Kap. 2: Abstrakte Datentypen Kap. 3: Sortieren

Größe: px
Ab Seite anzeigen:

Download "Kap. 2: Abstrakte Datentypen Kap. 3: Sortieren"

Transkript

1 Kap. 2: Abstrakte Datentypen Kap. 3: Sortieren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 4. VO DAP2 SS April

2 ADT Queue ADT Dictionary Überblick Einführung in das Sortierproblem Insertion-Sort Selection-Sort Merge-Sort 2

3 Motivation Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!! Ich kann doch schon sortieren. ABER ES GEHT SCHNELLER! 3

4 Der ADT Queue Stack : Queue : Stapelspeicher, Warteschlangen, LIFO-Speicher) FIFO-Speicher Wertebereich: Menge aller endlichen Folgen eines gegebenen Grundtyps. S=<a 1,a 2,,a n > Leere Queue: < > Operationen: Im folgenden betrachten wir die Queue S=<a 1,a 2,,a n > mit Grundtyp val 4

5 Operationen des ADT Queue PUT(val x) Legt neues Element x an das Ende der Queue PUT(x): S=<a 1,a 2, a n,x> GET() : val Gibt das erste Element der Queue zurück und entfernt es (n>0). GET(): a 1 ISEMPTY() : bool Gibt true zurück, falls S leer ist; sonst false.

6 Realisierung des ADT Queue durch Felder Interne Repräsentation: Speicherung als Array der Dimension maxn Trick: Queue ist zyklisch im Feld gespeichert Position wird durch Feldindizes front und back angegeben p maxn+1 a 5 a 6 a 1 a 2 a 3 a 4 back front back zeigt hinter das letzte Listenelement; um korrekt auf Überlauf zu testen, nutzen wir maxn+1 Felder

7 1 2 3 T G U 2 T I Beispiel: PUT(P) D 10 A 2 I S m= maxn+1 back P front Function ISEMPTY():bool return front=back Procedure PUT(val x) A[back]:=x if back=m then back:=1 else back:=back+1 if front=back then throw Overflow Exception

8 1 2 3 T G U 2 T I Beispiel: GET() D 10 A 2 I S m= maxn+1 back front Procedure GET():val if front=back then throw Underflow Exception x:=a[front] If front=m then front:=1 else front:=front+1 return x Realisierung aller Operationen: s. Skript

9 Realisierung des ADT Queue durch Listen Interne Repräsentation: Speicherung als einfach verkettete Liste Zeiger head und tail auf Anfang und Ende head a 1 a 2 a n tail nil 9

10 Beispiel: PUT(x) head a 1 a 2 a n p tail x nil nil Procedure PUT(val x) var SListEl p:=tail tail:=new SListEl tail.value:=x; tail.next:=nil if head=nil then head:=tail else p.next:=tail Realisierung der Operationen: s. Skript

11 Laufzeitanalyse des ADT Queue Worst-Case, Best-Case, Average Case Operation Felder Listen Initialisierung Θ(1)+Alloc Θ(1) ISEMPTY Θ(1) Θ(1) PUT Θ(1) Θ(1) GET Θ(1) Θ(1) Vergleichen Sie diese Tabelle mit der von ADT Stack

12 Dictionary : Wörterbuch Der ADT Dictionary Wertebereich: D KxV, wobei K Schlüssel (key) bezeichnet und V die Werte. Dabei ist jedem k K höchstens ein v V zuordnet. Operationen: z.b (Matrikelnummer,Name) Einfügen, Entfernen, Suchen (s. nächste Folie) Im folgenden sei Q ein Dictionary vor Anwendung der Operationen. 13

13 Operationen des ADT Dictionary INSERT(K k,v v) Falls k nicht schon in D ist, dann wird ein neuer Schlüssel k mit Wert v in D eingefügt, andernfalls wird der Wert des Schlüssels k auf v geändert. INSERT(k,v): Falls k neu: D:=D (k,v), sonst D:=D \ (k,v ) (k,v) DELETE(K k) Entfernt Schlüssel k mit Wert aus D (falls k in D) SEARCH(K k): V z.b (Matrikelnummer,Name) Gibt den bei Schlüssel k gespeicherten Wert zurück (falls k in D)

14 Der ADT Dictionary Wörterbuchproblem: Finde eine Datenstruktur mit möglichst effizienten Implementierungen für die Operationen eines Dictionary. Naive Lösung: als Paar von Feldern: Lineare Laufzeit für alle Operationen Im Laufe der Vorlesung: einige weitaus bessere Verfahren! 15

15 Kapitel 3: Sortieren 16

16 Unser Sortierproblem Eingabe: Folge von Datensätzen <s 1,s 2,,s n > mit Schlüsseln k 1,k 2,,k n, auf denen eine Ordnungsrelation definiert ist. Ausgabe: Permutation π : {1,2,,n} {1,2,,n}, so dass die Umordnung der Datensätze gemäß π die Schlüssel in aufsteigende Reihenfolge bringt: k π(1) k π(2) k π(n) Speicherung in Feld: A[1],,A[n] Ansprechbar: 1:1 Schlüssel: A[i].key Informationsfeld: A[i].info

17 Laufzeitmessung Anzahl der durchgeführten Schlüsselvergleiche ( Comparisons ) für Best-Case, Worst-Case und Average-Case: C best (n), C worst (n), C avg (n) Anzahl der durchgeführten Bewegungen ( Movements ) von Datensätzen für Best- Case, Worst-Case und Average-Case: M best (n), M worst (n), M avg (n) 18

18 Eigenschaften von Sortierverfahren Intern/Extern: Geht das Verfahren davon aus, dass alle Daten im Hauptspeicher sind, dann intern Manchmal müssen Daten aus Platzgründen ausgelagert werden (Platte); Verfahren, die hier gut geeignet sind extern In situ: Benötigt ein Sortieralgorithmus zusätzlich zur Eingabe höchstens konstant viel zusätzlichen Speicherplatz, dann in situ

19 Eigenschaften von Sortierverfahren Adaptiv: Laufzeit abhängig von dem Grad der Vorsortierung der Daten; falls besser für vorsortierte Daten, dann adaptiv Stabil: gleiche Reihenfolge von Datensätzen mit gleichem Schlüssel vor und nach dem Sortieren, dann stabil 20

20 3.1 Allgemeine Sortierverfahren Voraussetzung: je zwei Schlüssel k i und k j sind vergleichbar, also entweder gilt k i k j oder k j k i. 21

21 3.1.1 Insertion-Sort / Analyse Anzahl der Schlüsselvergleiche: C best (n)= 22

22 InsertionSort(ref A) Eingabe/Ausgabe: Zahlenfolge in Feld A[1..n] (1) for k:=2,,n { (2) key:=a[k] (3) i:=k (4) while i>1 and A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) }

23 3.1.1 Insertion-Sort / Analyse Anzahl der Schlüsselvergleiche: C best (n)=θ(n) und C avg (n)=c worst (n)=θ(n 2 ) Anzahl der Datenbewegungen: M best (n)=θ(n) und M avg (n)=m worst (n)=θ(n 2 ) Eigenschaften: in situ? adaptiv? stabil?

24 Inversionen In einer Permutation π = <π 1, π 2,, π n > heißt ein Paar (π i, π j ) eine Inversion, wenn gilt: i < j und π i > π j. Die Anzahl der Inversionen einer Folge π heißt Inversionszahl und ist ein Maß für die Vorsortierung einer Folge. Es gilt: Eine Folge ist sortiert g.d.w. die Anzahl ihrer Inversionen gleich 0 ist. Im schlimmsten Fall besitzt eine Folge (n-i)=θ(n 2 ) viele Inversionen. i=1..n-1

25 Beziehung zu InsertionSort(ref A)? sk:anzahl der Durchführungen von (4) Zeit Wie oft? (1) for k:=2,,n { (2) key:=a[k] (3) i:=k (4) while i>1 and A[i 1]>key { (5) A[i]:=A[i 1] (6) i:=i 1 (7) } (8) A[i]:=key (9) } t1 n t2 n-1 t3 n-1 t4 sk t5 (sk 1) t6 (sk 1) t7 (sk 1) t8 n-1 t9 n-1

26 Inversionen Die Anzahl der Schlüsselvergleiche und Datenbewegungen in InsertionSort hängt eng mit der Anzahl der Inversionen der Folge zusammen: Die Anzahl der Inversionen der Folge ist gleich (s k -1). k=2..n 27

27 3.1.2 Selection-Sort Idee von Sortieren durch Auswahl : Bestimme Position i 1 {1,2,,n} zu der das Element mit minimalem Schlüssel auftritt; vertausche A[1] mit A[i 1 ]; Bestimme i 2 {2,,n}, vertausche A[2] mit A[i 1 ]; etc. Beispiel: s. VO und Skript 28

28 SelectionSort(ref A) Eingabe/Ausgabe: Zahlenfolge in Feld A[1..n] (1) for j:=1,2,,n-1 { (2) minpos:=j (3) for i:=j+1,,n { (4) if A[i].key < A[minpos].key then (5) minpos:=i (6) } (7) if minpos > j then (8) Vertausche A[minpos] mit A[j] (9) }

29 Analyse von SelectionSort Anzahl der Schlüsselvergleiche (Z. 4): C best (n)=c avg (n)=c worst (n)=θ(n 2 ) denn: Anzahl der Datenbewegungen (Z. 8): M best (n)=0 M avg (n)=m worst (n)=θ(n) 30

30 Eigenschaften von SelectionSort Eigenschaften: in situ? adaptiv? stabil? Einsatz von SelectionSort, wenn: Bewegungen von Datensätzen teuer Vergleiche zwischen Schlüsseln billig 31

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!!

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!! Kap. 3: Sortieren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund Überblick Einführung in das Sortierproblem Insertion-Sort Selection-Sort Merge-Sort 4. VO

Mehr

Abstrakte Datentypen und Datenstrukturen

Abstrakte Datentypen und Datenstrukturen Abstrakte Datentypen und Datenstrukturen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP2 SS 2008 15. April 2008 1 Überblick ADT Sequence ADT Stack

Mehr

Abstrakte Datentypen und Datenstrukturen

Abstrakte Datentypen und Datenstrukturen Abstrakte Datentypen und Datenstrukturen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP2 SS 2009 21. April 2009 1 Praktikum zu DAP 2 Beginn: Mittwoch

Mehr

Praktikum zu DAP 2. Abstrakte Datentypen und Datenstrukturen. Überblick. Motivation. Freiwilliger Linux-Kurs von Wilfried Rupflin und Sven Jörges

Praktikum zu DAP 2. Abstrakte Datentypen und Datenstrukturen. Überblick. Motivation. Freiwilliger Linux-Kurs von Wilfried Rupflin und Sven Jörges Abstrakte Datentyen und Datenstrukturen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund Praktikum zu DAP 2 Beginn: Mittwoch 22. Aril Bitte das 1. Praktikumsblatt

Mehr

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1.

Kap. 3 Sortieren. 7. VO DAP2 SS Mai Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr HeapSort ff 3.1. Kap. 3 Sortieren 3.1.5 HeapSort ff 3.1.6 Priority Queues Vorlesung am Do 7.5. entfällt wegen FVV um 14 Uhr Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 7.

Mehr

Kap. 3: Sortieren (3)

Kap. 3: Sortieren (3) Kap. 3: Sortieren (3) Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 6. VO DAP2 SS 2009 30. April 2009 Überblick Quick-Sort Analyse von Quick-Sort Quick-Sort

Mehr

Elementare Sortierverfahren

Elementare Sortierverfahren Algorithmen und Datenstrukturen I Elementare Sortierverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 18.03.2018 18:16 Inhaltsverzeichnis Sortieren.......................................

Mehr

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown

Termine für Übungstests. Kap. 3 Sortieren HeapSort ff Priority Queues. Motivation. Überblick. Analyse SiftDown Kap. Sortieren..5 HeapSort ff..6 Priority Queues Professor Dr. Vorlesung am Do 7.5. entfällt wegen FVV um Uhr Lehrstuhl für Algorithm Engineering, LS Fakultät für nformatik, TU Dortmund 7. VO DAP SS 009

Mehr

Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren

Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren Kap. 3ff: Untere Laufzeitschranke und Lineare Verfahren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 8. VO DAP2 SS 2009 12. Mai 2009 1 1. Übungstest Termin:

Mehr

Motivation Überblick

Motivation Überblick Kap. ff: Untere Laufzeitschranke und Lineare Verfahren Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 8. VO DAP SS 009. Mai 009. Übungstest Termin: Di 9. Mai

Mehr

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2008 8. April 2008 Petra Mutzel Kurzvorstellung

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

(08 - Einfache Sortierverfahren)

(08 - Einfache Sortierverfahren) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (08 - Einfache Sortierverfahren) Prof. Dr. Susanne Albers Sortieren Motivation, Einführung Datenbestände müssen sehr oft sortiert werden, etwa um

Mehr

Programmiertechnik II

Programmiertechnik II Sortieren: Einfache Algorithmen Sortieren Abstrakte Operation geg: Menge von items (Elemente) jedes Element besitzt Sortierschlüssel Schlüssel unterliegen einer Ordnung eventuell sind doppelte Schlüssel

Mehr

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 9. Sortieren

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 9. Sortieren UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 9 Sortieren Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040 Linz Sortieren :: Problemstellung

Mehr

Aufgabe (Schreibtischtest, Algorithmenanalyse)

Aufgabe (Schreibtischtest, Algorithmenanalyse) Aufgabe (Schreibtischtest, Algorithmenanalyse) Führen Sie einen Schreibtischtest für den Algorithmus Positionsort für das folgende Eingabe-Array durch. Geben Sie nach jedem Durchlauf der for-schleife mit

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2018 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Organisatorisches: Keine Vorlesung nächste Woche wegen

Mehr

Algorithmen und Datenstrukturen. Kapitel 3: Sortierverfahren. Skript zur Vorlesung. Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen. Kapitel 3: Sortierverfahren. Skript zur Vorlesung. Algorithmen und Datenstrukturen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Algorithmen und Datenstrukturen Kapitel 3: Sortierverfahren Skript zur Vorlesung Algorithmen und Datenstrukturen Sommersemester

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten)

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (25 Sortieren vorsortierter Daten) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (25 Sortieren vorsortierter Daten) 1 Untere Schranke für allgemeine Sortierverfahren Satz Zum Sortieren einer Folge von n Schlüsseln mit einem allgemeinen

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Algorithmen und Programmieren II Sortieralgorithmen imperativ Teil I Prof. Dr. Margarita Esponda Freie Universität Berlin Sortieralgorithmen Bubble-Sort Insert-Sort Selection-Sort Vergleichsalgorithmen

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Einfache Sortierverfahren Autor: Stefan Edelkamp

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Einfache Sortierverfahren Autor: Stefan Edelkamp Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Einfache Sortierverfahren Autor: Stefan Edelkamp Institut für Informatik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1

Mehr

4. Sortieren 4.1 Vorbemerkungen

4. Sortieren 4.1 Vorbemerkungen . Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig

Mehr

Kapitel 3: Sortierverfahren Gliederung

Kapitel 3: Sortierverfahren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen A3. Sortieren: Selection- und Insertionsort Marcel Lüthi and Gabriele Röger Universität Basel 1. März 2018 Sortieralgorithmen Inhalt dieser Veranstaltung A&D Sortieren Komplexitätsanalyse

Mehr

SS10 Algorithmen und Datenstrukturen 2. Kapitel Fundamentale Datentypen und Datenstrukturen

SS10 Algorithmen und Datenstrukturen 2. Kapitel Fundamentale Datentypen und Datenstrukturen SS10 Algorithmen und Datenstrukturen 2. Kapitel Fundamentale Datentypen und Datenstrukturen Martin Dietzfelbinger April 2010 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS10 Kapitel 2 Datentyp

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Tutoraufgabe 1 (Sortieralgorithmus):

Tutoraufgabe 1 (Sortieralgorithmus): Prof. aa Dr. Ir. Joost-Pieter Katoen Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung 4 (Abgabe 2..2) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Sortieralgorithmus):

Mehr

Präsenzübung Datenstrukturen und Algorithmen SS 2014

Präsenzübung Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik

Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik 5. Datenstrukturen Motivation Datenstrukturen sind neben Algorithmen weitere wichtige Bausteine in der Informatik Eine Datenstruktur speichert gegebene Daten und stellt auf diesen bestimmte Operationen

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2009 14. April 2009 Petra Mutzel Kurzvorstellung

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen B4. Priority Queues und Heaps Marcel Lüthi and Gabriele Röger Universität Basel 28. März 2018 Einführung Kollektion von Elementen Grundlegende Operationen sind Einfügen

Mehr

Einführung in die Informatik Algorithmen und Datenstrukturen. Thema 17 Sortieren

Einführung in die Informatik Algorithmen und Datenstrukturen. Thema 17 Sortieren Einführung in die Informatik Algorithmen und Datenstrukturen Thema 17 Sortieren Sortierproblem Es gibt eine Menge von Datensätzen, und jeder dieser Sätze besitzt einen (möglichst eindeutigen) Schlüssel.

Mehr

Aufgabe (Schreibtischtest, lexikographische Ordnung)

Aufgabe (Schreibtischtest, lexikographische Ordnung) Aufgabe (Schreibtischtest, lexikographische Ordnung) Führen Sie einen Schreibtischtest für den Algorithmus Bubblesort aus der VL für die folgenden Eingabe-Arrays durch. Geben Sie das Array S nach jedem

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Kap. 4.7 Skiplisten. 15./16. VO DAP2 SS /10. Juni 2008

Kap. 4.7 Skiplisten. 15./16. VO DAP2 SS /10. Juni 2008 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 15./16. VO DAP2 SS 2008 5./10. Juni 2008 1 Proseminare WS 2008/09 Anmeldefrist: Montag 16.06.

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

8 Elementare Datenstrukturen

8 Elementare Datenstrukturen Algorithmen und Datenstrukturen 186 8 Elementare Datenstrukturen In diesem und dem folgenden Kapitel werden grundlegende Techniken der Darstellung und Manipulation dynamischer Mengen auf Computern vorgestellt.

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen und Datenstrukturen 3. Vorlesung

Algorithmen und Datenstrukturen 3. Vorlesung Algorithmen und Datenstrukturen 3. Vorlesung Martin Dietzfelbinger 18. April 2005 Stacks Queues Listen... Datentypen und Datenstrukturen FG KTuEA, TU Ilmenau AuD 18.04.2005 FG KTuEA, TU Ilmenau AuD 18.04.2005

Mehr

Übersicht. Datenstrukturen und Algorithmen. Divide-and-Conquer. Übersicht. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Divide-and-Conquer. Übersicht. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Algorithmus Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-5/dsal/ 2 7.

Mehr

Algorithmen I - Tutorium 28 Nr. 3

Algorithmen I - Tutorium 28 Nr. 3 Algorithmen I - Tutorium 28 Nr. 3 18.05.2016: Spaß mit Listen, Arrays und amortisierter Analyse Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR. JÖRN

Mehr

Algorithmen und Datenstrukturen I Grundlagen

Algorithmen und Datenstrukturen I Grundlagen Algorithmen und Datenstrukturen I Grundlagen Prof. Dr. Oliver Braun Letzte Änderung: 01.11.2017 14:15 Algorithmen und Datenstrukturen I, Grundlagen 1/24 Algorithmus es gibt keine präzise Definition Handlungsvorschrift

Mehr

5.5 Prioritätswarteschlangen

5.5 Prioritätswarteschlangen 5.5 Prioritätswarteschlangen LIFO- und FIFO-Warteschlangen entfernen Werte aus der Warteschlange in Abhängigkeit davon, wann sie in diese eingefügt wurden Prioritätswartschlangen interpretieren die Werte

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 20.5.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort

Mehr

Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 7. Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa / Arnd Poetzsch-Heffter AG Softech FB Informatik TU Kaiserslautern Überblick Weitere Sortierverfahren Merge Sort Heap Sort Praktische Auswirkungen der Laufzeitabschätzungen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 6 (14.5.2014) Abstrakte Datentypen, Einfache Datenstrukturen Algorithmen und Komplexität Abstrakte Datentypen : Beispiele Dictionary: (auch:

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 18.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Sortieren Kleine Wiederholung Visualisierungen Adaptives

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 4 (30.4.2018) Sortieren IV Algorithmen und Komplexität Analyse Merge Sort Laufzeit T(n) setzt sich zusammen aus: Divide und Merge: O n

Mehr

16. Dynamische Datenstrukturen

16. Dynamische Datenstrukturen Datenstrukturen 6. Dynamische Datenstrukturen Eine Datenstruktur organisiert Daten so in einem Computer, dass man sie effizient nutzen kann. Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Präsenzübung Musterlösung Dienstag, 28.05.2013 Aufgabe 1 (Allgemeine Fragen [20 Punkte]) 1. Tragen Sie in der folgenden Tabelle die Best-, Average- und Worst-Case-

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen A7. Sortieren III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 Untere Schranke Sortierverfahren Sortieren Vergleichsbasierte Verfahren Nicht vergleichsbasierte

Mehr

12. Dynamische Datenstrukturen

12. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste 0 04 Motivation: Stapel ( push, pop, top, empty

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50

Heapsort. Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen / 50 Heapsort Dr. Michael Brinkmeier (TU Ilmenau) Algorithmen und Datenstrukturen 27.6.2007 / 50 Heapsort - Wiederholung Definition Array A[..n] mit Einträgen aus (U,

Mehr

Untere Schranke für allgemeine Sortierverfahren

Untere Schranke für allgemeine Sortierverfahren Untere Schranke für allgemeine Sortierverfahren Prinzipielle Frage: wie schnell kann ein Algorithmus (im worst case) überhaupt sein? Satz: Zum einer Folge von n Keys mit einem allgemeinen Sortierverfahren

Mehr

13. Dynamische Datenstrukturen

13. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Sortierte Liste 40 40 Motivation: Stapel ( push, pop, top, empty ) Wir brauchen einen neuen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

13 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 13 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

5.3 Doppelt verkettete Listen

5.3 Doppelt verkettete Listen 5.3 Doppelt verkettete Listen Einfach verkettete Listen unterstützen das Einfügen und Löschen am Anfang in konstanter Zeit; für das Einfügen und Löschen am Ende benötigen sie jedoch lineare Laufzeit Doppelt

Mehr

Algorithmen I. Sascha Witt Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799

Algorithmen I. Sascha Witt Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 Algorithmen I Sascha Witt 10.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Erinnerung

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (05 Elementare Datenstrukturen) Prof. Dr. Susanne Albers Lineare Listen (1) Lineare Anordnung von Elementen eines Grundtyps (elementarer Datentyp

Mehr

Copyright, Page 1 of 7 Heapsort

Copyright, Page 1 of 7 Heapsort www.mathematik-netz.de Copyright, Page 1 of 7 Heapsort Alle grundlegenden, allgemeinen Sortierverfahren benötigen O(n 2 ) Zeit für das Sortieren von n Schlüsseln. Die kritischen Operationen, d.h. die Auswahl

Mehr

Kapitel 8 Fortgeschrittene Sortieralgorithmen

Kapitel 8 Fortgeschrittene Sortieralgorithmen Kapitel 8 Fortgeschrittene Sortieralgorithmen Zur Erinnerung: in Kapitel 6 Elementare Sortierverfahren Sortierverfahren, die auf Vergleichen von Werten basieren. Aufwand zum Sortieren von Feldern von n

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang

12 (2-4)-Bäume Implementierbare Funktionen. (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 12 (2-4)-Bäume (2-4)-Bäume sind durch folgende Eigenschaften deniert: 1. Alle Äste sind gleich lang 2. Die Ordnung (maximale Anzahl der Söhne eines Knotens) ist gleich 4 3. Innere Knoten haben 2 Söhne

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Kapitel 6 Elementare Sortieralgorithmen

Kapitel 6 Elementare Sortieralgorithmen Kapitel 6 Elementare Sortieralgorithmen Ziel: Kennenlernen elementarer Sortierverfahren und deren Effizienz Zur Erinnerung: Das Sortier-Problem Gegeben: Folge A von n Elementen a 1, a 2,..., a n ; Eine

Mehr