Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Größe: px
Ab Seite anzeigen:

Download "Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen"

Transkript

1 Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter Datentyp : Σ-Struktur, die Φ erfüllt Realisierung Ein abstrakter Datentyp repräsentiert die Menge aller seiner möglichen Realisierungen (konkreten Datentypen, die den ADT erfüllen). Datenstrukturen zur Verwaltung mehrerer Elemente desselben Typs: lineare Datenstrukturen: Arrays (schneller Zugriff auf jedes Element über Index) Listen (rekursiv) Stack, Queue (eingeschränkter Zugriff auf spezielle Elemente) hierarchische Datenstrukturen: Bäume (rekursiv) Spezialfälle: Binärbäume, Unärbäume = Listen 140

2 Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Sorten: Bool, Element, Menge (hier kurz für Menge Element ) Signatur: emptyset : Menge isempty : Menge Bool contains : Menge Element Bool add, remove : Menge Element Menge Axiome (alle -quantifiziert: s Menge e Element): contains(add(s, e), e) = t, contains(remove(s, e), e) = f, Φ = isempty(add(s, e)) = f, add(add(s, e), e ) = add(add(s, e ), e), add(add(s, e), e) = add(s, e),... (+ Axiome der Booleschen Algebra) 141

3 Realisierungen des ADT Menge in linearen Datenstrukturen (Array): unsortiert : sortiert : contains O(n) (lineare Suche) add O(1) (anfügen) remove O(n) (Entfernen und Nachrücken) contains O(log(n)) (binäre Suche) add O(n) (sortiertes Einfügen und Platzschaffen) remove O(n) (Entfernen und Nachrücken) (Größe der Eingabe: Anzahl der Elemente) Aufwand zum sortierten Einfügen lohnt sich bei häufiger Suche (Ausführung von contains) 142

4 Wiederholung Binärbaum data BinTree a = Leaf Branch {key::a, left::bintree a, right::bintree a} rekursive Funktionen auf Bäumen, z.b. Durchquerungen Beispiel: Rekursive Bestimmung aller Teilbäume Spezifikation: V: Eingabe Binärbaum t N: Ausgabe Liste aller Teilbäume von t rekursives Verfahren: subtrees :: BinTree a -> [BinTree a] subtrees t = case t of Leaf -> [t] (Branch k l r) -> t : (subtrees l) ++ (subtrees r) 143

5 Realisierung des ADT Menge durch Binärbäume Realisierung der Operationen des ADT Menge emptyset emptyset :: Eq a => BinTree a emptyset = Leaf Laufzeit: O(1) isempty isempty :: Eq a => BinTree a -> Bool isempty t = case t of Leaf -> True Branch k l r -> False Laufzeit: O(1) add (eine von vielen Möglichkeiten) add :: Eq a => BinTree a -> a -> BinTree a add t x = case t of Leaf -> Branch x Leaf Leaf Branch k l r -> Branch k (add l x) r Laufzeit: O(height(t)) mit height = Höhe des Baumes (Länge des längsten Wurzel-Blatt-Pfades) im ungünstigsten Fall (Baum ist Pfad): O(n) 144

6 Binärbäume: contains Spezifikation der Funktion contains (auf ADT Menge): V: Eingabe (M, x) mit Menge M A und x A N: true, falls x M false, sonst Spezifikation der Funktion contains (auf Binärbaum): V: Eingabe (t, x) mit Binärbaum t mit Schlüsseln aus A (repräsentiert die Menge) und x A N: true, falls t einen Teilbaum Branch(k, l, r) mit x = k enthält false, sonst in Haskell: contains :: Eq a => BinTree a -> a -> Bool contains t x = case t of Leaf -> False (Branch k l r) -> (k == x) contains l x contains r x Laufzeit: O(n) 145

7 Binäre Suchbäume Der Binärbaum t hat die Suchbaum-Eigenschaft gdw. für jeden Teilbaum t = Branch(x, l, r) von t gilt: für jeden Schlüsselwert y eines inneren Knotens von l gilt y < x für jeden Schlüsselwert v eines inneren Knotens von r gilt x < y Ergebnis der Inorder-Durchquerung jedes binären Suchbaumes ist eine aufsteigend sortierte Folge Laufzeit für sortierte Ausgabe aller im Suchbaum mit n Knoten enthaltenen Schlüssel: O(n) 146

8 Binäre Suchbäume: contains Spezifikation der Funktion contains (auf binärem Suchbaum): V: Eingabe (t, x) mit binärem Suchbaum t mit Schlüsseln aus A (repräsentiert die Menge) und x A N: true, falls t einen Teilbaum Branch(k, l, r) mit x = k enthält false, sonst Idee (rekursiv): IA: Der leere Baum Leaf enthält keinen Schlüssel. IS: Baum Branch(k, l, r) enthält x falls x = k oder x < k und linkes Kind enthält x oder x > k und rechtes Kind enthält x contains :: Ord a => BinTree a -> a -> Bool contains t x = case t of Leaf -> False Branch k l r -> if x == k then True else if x < k then contains l x else contains r x 147

9 Laufzeit der Suche Laufzeit von contains t x hängt von Größe der Menge (Anzahl n der Knoten in t) ab: falls t einen Teilbaum Branch(x, l, r) enthält: Länge des Pfades von Wurzel zu Teilbaum falls t keinen Teilbaum Branch(x, l, r) enthält: Länge des Wurzel-Blatt-Pfades (Höhe des Baumes t) höchstens Höhe des Baumes t (log(n) height(t) n) Suche im Suchbaum t in O(height(t)) (i.a. schneller als lineare Suche in einer Folge) 148

10 Extremwerte in binären Suchbäumen Spezifikation Minimum: V: Eingabe binärer Suchbaum t (Wurzel) N: Ausgabe m: minimaler in t vorkommender Schlüsselwert (undefiniert für leeren Baum) Idee: in jedem binären Suchbaum steht der minimale Schlüsselwert im äußeren linken Knoten (Minimum lässt sich ohne Schlüsselvergleich bestimmen.) mini :: Ord a => BinTree a -> a mini t = case t of Leaf -> undefined Branch k Leaf r -> k Branch k l r -> mini l Laufzeit höchstens Tiefe des Baumes t (log(n) tiefe(t) n) Maximum analog (äußerer rechter Knoten) 149

11 Einfügen in binäre Suchbäume Spezifikation add: V: Eingabe (t, x) mit binärem Suchbaum t mit der Schlüsselmenge {x 1,..., x n } und Schlüsselwert x N: Ausgabe binärer Suchbaum t mit der Schlüsselmenge {x 1,..., x n, x} Idee (rekursiv): IA: Einfügen in leeren Baum durch Erzeugung eines Knotens IS: in jedem Teilbaum: schon vorhandene Schlüssel nicht einfügen (Menge) Schlüssel < Wurzelschlüssel in linkes Kind einfügen Schlüssel > Wurzelschlüssel in rechtes Kind einfügen add :: Ord a => BinTree a -> a -> BinTree a add t x = case t of Leaf -> Branch x Leaf Leaf Branch k l r -> if x == k then t else if x < k then Branch k (add l x) r else Branch k l (add r x) 150

12 Iteriertes Einfügen Beim Einfügen der Elemente der Menge {2, 3, 5, 7} in verschiedenen Reihenfolgen in Leaf entstehen i.a. veschiedene Bäume Beispiel (Tafel): 3,7,5,2 5,3,7,2 2,3,5,7 Daraus lässt sich ein Sortierverfahren ableiten. Sortieren durch Einfügen in binären Suchbaum: 1. schrittweises Einfügen aller Elemente einer Menge in einen zu Beginn leeren binären Suchbaum 2. Sortierte Ausgabe durch Inorder-Durchquerung des so entstandenen binären Suchbaumes 151

13 Laufzeit Einfügen Idee: Schlüsselwert x wird dort in t eingefügt, wo ihn der Suchalgorithmus (contains) in t finden würde: falls x schon vorhanden: kein Einfügen falls x noch nicht vorhanden (Blatt): Ersetzen des Blattes durch neuen Knoten Branch x Leaf Leaf also dieselbe Laufzeit wie contains: höchstens Höhe des Baumes t (log(n) height(t) n) Einfügen in einen binären Suchbaum mit n Knoten in O(height(t)) Laufzeit des abgeleiteten Sortierverfahrens: O(n height(t)), 152

14 Löschen aus binären Suchbäumen Spezifikation remove: V: Eingabe (t, x) mit binärem Suchbaum t mit Schlüsseln {x 1,..., x n } und Schlüsselwert x N: Ausgabe binärer Suchbaum t mit Schlüsseln {x 1,..., x n } \ {x} mögliche Fälle: 1. x kommt nicht in t vor: Ergebnis t = t 2. x ist Schlüsselwert eines Teilbaumes s in t mit zwei leeren Kindern: Löschen des Knotens s (Ersetzen durch Leaf) 3. x ist Schlüsselwert eines Knotens s in t mit einem leeren Kind: Ersetzen des Knotens s durch sein einziges nichtleeres Kind 4. x ist Schlüsselwert eines Knotens s in t mit zwei nichtleeren Kindern: Tausch der Schlüsselwerte in s und dem linken äußeren Knoten r des rechten Kindes von s (Minimum des rechten Kindes) Löschen des Knotens r (rekursiv) Warum hat der so entstandene Baum die Suchbaumeigenschaft? Laufzeit für Löschen aus binärem Suchbaum t: O(height(t)) 153

15 Binäre Suchbäume: remove remove :: Ord a => BinTree a -> a -> BinTree a remove t x = case t of Leaf -> Leaf Branch k Leaf Leaf -> if x == k then Leaf else t Branch k l Leaf -> if x == k then l else Branch k (remove l x) Leaf Branch k Leaf r -> if x == k then r else Branch k Leaf (remove r x) Branch k l r -> if x == k then Branch (mini r) l (remove r (mini r)) else if x < k then Branch k (remove l x) r else Branch k l (remove r x) 154

16 Laufzeiten in binären Suchbäumen contains add remove in O(height(t)) Laufzeiten in Abhängigkeit von der Knotenzahl n = size(t): Extremfälle: für Pfade (entartete Bäume) height(t) = size(t) Laufzeit der Operationen O(n) für balancierte Bäume height(t) = log size(t) Laufzeit der Operationen O(log(n)) 155

17 Anwendung von Suchbäumen (Balancierte) binäre Suchbäume sind geeignet zum Speichern und schnellen Wiederfinden von Daten anhand ihnen zugeordneten Schlüsselwerten Binäre Suchbäume: Realisierung des ADT Menge für linear geordnete Mengen Realisierung von Wörterbüchern (= Mengen von Paaren (Schlüssel, Wert) mit eindeutigem Schlüssel aus einer linear geordneten Menge, z.b. N)), (= partielle Funktionen: Schlüsselbereich Wertebereich): Operationen: contains, add, remove, jeweils von Paaren (Schlüssel, Daten) z.b. Telefonbucheinträge über Namen (alphabetisch geordnet), Studenten über Studentennummern 156

18 Balancierte binäre Suchbäume Laufzeit für Suche, Einfügen, Löschen in Baum t mit n Knoten: O(height(t)) Ziel: Laufzeit für Suche, Einfügen, Löschen O(log(n)) Idee: balancierte Suchbäume, in denen die Tiefe jedes Blattes (etwa) gleich ist (also O(log(n))) 157

19 Vollständig balancierte Bäume Binärer Suchbaum t heißt vollständig balanciert, wenn in jedem Knoten Branch(x, l, r) in t gilt: size(l) size(r) 1 Tiefe jedes Knotens log(n) + 1 Beispiel (Tafel) 158

20 Operationen in vollständig balancierten Bäumen emptyset O(1) isempty O(1) contains O(log(n)) add, remove in je zwei Schritten: 1. Einfüge- und Löschoperation für balancierte binäre Suchbäume: O(log(n)) 2. Rebalancieren, d.h. Wiederherstellen der vollständigen Balance: i.a. aufwendig 159

21 AVL-Bäume (Adelson-Velskii, Landis, 1962) Binärer Suchbaum t heißt AVL-Baum, wenn in jedem Teilbaum Branch(k, l, r) in t gilt: height(r) height(l) 1 (AVL-Eigenschaft) Optimierung: Speichern der Balance height(r) height(l) in jedem Knoten erlaubt schnellen Test Laufzeiten: contains O(log(n)) add, remove Summe der Laufzeiten für 1. add, remove in balancierten binären Suchbäumen: O(log(n)) 2. Wiederherstellung der AVL-Eigenschaft:? 160

22 Rebalancieren in AVL-Bäumen notwendig bei Verletzung der AVL-Eigenschaft im Teilbaum Branch(k, l, r) mit height(l) height(r) = 2 geschieht nach Einfügen (als neues Blatt) oder Löschen (rekursives Ersetzen durch einziges Kind oder Minimum im rechten Teilbaum) evtl. Verletzung in mehreren Vorgängern des eingefügten Knotens Fälle vor dem Einfügen: Balance = 0: height(l) = height(r) nach Einfügen keine Verletzung der AVL-Eigenschaft 1: height(l) = height(r) + 1 nach Einfügen in r keine Verletzung der AVL-Eigenschaft nach Einfügen in l evtl. Verletzung der AVL-Eigenschaft +1: height(l) + 1 = height(r) nach Einfügen in l keine Verletzung der AVL-Eigenschaft nach Einfügen in r evtl. Verletzung der AVL-Eigenschaft (Fälle 1 und +1 sind symmetrisch) 161

23 (Einfache) Rotation in AVL-Bäumen bei Verletzungen der AVL-Eigenschaft im tiefsten Teilbaum k der Form k = Branch(x, Branch(y, l, r), s) mit height(l) 1 = height(r) = height(s) (Balance im Teilbaum mit Wurzelschlüssel x: 2, y: 1) Ersetzung von k durch lrotate(k) = Branch(y, l, Branch(x, r, s)) (Linksrotation) analog (symmetrischer Fall): Verletzungen der AVL-Eigenschaft im tiefsten Teilbaum k der Form k = Branch(x, l, Branch(y, r, s)) mit height(l) = height(r) = height(s) 1 (Balance im Teilbaum mit Wurzelschlüssel x: +2, y: +1) Ersetzung von k durch rrotate(k) = Branch(y, Branch(x, l, r), s) (Rechtsrotation) 162

24 Doppel-Rotation in AVL-Bäumen bei Verletzungen der AVL-Eigenschaft im tiefsten Teilbaum der Form k = Branch(x, Branch(y, l, Branch(z, r, s)), t) mit Balance im Teilbaum mit Wurzelschlüssel x: 2, y: +1 Ersetzung von k durch lrrotate(k) = Branch(z, Branch(y, l, r), Branch(x, s, t)) Links-Rechts-Rotation besteht aus zwei aufeinanderfolgenden einfachen Rotationen: rrotate(left(k)) danach lrotate(k) symmetrischer Fall: k = Branch(x, t, Branch(y, Branch(z, l, r), s)) mit Balance im Teilbaum mit Wurzelschlüssel x: +2, y: 1 Ersetzung von k durch rlrotate(k) = Branch(z, Branch(x, t, l), Branch(y, r, s)) Rechts-Links-Rotation besteht aus zwei aufeinanderfolgenden einfachen Rotationen: lrotate(right(k)) danach rrotate(k) 163

25 Laufzeit der Operationen in AVL-Bäumen Rebalancieren (Rotationen): O(1) Höhe von AVL-Bäumen mit n Knoten: O(log(n)) contains O(log(n)) add O(log(n)) remove O(log(n)) 164

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Copyright, Page 1 of 8 AVL-Baum

Copyright, Page 1 of 8 AVL-Baum www.mathematik-netz.de Copyright, Page 1 of 8 AVL-Baum 1. Motivation und Einleitung Das Suchen, Einfügen und entfernen eines Schlüssels in einem zufällige erzeugten binären Suchbaum mit N Schlüsseln ist

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form.

2 i. i=0. und beweisen Sie mittels eines geeigneten Verfahrens die Korrektheit der geschlossenen Form. für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Vollständige Induktion): Finden Sie eine geschlossene Form für die

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6.

Tutoraufgabe 1 (Vollständige Induktion): Tutoraufgabe 2 (Rotationen): Datenstrukturen und Algorithmen SS15 Übungsblatt 5 (Abgabe 3.6. Prof. aa Dr. Ir. Joost-Pieter Katoen Allgemeine Hinweise: Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Die Hausaufgaben sollen in Gruppen von je - Studierenden aus der gleichen

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen

Übersicht. Rot-schwarz Bäume. Rot-schwarz Bäume. Beispiel. Eigenschaften. Datenstrukturen & Algorithmen. Rot-schwarz Bäume Eigenschaften Einfügen Datenstrukturen & Algorithmen Übersicht Rot-schwarz Bäume Eigenschaften Einfügen Matthias Zwicker Universität Bern Frühling 2009 2 Rot-schwarz Bäume Binäre Suchbäume sind nur effizient wenn Höhe des Baumes

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Werner Struckmann Wintersemester 2005/06 6. Bäume 6.1 Bäume 6.2 Binäre Suchbäume 6.3 Ausgeglichene Bäume 6.4 Heapsort Listen und Bäume Listen und Bäume: Listen: Jedes Listenelement

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I.6.5 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen

Mehr

Programmiertechnik II

Programmiertechnik II 2007 Martin v. Löwis Priority Queues and Heapsort 2007 Martin v. Löwis 2 Priority Queue Abstrakter Datentyp Inhalt: Elemente mit Priorität Operationen: Einfügen: Angabe des Elements und seiner Priorität

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Nachtrag zu binären Suchbäumen

Nachtrag zu binären Suchbäumen Nachtrag zu binären Suchbäumen (nicht notwendigerweise zu AVL Bäumen) Löschen 1 3 2 10 4 12 1. Fall: Der zu löschende Knoten ist ein Blatt: einfach löschen 2. Fall: Der zu löschende Knoten hat ein Nachfolgeelement

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume AVL-Bäume Splay-Bäume B-Bäume Digitale Suchbäume Heaps M.O.Franz; Oktober 2007 Algorithmen und

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2013/14. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2013/14 Prof. Dr. Sándor Fekete 1 4.6 AVL-Bäume 2 4.8 Rot-Schwarz-Bäume Rudolf Bayer Idee: Verwende Farben, um den

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Peano-Zahlen, Listen, Bäume Rekursive Funktionen strukturelle

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Java Einführung Collections

Java Einführung Collections Java Einführung Collections Inhalt dieser Einheit Behälterklassen, die in der Java API bereitgestellt werden Wiederholung Array Collections (Vector, List, Set) Map 2 Wiederholung Array a[0] a[1] a[2] a[3]...

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Sortieren und Suchen (Teil 1) WS 2012/2013 Suchen 8 False unsortiert 21 4 16 7 19 11 12 7 1 5 27 3 8 False sortiert 2 4 6 7 9 11 12 18 21 24 27 36 Suchen in unsortierten

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6)) 1 - Korrektur 2 - Abstrakte Datentypen für arithmetische Ausdrücke Der Datentyp Wir beginnen zunächst mit dem algebraischen Datentyp für Ausdrücke. Hierfür definieren wir einen Konstruktor Number für Zahlen,

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte]

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte] UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH 4056 Basel Assistenten Bernhard Egger Andreas Forster Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen

Binäre Suchbäume. Ein Leitprogramm von Timur Erdag und Björn Steffen Binäre Suchbäume Ein Leitprogramm von Timur Erdag und Björn Steffen Inhalt: Bäume gehören zu den bedeutendsten Datenstrukturen in der Informatik. Dieses Leitprogramm gibt eine Einführung in dieses Thema

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen

2.5.1 Binäre Suchbäume Optimale Suchbäume Balancierte Bäume Skip-Listen Union-Find-Strukturen 2.5 Bäume 2.5.1 Binäre Suchbäume 2.5.2 Optimale Suchbäume 2.5.3 Balancierte Bäume 2.5.4 Skip-Listen 2.5.5 Union-Find-Strukturen 1 Balancierte Bäume Nachteil bei normalen Suchbäumen: Worst-case Aufwand

Mehr

BÄUME BALANCIERTE BÄUME. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm. 10. Kapitel (Teil 2)

BÄUME BALANCIERTE BÄUME. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm. 10. Kapitel (Teil 2) 10. Kapitel (Teil 2) BÄUME BALANCIERTE BÄUME Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Übersicht 1 1. Einführung 2. Algorithmen 3. EigenschaDen von Programmiersprachen 4. Algorithmenparadigmen

Mehr

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0

Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 Beispielblatt 2 186.813 VU Algorithmen und Datenstrukturen 1 VU 6.0 25. September 2013 Aufgabe 1 Gegeben sei ein binärer Suchbaum mit Werten im Bereich von 1 bis 1001. In diesem Baum wird nach der Zahl

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen

Inhalte Informatik. I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen Inhalte Informatik I1 Grundprinzip des objektorientierten Modellierens I3 Modellieren von Netzwerkanwendungen II.0 Grundlegende Programmstrukturen und Algorithmen Sortier- und Suchalgorithmen auf Arrays

Mehr