburg, Schweiz), email:

Mehr

Anforderungen, KEFs und Nutzen der Software- Prozessverbesserung

Anforderungen, KEFs und Nutzen der Software- Prozessverbesserung Process flow Remarks Role Documents, data, tool input, output Important: Involve as many PZU as possible PZO Start Use appropriate templates for the process documentation Define purpose and scope Define

Mehr

Politische Inhalte in Social Media:

Politische Inhalte in Social Media: Politische Inhalte in Social Media: Twitter zur Landtagswahl in Nordrhein-Westfalen 2012 Überblick 1. Einführung 2. Methoden 3. Ergebnisse 4. Fazit 5. Ausblick 2 Einführung Einführung Twitter hat 2012

Mehr

Predictive Analysis für eine intelligente Produktionsplanung Dr. Andreas Cardeneo, SAP Data Science 20. Mai 2014

Predictive Analysis für eine intelligente Produktionsplanung Dr. Andreas Cardeneo, SAP Data Science 20. Mai 2014 Predictive Analysis für eine intelligente Produktionsplanung Dr. Andreas Cardeneo, SAP Data Science 20. Mai 2014 Agenda Vorstellung Kundenbeispiel Absatzprognose SAP Predictive Analysis Anwendung SAP Predictive

Mehr

Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern

Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern Soziale Netzwerke: Chance zur Verbesserung der Kommunikation mit den Bürgern Dr. André Schulz SAS Deutschland Göttingen, 6. September 2012 SAS Institute Ein Unternehmen der Zahlen SAS is the first company

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

BIG DATA ANALYTICS FÜR DIE MODERNE VERWALTUNG GROSSE DATENMENGEN BEHERRSCHEN, ANALYSIEREN UND EFFIZIENT NUTZEN

BIG DATA ANALYTICS FÜR DIE MODERNE VERWALTUNG GROSSE DATENMENGEN BEHERRSCHEN, ANALYSIEREN UND EFFIZIENT NUTZEN BIG DATA ANALYTICS FÜR DIE MODERNE VERWALTUNG GROSSE DATENMENGEN BEHERRSCHEN, ANALYSIEREN UND EFFIZIENT NUTZEN ANDREAS NOLD STRATEGISCHE GESCHÄFTSENTWICKLUNG PUBLIC SECTOR, SASDEUTSCHLAND BIG DATA WIE

Mehr

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung 1 Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung Wiesbaden 06.11.2013 Ralph Giebel Business Development Mrg Public Sektor EMC Deutschland GmbH ralph.giebel@emc.com 2 Agenda 1) Herausforderungen

Mehr

lll lllll Ein realitätsbasierter Ansatz zur Präsentation und Exploration von Bibliotheksbeständen

lll lllll Ein realitätsbasierter Ansatz zur Präsentation und Exploration von Bibliotheksbeständen B LENDED S HELF lll lllll Ein realitätsbasierter Ansatz zur Präsentation und Exploration von Bibliotheksbeständen Eike Kleiner, Roman Rädle, Harald Reiterer Universität Konstanz, AG Mensch-Computer Interaktion

Mehr

Security for Safety in der Industrieautomation Konzepte und Lösungsansätze des IEC 62443

Security for Safety in der Industrieautomation Konzepte und Lösungsansätze des IEC 62443 Security for Safety in der Industrieautomation Konzepte und Lösungsansätze des IEC 62443 Roadshow INDUSTRIAL IT SECURITY Dr. Thomas Störtkuhl 18. Juni 2013 Folie 1 Agenda Einführung: Standard IEC 62443

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D

BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D make connections share ideas be inspired BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE Wolfgang Schwab SAS D Copyright 2013, SAS Institute Inc. All rights reserved. BIG DATA: BEDROHUNG ODER CHANCE?

Mehr

Office und.net - zwei Welten wachsen zusammen mit VSTO 3.0. Lars Keller netcreate OHG

Office und.net - zwei Welten wachsen zusammen mit VSTO 3.0. Lars Keller netcreate OHG Office und.net - zwei Welten wachsen zusammen mit VSTO 3.0 Ihr Referent Lars Keller Was lernen Sie hier nicht? Was werden Sie hier erfahren? Agenda I VSTO Grundlagen II Ribbon Customizing III Smart Tag

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

Learning Analytics und das LeMo-Tool

Learning Analytics und das LeMo-Tool Learning Analytics und das LeMo-Tool Prof. Dr. Margarita Elkina HWR Berlin margarita.elkina@hwr-berlin.de Forum elearning Technische Hochschule Wildau 13. Januar 2015 1 Agenda Learning Analytics LeMo-Tool

Mehr

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen!

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen! MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich Herzlich Willkommen! Sharepoint 2010 Voraussetzung: 2 SharePoint 2010 Gesellschaft für Informatik Eike Fiedrich Bechtle GmbH Solingen

Mehr

Hochschulmarketing im Web: Eine Reise durch die Epochen 0.5 bis 2.0

Hochschulmarketing im Web: Eine Reise durch die Epochen 0.5 bis 2.0 Dr. Hochschulmarketing im Web: Eine Reise durch die Epochen 0.5 bis 2.0 Expertenforum II: Onlinemarketing und Social Media Aktuelle Trends im Hochschulmarketing Dr., Juni 2011 Seite 0 Juni 2011 Hochschulmarketing

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

ABB Schweiz AG, Human Resources, 21. April 2015. Network. Share. Inspire. (R)evolution der HR Prozesse

ABB Schweiz AG, Human Resources, 21. April 2015. Network. Share. Inspire. (R)evolution der HR Prozesse ABB Schweiz AG, Human Resources, 21. April 2015 Network. Share. Inspire. (R)evolution der HR Prozesse switspot und TeamWork - Zwei starke Partner switspot: SAP ERP HCM Full-Service-Provider Langjährige

Mehr

Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds

Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds IHK Frankfurt Jens Kohler Frankfurt, 03.07.2014 Hochschule Mannheim University of Applied

Mehr

Cross-Channel-Marketing und Customer Journey

Cross-Channel-Marketing und Customer Journey Cross-Channel-Marketing und Customer Journey Wie Sie den Kunden und seine wachsenden Ansprüche besser begleiten können Roland Brezina Manager Center of Excellence D-A-CH SAS Institute Deutschland GmbH

Mehr

Datenvisualisierung ohne Grenzen?

Datenvisualisierung ohne Grenzen? Datenvisualisierung ohne Grenzen? Zürich explorer Schweizer Tage der öffentlichen Vaduz 20. September 2012 Marco Sieber Agenda Ausgangslage Evaluation von Standardprogrammen Möglichkeiten und Grenzen von

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

Neue Möglichkeiten für Ihr Rechenzentrum

Neue Möglichkeiten für Ihr Rechenzentrum Neue Möglichkeiten für Ihr Rechenzentrum Microsoft Azure Thomas Lichtenstern Technologieberater Microsoft Deutschland GmbH Doris Franke Technologieberaterin Microsoft Deutschland GmbH Huge infrastructure

Mehr

Cloud Architektur Workshop

Cloud Architektur Workshop Cloud Architektur Workshop Ein Angebot von IBM Software Services for Cloud & Smarter Infrastructure Agenda 1. Überblick Cloud Architektur Workshop 2. In 12 Schritten bis zur Cloud 3. Workshop Vorgehensmodell

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

ISO 15504 Reference Model

ISO 15504 Reference Model Prozess Dimension von SPICE/ISO 15504 Process flow Remarks Role Documents, data, tools input, output Start Define purpose and scope Define process overview Define process details Define roles no Define

Mehr

SharePoint 2013 The new way to work together

SharePoint 2013 The new way to work together SharePoint 2013 The new way to work together Ihr Experte heute @ustrauss sharepointguru.de 3 SharePoint Conference 2012, Las Vegas Nevada The biggest show on SharePoint ever > 10.000 Teilnehmer aus der

Mehr

Agiles Projektmanagement mit Scrum

Agiles Projektmanagement mit Scrum Agiles Projektmanagement mit Scrum Josef Scherer CSM, CSP Lösungsfokussierter Berater josef.scherer@gmail.com 2009, Josef Scherer Scherer IT Consulting Freiberuflicher Scrum Coach Lösungsfokussierter Berater

Mehr

ShopBot, ein Software-Agent für das Internet

ShopBot, ein Software-Agent für das Internet Software-Agenten p.1/20 ShopBot, ein Software-Agent für das Internet Eine Einführung in (Software-)Agenten Madeleine Theile Software-Agenten p.2/20 Aufbau des Vortrags grundlegende Theorie Definition Autonomy,

Mehr

DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG. Michael Palotas 7. April 2015 1 GRIDFUSION

DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG. Michael Palotas 7. April 2015 1 GRIDFUSION DIGICOMP OPEN TUESDAY AKTUELLE STANDARDS UND TRENDS IN DER AGILEN SOFTWARE ENTWICKLUNG Michael Palotas 7. April 2015 1 GRIDFUSION IHR REFERENT Gridfusion Software Solutions Kontakt: Michael Palotas Gerbiweg

Mehr