Business Intelligence Praktikum 1

Größe: px
Ab Seite anzeigen:

Download "Business Intelligence Praktikum 1"

Transkript

1 Hochschule Darmstadt Business Intelligence WS Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: Business Intelligence Praktikum 1 1. Kurzbeschreibung In diesem Praktikum geht es hauptsächlich um die konzeptionelle Data Modellierung und Umsetzung in ein multidimensionales Datenmodell. Aus dem multidimensionalen Datenmodell soll dann ein Würfel erzeugt werden. Ferner sollen Daten mit SQL- Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) abgefragt werden. Diese Aufgabe besteht aus 3 Teilen: A- Mit einem TOOL (Power Designer) soll das konzeptionelle Data Modell entwickelt und in das physische Data Modell transformiert werden. Aufgrund dieses physischen Data Modells soll ein multidimensionales Oracle Schema (SQL-Skript für Erstellung der Tabellen) erzeugt werden. Dadurch soll ein Würfel erstellt werden B- Mit dem Tool SQL DEVELOPER soll diese Skript-Datei dann ausgeführt werden. Die erzeugten Tabellen sollen mit Daten gefüllt und abgefragt werden. C- Die SQL-OLAP Funktionen (GROUP BY ROLLUP, GROUP BY CUBE) sollen angewandt werden Die folgenden Werkzeuge kommen zum Einsatz: Sybase Power Designer (Modellierungswerkzeug) SQL-Developer (Oracle Client) 2. Lernziele Die Studierenden sollen in die Lage versetzt werden: A. Eine reelle Welt mit Hilfe des ER-Modells abzubilden B. Das ER-Modell in ein relationales Modell zu transformieren C. DB-Tabellen mit Daten zu füllen D. Das erstellte relationale Modell in ein multidimensionales Datenmodell zu überführen E. Einen Cube (Würfel) zu erzeugen F. Die Daten aus einer Datenbank mit Hilfe von SQL-Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) abzufragen. 3. Vorbereitung Wenn Sie Power Designer zu Hause haben, können Sie Ihr schon zu Hause erstelltes Modell mitbringen. Ferner sollen Sie mit den SQL-OLAP Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) vertraut machen. 4. Abnahme Die Abnahme findet am Ende der Praktikumssitzung statt.

2 Aufgabe TEIL 1 Modellieren Sie auf dem Papier ein Data Warehouse für Informationen zur Produktion von Zügen, wobei ein Star- und ein Snowflake-Schema zu verwenden sind. Beschreibung der realen Welt: Das betrachtete Unternehmen hat mehrere Produktionsstätten in verschiedenen Ländern. Die Produktion der Züge findet dabei in den Produktionshallen einer solchen Produktionsstätte statt. Oft werden verschiedene Produktionsschritte auf verschiedene Produktionshallen innerhalb einer Produktionsstätte aufgeteilt. Die einzelnen Produktionsschritte beinhalten einige Arbeitsschritte. Es kommt vor, dass Mitarbeiter aus unterschiedlichen Teams zusammen an einem Produktionsschritt arbeiten. Ein Mechaniker kann in verschiedenen Produktionshallen eingesetzt werden. Mechaniker arbeiten in Teams. Der Status eines Arbeitsschrittes wird am Ende eines Arbeitstages vermerkt (z.b. dass der Produktionsschritt nicht komplett ist). Es soll eine Analyse mit der Genauigkeit von einem Tag und einer Woche möglich sein. Das Data Warehouse soll beispielsweise folgende Anfragen unterstützen: Was sind die durchschnittlichen Kosten für einen bestimmten Produktionsschritt? Wie lange dauert ein Produktionsschritt durchschnittlich in einer bestimmten Produktionshalle? In welcher Produktionsstätte sind die Produktionskosten für einen bestimmten Produktionsschritt am niedrigsten? Wie viele Züge vom Typ ICE wurden in Produktionsstätte W produziert? Wie viele Züge mit dem Baujahr 1980 wurden in Produktionsstätte X produziert? Welcher Mechaniker führt den Arbeitsschritt Y am schnellsten aus? Vorbereitung zu Hause: Das konzeptionelle Modell soll zu Hause auf dem Papier erstellt werden. Bevor Sie mit dem Powerdesigner modellieren, muss das konzeptionelle Model vom Betreuer abgenommen werden.

3 Aufgabe TEIL 2-A Starten Sie die Software PowerDesigner. Auf der Homepage von Y. Orkunoglu finden Sie eine Anleitung zu PowerDesigner. Nun können Sie ihr konzeptionelles Modell mit PowerDesigner erstellen. Das Modell soll sowohl das Star- als auch das Snowflake-Schema (z.b. Tag, Monat, Jahr) beinhalten. I. Das konzeptionelle Modell soll ins logische Modell überführt werden. (Über den Menüpunkt Tools Generate Logical Data Model) II. III. Aus dem logischen Modell heraus soll ein physisches Modell für das DBMS Oracle Version 11g generiert werden. (Über den Menüpunkt Tools Generate Physical Data Model) Aus dem physischen Modell sollen die Tabellen für das DBMS Oracle Version 11g generiert werden. (Über den Menü Database Generate Database) Nun wurde eine SQL-Datei erzeugt. Diese SQL-Datei beinhaltet die SQL- Anweisungen, die die nötigen Tabellen erzeugen. (Diese Datei werden Sie im 3. Teil benötigen) IV. Nun generieren Sie für die Tabellen Test Daten (jeweils mindestens 5 Datensätze) (Über den Menüpunkt Database Generate Test Data) (Auch diese Datei werden Sie im 3. Teil benötigen) V. Damit die folgende SQL-Anweisungen im Teil 5 durchführen können, sollten Sie an den generierten Testdaten entsprechende Änderungen vornehmen (im Editor); D.h ändern Sie für die Attribute JAHR, BAUJAHR, LANDNAME, TEAMNAME, ZUGTYP, PRODUKTIONSSTÄTTE die Daten so, dass die sinnvollen Atributtwerte eingegeben werden. Z.B. für das Baujahr 2001 für den Zugtyp ICE und Landname DEUTSCHLAND usw. Es wäre sinnvoll, wenn für die bestimmte Atrribute BAUJAHR, LANDNAME DEUTSCHLAND gleiche Werte mehrmals (z.b. dreimal DEUTSCHLAND) eingetragen werden. (wegen GROUP BY Befehl.)

4 Aufgabe TEIL 2-B In diesem Teil soll das entstandene Modell in ein MULTIDIMENSIONALES MODELL MIT CUBE umgewandelt werden, so dass das Modell ungefähr wie folgt aussieht:

5 TEIL 3: Wechseln Sie zum SQL.DEVELOPER und erstellen Sie Tabellen und füllen Sie die Tabellen mit den Testdaten aus, die vom Powerdesigner aus generiert wurden. (Sie Aufgabe Teil2-a (III-IV)) Schreiben Sie SQL-Code für die folgenden Aufgaben: 1) Was sind die durchschnittlichen Kosten für einen bestimmten Produktionsschritt? 2) In welcher Produktionsstätte sind die Produktionskosten für einen bestimmten Produktionsschritt am niedrigsten? 3) Wie viele Züge vom Typ ICE wurden in Produktionsstätte W produziert? 4) Lassen Sie alle Mechaniker anzeigen, die an der Produktion des Zuges vom TYP ICE vom Baujahr 2001 beteiligt waren. 5) Lassen alle Produktionshallen und Teamnamen in Deutschland anzeigen. 6) Lassen Anzahl der Mitabeiter gruppiert nach Landname anzeigen. 7) Wie viele Züge mit dem Baujahr 1980 wurden in Produktionsstätte X produziert? 8) In welcher Produktionsstätte sind die Produktionskosten für einen bestimmten Produktionsschritt am niedrigsten? Optional In welchem Land sind die die Produktionskosten für einen bestimmten Produktionsschritt am teuersten? Welcher Mechaniker führt den Arbeitsschritt Y am schnellsten aus?

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence Fachbereich Informatik Praktikumsaufgabe 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2007 Business Intelligence Aufgabenstellung 1.

Mehr

Business Intelligence Praktikum 2

Business Intelligence Praktikum 2 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.05.2014 1. Kurzbeschreibung Business Intelligence

Mehr

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 18.12.2013 1. Kurzbeschreibung Dieses Praktikum

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 Hochschule Darmstadt Data Warehouse SS2015 Fachbereich Informatik Praktikumsversuch 4 Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 1. Kurzbeschreibung Dieses Praktikum

Mehr

3. Vorbereitung Es wär vorteilhaft, wenn die SQL-Abfragen in irgend einer Form schriftlich vorlegen würden.

3. Vorbereitung Es wär vorteilhaft, wenn die SQL-Abfragen in irgend einer Form schriftlich vorlegen würden. Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 2 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 10.12.2009 Aufgabenstellung SQL- Abfragen 1. Kurzbeschreibung Im ersten

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence und Wissensmanagement Fachbereich Informatik Praktikumsversuch BI, Teil 1 Prof. Dr. C. Wentzel, Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 03.04.2006 1. Kurzbeschreibung

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Änderung: 15.06.2012 Datum: 30.05.2012 1. Einführung

Mehr

Fachbereich Informatik Praktikumsaufgabe 3. Data Warehouse

Fachbereich Informatik Praktikumsaufgabe 3. Data Warehouse Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsaufgabe 3 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 08.12.2008 Data Warehouse Aufgabenstellung 1. Kurzbeschreibung

Mehr

Fachbereich Informatik Praktikumsversuch 6. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07.

Fachbereich Informatik Praktikumsversuch 6. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07. Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsversuch 6 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07.2013 Einleitung Data Warehouse

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013.

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013. Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsversuch 4 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013 Data Warehouse Aufgabenstellung Aufgabe1: OLAP-Modellerstellung

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Datum: 30.05.2012 Business Intelligence Aufgabenstellung

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Kurzreferenz Sybase PowerDesigner

Kurzreferenz Sybase PowerDesigner FB 4 Wirtschaftsinformatik Prof. Dr. Peter Zschockelt 1. Einführung Kurzreferenz Sybase PowerDesigner Der Sybase PowerDesigner ist ein universelles Modellierungstool. Für das Fach "Datenmodellierung und

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Produktinformation eevolution OLAP

Produktinformation eevolution OLAP Produktinformation eevolution OLAP Was ist OLAP? Der Begriff OLAP steht für Kurz gesagt: eevolution -OLAP ist die Data Warehouse Lösung für eevolution. Auf Basis verschiedener

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Projekt zur Lehrveranstaltung Informationssysteme

Projekt zur Lehrveranstaltung Informationssysteme Prof. Dr.-Ing. Thomas Kudraß Dipl.-Math. Dörte König HTWK Leipzig, F IMN Projekt zur Lehrveranstaltung Informationssysteme Das Projekt ist in drei Teile aufgeteilt, die den Phasen eines Data-Warehouse-Projekts

Mehr

Oracle SQL Developer Data Modeling

Oracle SQL Developer Data Modeling Oracle SQL Developer Data Modeling DOAG Regio Rhein-Neckar Oracle Deutschland GmbH The following is intended to outline our general product direction. It is intended for information

Mehr

Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server

Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server y Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server Ein IQ medialab Whitepaper Veröffentlicht: Juni 2008 Copyright: IQ medialab GmbH 2008 Aktuelle Informationen finden

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131 Architekturen Von der DB basierten zur Multi-Tier Anwendung DB/CRM (C) J.M.Joller 2002 131 Lernziele Sie kennen Design und Architektur Patterns, welche beim Datenbankzugriff in verteilten Systemen verwendet

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

SQL Server 2012 und SharePoint im Unternehmenseinsatz. Referent Daniel Caesar

SQL Server 2012 und SharePoint im Unternehmenseinsatz. Referent Daniel Caesar SQL Server 2012 und SharePoint im Unternehmenseinsatz Referent Daniel Caesar sqlxpert Daniel Caesar Publikationen Themen SQL Server Admin, Entwicklung SharePoint Admin, Entwicklung.NET Entwicklung Rechtssichere

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Knottenwäldchen Software

Knottenwäldchen Software Knottenwäldchen Software Installationsanleitung für die netzbasierte Lösung Knottenwäldchen Software März.2011 Knottenwäldchen Software Seite 2 1 Inhalt 1 Inhalt... 2 2 Übersicht... 3 3 Installation...

Mehr

Oracle SQL Tutorium - Wiederholung DB I -

Oracle SQL Tutorium - Wiederholung DB I - Oracle SQL Tutorium - Wiederholung DB I - (Version 2.6 vom 24.2.2015) Einleitung Im Folgenden sind zur Wiederholung eine Reihe von SQL-Übungsaufgaben zu lösen. Grundlage für die Aufgaben ist die Mondial

Mehr

Relationale Datenbanken Kursziele

Relationale Datenbanken Kursziele Relationale Datenbanken Kursziele DB Grundlagen Daten-Modellierung Relationales Modell und DB => Praxis: Mit SQL als Anfragesprache Mit MySQL als DB RDB 1-1 Kursinhalt (Tage) 1. DB Einleitung / Entity-Relationship

Mehr

ODM. ww w. syn t egris.de

ODM. ww w. syn t egris.de ODM ww w. syn t egris.de ODM - Oracle Data Modeler AGENDA Allgemeine Informationen Versionierung Repository anlegen Geschäftliche Informationen erfassen Workflows erstellen Versionierung Modelle abgleichen

Mehr

Dokumentation zur Anlage eines JDBC Senders

Dokumentation zur Anlage eines JDBC Senders Dokumentation zur Anlage eines JDBC Senders Mithilfe des JDBC Senders ist es möglich auf eine Datenbank zuzugreifen und mit reiner Query Datensätze auszulesen. Diese können anschließend beispielsweise

Mehr

PHOENIX EDM 3.6 Installationsanleitung Server-Installation Sync-Client-Installation

PHOENIX EDM 3.6 Installationsanleitung Server-Installation Sync-Client-Installation PHOENIX EDM 3.6 Installationsanleitung Server-Installation Sync-Client-Installation Inhaltsverzeichnis 1 Server-Installation (Netzwerk)...3 1.1 Die Daten-Installation auf dem MS-SQL-Server.4 1.2 Client-Installation

Mehr

Zeiterfassung in der Praxis: Von der Eingabe über HTML DB bis zur Auswertung des Cubes

Zeiterfassung in der Praxis: Von der Eingabe über HTML DB bis zur Auswertung des Cubes Zeiterfassung in der Praxis: Von der Eingabe über HTML DB bis zur Auswertung des Cubes Niels de Bruijn MT AG, Ratingen Schlüsselworte HTML DB, OLAP, AWM, Starschema, ETL-Prozess, Datawarehousing, Business

Mehr

Options- und Freitext-Modul Update-Anleitung

Options- und Freitext-Modul Update-Anleitung Options- und Freitext-Modul Update-Anleitung Hinweis... 2 Update für Versionen kleiner als 1.2.4 auf 1.3.x... 3 Update für Versionen ab 1.2.4 auf 1.3.x... 6 Update für Versionen ab 1.3.x auf 2.x.x... 7

Mehr

Proseminar Datenbanken

Proseminar Datenbanken Proseminar Datenbanken Dominik Engel Fachbereich Computerwissenschaften Universität Salzburg Sommersemester 2008 0 Material zur Lehrveranstaltung http://www.cosy.sbg.ac.at/dengel/ teaching/psdb/ Webpage

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

4. Hierarchische und netzwerkartige Datenbankmodelle

4. Hierarchische und netzwerkartige Datenbankmodelle 4. Hierarchische und netzwerkartige Datenbankmodelle 4.1 Hierarchische Datenbanken Hierarchien können durch Baumgraphen beschrieben werden. Datensätze einer hierarchischen Datenbank (HDB) sind in Segmenten

Mehr

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Andreas Ditze MID GmbH Kressengartenstraße 10 90402 Nürnberg a.ditze@mid.de Abstract: Data Lineage

Mehr

Übungen zu Datenbanksysteme

Übungen zu Datenbanksysteme Institut für Informatik Universität Osnabrück, 19.05.2009 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/ dbs Dipl.-Math. Patrick Fox Abgabe bis 02.06.2009, 12:00 Uhr Übungen zu Datenbanksysteme

Mehr

Berufliche Schulen Alle Schularten

Berufliche Schulen Alle Schularten Berufliche Schulen Alle Schularten Modellierung von Datenbanken Landesinstitut für Schulentwicklung MySQL Workbench Ein einfaches Werkzeug zur grafischen Modellierung von Datenbanken www.ls-bw.de best@ls.kv.bwl.de

Mehr

Vorlesung Datenbanken II A Klausur

Vorlesung Datenbanken II A Klausur Prof. Dr. Stefan Brass 11. Juli 2006 Institut für Informatik MLU Halle-Wittenberg Vorlesung Datenbanken II A Klausur Name: Matrikelnummer: Studiengang: Aufgabe Punkte Max. Punkte Zeit 1 (Entwurf im ER-Modell)

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Datenbanken & Informationssysteme Übungen Teil 1

Datenbanken & Informationssysteme Übungen Teil 1 Programmierung von Datenbankzugriffen 1. Daten lesen mit JDBC Schreiben Sie eine Java-Anwendung, die die Tabelle Books in der Datenbank azamon ausgibt. Verwenden Sie dabei die SQL-Anweisung select * from

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Datenbanken. Günter M. Goetz 1. Inhalt der Veranstaltung. Konzept und Architektur von Datenbanksystemen Datenbankentwurf Datenbankmodelle Schwerpunkt:

Datenbanken. Günter M. Goetz 1. Inhalt der Veranstaltung. Konzept und Architektur von Datenbanksystemen Datenbankentwurf Datenbankmodelle Schwerpunkt: Dr. Günter M. Goetz ggoetz@insigma.de Günter M. Goetz 1 Inhalt der Veranstaltung Konzept und Architektur von Datenbanksystemen twurf Datenbankmodelle Schwerpunkt: relationale SQL Erweiterungen und Alternativen

Mehr

cmore/modeller Release 3.8 cmore/message Release 2.5

cmore/modeller Release 3.8 cmore/message Release 2.5 cmore/modeller Release 3.8 cmore/message Release 2.5 Was können Anwender von den neuen Software-Versionen erwarten? Datum: 04.06.2013 Autor: Michael Hartung E-Mail: Michael.Hartung@pmone.com Inhaltsverzeichnis

Mehr

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1 1 Installationsanleitung für die netzbasierte Variante Bis Version 3.5 Copyright KnoWau Software 2013 KnoWau, Allgemeine Bedienhinweise Seite 1 2 Seite absichtlich leer KnoWau, Allgemeine Bedienhinweise

Mehr

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Master Thesis Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Konzeption von kolaborativen Projektleitstaenden mit integrierten Interpretationshilfen by Stefan Cholakov

Mehr

INFORMATIK ROEING UND FRITZE ORACLE DBMS UND SQL. Seminarunterlage

INFORMATIK ROEING UND FRITZE ORACLE DBMS UND SQL. Seminarunterlage ORACLE UND SQL Seminarunterlage 0-2 ORACLE IMPRESSUM Version: 5.01 DID: Autoren: Herausgeber: ORA_SQL Jörg Fritze Frank Roeing Roeing und Fritze Schulungen GbR Alte Straße 65 D-44143 Dortmund Telefon:

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Zeitlich abhängig von OWB?

Zeitlich abhängig von OWB? Zeitlich abhängig von OWB? 24. April 2007 Beat Flühmann Trivadis AG > IT Lösungsanbieter» Application Development, Application Performance Management, Business Communication, Business Intelligence, Managed

Mehr

Datenbanken erstellen Liste von Datenbanken anzeigen Datenbanken löschen. MySQL 4, 5. Kapitel 06: Datenbanken. Marcel Noe

Datenbanken erstellen Liste von Datenbanken anzeigen Datenbanken löschen. MySQL 4, 5. Kapitel 06: Datenbanken. Marcel Noe MySQL 4, 5 Kapitel 06: Datenbanken Gliederung 1 Datenbanken erstellen 2 3 Datenbanken erstellen CREATE DATABASE erstellt. Optional kann der Parameter IF NOT EXISTS die Datenbank bereits existiert.

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

PowerDesigner Frühstück

PowerDesigner Frühstück SAP Sybase PowerDesigner Frühstück Die Veranstaltung für Daten-, Informations- und Unternehmens- Architekten SQL Projekt AG Ihr SAP Value Added Reseller lädt am 10.10.2014 um 10:00-12:00 Uhr in Dresden,

Mehr

Sage 200 BI Installationsanleitung Cubes & Datawarehouses Manuelle Installation ohne SRSS/Sage Cockpit. Version 2014.0 11.11.2014

Sage 200 BI Installationsanleitung Cubes & Datawarehouses Manuelle Installation ohne SRSS/Sage Cockpit. Version 2014.0 11.11.2014 Sage 200 BI Installationsanleitung Cubes & Datawarehouses Manuelle Installation ohne SRSS/Sage Cockpit Version 2014.0 11.11.2014 Inhaltsverzeichnis Installationsanleitung Cubes & Datawarehouse Inhaltsverzeichnis

Mehr

Vorwort. Aufbau und Struktur

Vorwort. Aufbau und Struktur Vorwort Herzlich willkommen zu einem Fachbuch aus dem Verlag Comelio Medien. Dieses Buch aus dem Bereich Datenbanken soll Sie dabei unterstützen, die Oracle SQL zu lernen, um DB-Objekte zu erstellen und

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Prozessarchitektur einer Oracle-Instanz

Prozessarchitektur einer Oracle-Instanz 6. Juni 2008 Inhaltsverzeichnis Oracle Instanz 1 Oracle Instanz 2 3 Redo Log Buffer Shared Pool Java Pool & Large Pool Oracle Instanz Eine Oracle-Instanz ist Hauptbestandteil des Oracle Datenbank Management

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27 Inhalt 1. MySQL-Einführung 1... 1.1 Geschichte von MySQL... 1 1.2 Entscheidungskriterien für MySQL... 2 1.3 Installation eines MySQL-Servers... 3 1.3.1 Linux... 5 1.3.2 Windows 9x/Me/NT/2000/XP... 7 1.3.3

Mehr

Datenbanken auf Sybase SQL-Anywhere

Datenbanken auf Sybase SQL-Anywhere Office Manager Enterprise oder Client/Server (ab Version 6.0.3.170) Datenbanken auf Sybase SQL-Anywhere A. Office Manager-Installationen Falls die Office Manager Enterprise- oder Client/Server-Version

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen C3: Structured Query Language Lernziele: Nach der Bearbeitung dieser Lektion haben Sie folgende Kenntnisse erworben: Sie können elementaren

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

'RZQORDGXQG,QVWDOODWLRQYRQ-HW5HSRUWVIU '\QDPLFV1$95RGHUIUKHU

'RZQORDGXQG,QVWDOODWLRQYRQ-HW5HSRUWVIU '\QDPLFV1$95RGHUIUKHU 'RZQORDGXQG,QVWDOODWLRQYRQ-HW5HSRUWVIU '\QDPLFV1$95RGHUIUKHU 1. Für die Installation benötigen Sie folgende Informationen und Dateien: - Aktivierungscode - Dynamics NAV Lizenzdatei (.jlf) - Datenbankinformationen:

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Kurzanleitung ERwin V8.3 1. Kurzanleitung Erwin

Kurzanleitung ERwin V8.3 1. Kurzanleitung Erwin Kurzanleitung ERwin V8.3 1 Kurzanleitung Erwin Kurzanleitung ERwin V8.3 2 Inhalt 1 Ziel... 4 2 Model... 4 2.1 Modellelemente (Modellbaum)... 5 2.1.1 Default Values (Logische Ansicht)... 5 2.1.2 Subject

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Klausur Datenbanksysteme

Klausur Datenbanksysteme Prüfung Datenbanksysteme, 31.Jan. 2003 S. 1 Klausur Datenbanksysteme Name: Matrikel-Nr.: Studiengang: Aufgabenblatt nicht vor Beginn der Prüfung umdrehen! Prüfer: Prof. Dr. Martin Hulin Dauer: 90 Minuten

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Datenbankentwurf Prof. Dr. Bernhard Schiefer 5-1 Datenbankentwurf: Phasenmodell Anforderungsanalyse Konzeptioneller Entwurf Verteilungsentwurf Logischer Entwurf Datendefinition

Mehr

Anleitung zur Webservice Entwicklung unter Eclipse

Anleitung zur Webservice Entwicklung unter Eclipse Entwicklungsumgebung installieren Sofern Sie nicht an einem Praktikumsrechner arbeiten, müssen Sie ihre Eclipse-Umgebung Webservice-fähig machen. Dazu benötigen Sie die Entwicklungsumgebung Eclipse for

Mehr

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt Andreas Heuer Gunter Saake Kai-Uwe Sattler Datenbanken kompakt Inhaltsverzeichnis Vorwort v 1 Was sind Datenbanken 1 1.1 Warum Datenbanken 1 1.2 Datenbanksysteme 4 1.3 Anforderungen: Die Codd'schen Regeln

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5)

MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5) MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5) Hinweise: Diese Installation bezieht sich auf die Version 7.5.0.5, bei Nachfolgern kann sich einiges ändern Herunter geladen

Mehr

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT

Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Werkzeuge für Datenbank Handwerker: IBM Data Studio und IBM Optim QWT Neue Technologien effizient nutzen Ehningen, 3. Juli 2014 Rodney Krick rk@aformatik.de aformatik Training & Consulting GmbH & Co. KG

Mehr

SQL-Injection. Seite 1 / 16

SQL-Injection. Seite 1 / 16 SQL-Injection Seite 1 / 16 Allgemein: SQL (Structured Query Language) Datenbanksprache zur Definition von Datenstrukturen in Datenbanken Bearbeiten und Abfragen von Datensätzen Definition: SQL-Injection

Mehr

ORA.LogMiner. Nach Bestelleingang erhalten Sie eine Rechnung mit ausgewiesener Mehrwertsteuer und Informationen über die Zahlungsweise.

ORA.LogMiner. Nach Bestelleingang erhalten Sie eine Rechnung mit ausgewiesener Mehrwertsteuer und Informationen über die Zahlungsweise. ORA.LogMiner ORA.LogMiner kann die Inhalte von archivierten Redo-Log-Files im Klartext darstellen. Jedes gegen die Oracle-Datenbank abgesetzte SQL ob Insert, Delete, Update oder DDL wir als wieder verwendbares

Mehr

Mit dem MySQL Migration Toolkit aus ACCESS Datenbank SQL-Skripte generieren

Mit dem MySQL Migration Toolkit aus ACCESS Datenbank SQL-Skripte generieren Anleitung Problemstellung: Aus ACCESS-Datenbanken (*.mdb) SQL-Skripts erzeugen, die dann mithilfe der MySQL Workbench auf dem MySQL-server eingerichtet werden. Im nachfolgenden Beispiel sollen zu der ACCESS-Datenbank

Mehr

Datenbanken 16.1.2008. Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt:

Datenbanken 16.1.2008. Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt: Datenbanksysteme Entwicklung der Datenbanksysteme Die Entwicklung der Datenbanksysteme ist eng an die der Hardware gekoppelt und wird wie jene in Generationen eingeteilt: 1. Generation: In den fünfziger

Mehr

SQL, MySQL und FileMaker

SQL, MySQL und FileMaker SQL, MySQL und FileMaker Eine kurze Einführung in SQL Vorstellung von MySQL & phpmyadmin Datenimport von MySQL in FileMaker Autor: Hans Peter Schläpfer Was ist SQL? «Structured Query Language» Sprache

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Einführung in Datenbanken Dipl.-Inf. Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de aum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Grundlegende Begriffe der Datenbanktechnologie

Mehr

Installation der kostenlosen Testversion

Installation der kostenlosen Testversion Installation der kostenlosen Testversion Datenbank einrichten Installieren Trial-Lizenz aktivieren Bei Fragen nutzen Sie bitte unseren kostenlosen Support: Telefon: +49 (30) 467086-20 E-Mail: Service@microTOOL.de

Mehr

Upgrade-Leitfaden. Apparo Fast Edit. Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7. Wechsel von Version 3.0.6 auf Version 3.0.

Upgrade-Leitfaden. Apparo Fast Edit. Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7. Wechsel von Version 3.0.6 auf Version 3.0. Upgrade-Leitfaden Apparo Fast Edit Wechsel von Version 2 auf Version 3.0.6 oder 3.0.7 Wechsel von Version 3.0.6 auf Version 3.0.7 1 / 12 2 / 12 Inhaltsverzeichnis 1 Download der neuen Version... 5 2 Sicherung

Mehr

Arbeiten mit ACCESS 2013

Arbeiten mit ACCESS 2013 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2013 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

-09- Arbeitsunterlagen

-09- Arbeitsunterlagen -09- Arbeitsunterlagen DVT LK13.1 2014/2015 Abfragen in Access SQL Lehrkraft: Kurs: 0 Wir haben im Unterricht alle relevanten Entwicklungsschritte einer Datenbank kennen gelernt. Anforderungsspezifikation

Mehr