Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungsvorschläge. zu den Aufgaben im Kapitel 4"

Transkript

1 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere Zuweisung next[tabindex] = muster[tabindex]!= muster[ruecksprung]? ruecksprung : next[ruecksprung]; ausgetauscht wird. Erklären Sie die Verbesserung und finden Sie Beispiele, bei denen sie zur Geltung kommt. private static int[] nexttabelle(final char[] muster) { // next-tabelle für muster final int anfang = -1; // vor dem ersten Index in muster int[] next = new int[muster.length]; next[0] = anfang; // Marke int tabindex = 0, // indiziert die aufzubauende next-tabelle ruecksprung = anfang; // Index im muster, wohin zurückgesprungen wird while (tabindex < muster.length - 1) if (ruecksprung == anfang muster[tabindex] == muster[ruecksprung]) { // Anfang des Musters oder Übereinstimmung tabindex++; // weiterschreiten ruecksprung++; next[tabindex] = ruecksprung; // so weit Übereinstimmung /* Verbesserter kmp-algorithmus : */ next[tabindex] = muster[tabindex]!= muster[ruecksprung]? ruecksprung : next[ruecksprung]; /* : Verbesserter kmp-algorithmus */ else ruecksprung = next[ruecksprung]; // Rücksprung so weit nötig return next; /** public static int kmpsuchen(final char[] muster, final char[] text) { // stellt fest, ob muster im text vorkommt und falls ja, ab welchem Index final int anfang = -1; // vor dem ersten Index in muster final int[] next = nexttabelle(muster); // next-tabelle für muster int textindex = anfang, musterindex = anfang; // Anfang der Suche do if (musterindex == anfang text[textindex] == muster[musterindex]) { textindex++; // weiterschreiten musterindex++; else musterindex = next[musterindex]; // Rücksprung nur im Muster while (musterindex < muster.length && textindex < text.length); return musterindex >= muster.length? Page 1

2 textindex - muster.length : // gefunden -1; // nicht gefunden Aufgabe 4.2: Programmieren Sie das Einfügen und das lineare Suchen in einer sortierten Reihung (mit der Technik der Markierung ) als Klasse mit folgender Spezifikation: class SortierteReihung<E extends Beschluesselt> extends Reihung<E> { public void einfuegen(final E element); // ensures sammlung sortiert public int suchen(int suchschluessel); // requires sammlung sortiert // ensures -1 <= return < sammlung.length; Wenn Sie den Schlüssel nicht auf int-werte einschränken wollen, können Sie eine komplexere Signatur mit zwei Typparametern benutzen: class SortierteReihung<S extends Comparable<S>, E extends Beschluesselt<S>> extends Reihung<S, E> { public void einfuegen(final Element element) { // requires frei < sammlung.length sammlung[frei] = element; // Marke int platz = 0; while (sammlung[platz].schluessel < element.schluessel) // Abbruch bei frei platz++; for (int i = frei; i > platz; i--) sammlung[i] = sammlung[i-1]; // Verschieben nach oben sammlung[frei] = element; public int suchen(int suchschluessel) { // ensures -1 <= return < sammlung.length; // return -1, wenn nicht gefunden int index = 0; while (index<frei && sammlung[index].schluessel!= suchschluessel) index++; if (index == frei) index = -1; // nicht gefunden return index; Aufgabe 4.3: Programmieren Sie das Löschen in einer sortierten Reihung: class SortierteReihungLoeschbar <E extends Beschluesselt> extends SortierteReihung<E> { void loeschen(int index); // requires 0 <= index < sammlung.length; void loeschen(int index) { // requires 0 <= index < sammlung.length; for (int i = index; i < sammlung.length; i++) sammlung[i] = sammlung[i+1]; // Verschieben nach unten Page 2

3 Aufgabe 4.4: Modifizieren Sie das lineare Suchen mit Markierung : Vereinfachen Sie die Abbruchbedingung der while-schleife, nachdem Sie den gesuchten Schlüssel im Pseudo-Endknoten speichern. fehlt noch Aufgabe 4.5: Programmieren Sie den Algorithmus für suchen rekursiv. private Knoten suchenrekursiv(int suchschluessel, Knoten knoten) { try { return (knoten.wert == suchschluessel)? knoten : suchenrekursiv(suchschluessel, knoten.verbindung); catch (NullPointerException e) { return null; // nicht gefunden public Knoten suchenrekursiv(int suchschluessel) { return suchenrekursiv(suchschluessel, aelteste); Aufgabe 4.6: Erläutern Sie, warum man in einer verketteten Liste nicht so binär suchen kann wie in einer sortierten Reihung. Weil die Mitte der Liste nicht zu finden ist, sie kann nicht halbiert werden. Aufgabe 4.7: Programmieren Sie das Einfügen und das lineare Suchen in einer sortierten verketteten Liste. Was ist der Vorteil gegenüber der unsortierten Liste? Der Vorteil ist, dass im negativen Fall die Suche früher aufhört. Knoten suchen(int suchschluessel) { Knoten knoten = anker; while (knoten!= null && knoten.wert.schluessel < suchschluessel) knoten = knoten.verbindung; return (knoten.wert.schluessel == suchschluessel)? knoten : null; Aufgabe 4.8: Erweitern Sie die obige Implementierung HashTabelle mit den erwähnten Verbesserungen: Methoden kollisionen und naechstessuchen (für Mehrfacheintragungen mit demselben Schlüssel) und einer Sondierungsfunktion index = (index + k*k) % inhalt.length; wo k der Zähler für Sondierungsschritte ist. public void eintragen(schluessel schluessel, Element element) throws Voll { if (anzahl + 1 == inhalt.length) throw new Voll(); else if (! vorhanden(schluessel)) { if (k > 0) kollisionen++; Page 3

4 inhalt[index].schluessel = schluessel; inhalt[index].belegt = true; anzahl++; inhalt[index].element = element; public int kollisionen() { return kollisionen; private int kollisionen = 0, k = 0; private Schluessel letzterschluessel; public boolean vorhanden(schluessel schluessel) { letzterschluessel = schluessel; index = schluessel % inhalt.length; while (inhalt[index].belegt && schluessel!= inhalt[index].schluessel) { k++; index = index = (index + k*k) % inhalt.length; // neue Sondierungsfunktion k = 0; return (schluessel == inhalt[index].schluessel); Page 4

5

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

public class SternchenRechteckGefuellt {

public class SternchenRechteckGefuellt { Java programmieren: Musterlösungen Konsolen-Aufgaben Aufgabe 1: Gefüllte Rechtecke zeichnen Schreiben Sie ein Programm, das ein durch Sternchen gefülltes Rechteck zeichnet. Der Benutzer soll Breite und

Mehr

Große Übung Praktische Informatik 1

Große Übung Praktische Informatik 1 Große Übung Praktische Informatik 1 2005-12-08 fuessler@informatik.uni-mannheim.de http://www.informatik.uni-mannheim.de/pi4/people/fuessler 1: Announcements / Orga Weihnachtsklausur zählt als Übungsblatt,

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Übungsblatt 5 Lösungsvorschlag Objektorientierte Programmierung 22. 05. 2006 Lösung 9 (SMS-Eingabe am

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

188.154 Einführung in die Programmierung für Wirtschaftsinformatik

188.154 Einführung in die Programmierung für Wirtschaftsinformatik Beispiel 1 Vererbung (Liste) Gegeben sind die beiden Klassen ListNode und PersonNode. 188.154 Einführung in die Programmierung für Wirtschaftsinformatik Wiederholung, Prüfungsvorbereitung Monika Lanzenberger

Mehr

Kapitel 9: Klassen und höhere Datentypen. Selektoren

Kapitel 9: Klassen und höhere Datentypen. Selektoren Selektoren Üblicherweise erlaubt man keinen (direkten) öffentlichen (public) Zugang zu Objektvariablen mehr Kontrolle über Zugang interne Details besser verborgen Statt dessen: Zugriff auf privates Feld

Mehr

ALP II Dynamische Datenmengen

ALP II Dynamische Datenmengen ALP II Dynamische Datenmengen Teil III Iteratoren Iterator-Objekt O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 22. ALP2-Vorlesung, M. Esponda 2 Motivation: Iteratoren Wir haben für die Implementierung

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel

Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel Praktikum Informatik II Prof. Dr. Martin Trauth, Dr. Michael Männel FB Physikalische Technik Musterlösungen Teil 4 Aufgabe 1 package teil4; import javax.swing.*; public class Ei { int haltung, ident; String

Mehr

Java - Programmierung - Prozedurale Programmierung 1

Java - Programmierung - Prozedurale Programmierung 1 Java - Programmierung - Prozedurale Programmierung 1 // elementare Datentypen public class el_dt public static void main(string args []) byte b = 127; short s = 32767; int i = 2147483647; long l = 9223372036854775807L,

Mehr

Java-Schulung Grundlagen

Java-Schulung Grundlagen Java-Schulung Grundlagen Java 2 Standard Edition JDK 5 / 6 31.05.2008 Marcel Wieczorek 1 Themenübersicht Basiswissen Objektorientierung Datentypen Fehlerbehandlung Sonstiges Einführung Klassen, Strings

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

Beispiel: Methode mit einem Fehler. Diese Methode wird problematisch, wenn von außen eine Dauer von 0 Sekunden angegeben wird, etwa im Aufruf

Beispiel: Methode mit einem Fehler. Diese Methode wird problematisch, wenn von außen eine Dauer von 0 Sekunden angegeben wird, etwa im Aufruf 16 Exceptions Zur Behandlung unerwarteter Situationen bietet Java Unterstützung in Form von Exceptions oder Ausnahmen. Den Sinn von Exceptions können wir Ihnen an einem kleinen Beispiel klarmachen. Nehmen

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Testklausur Einführung in die Programmierung Probeklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList In

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays)

1. Aufgabe (6 Punkte): Java-Programmierung (Arrays) Der folgende Mitschrieb wurde von Prof. Alexa am 16.07.2008 als Probeklausur in der MPGI2 Vorlesung gezeigt und wurde auf http://www.basicinside.de/2008/node/94 veröffentlicht. Die Abschrift ist unter

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am

MB2-ALG, SS15 Seite 1 Hauptklausur, geschrieben am MB-ALG, SS1 Seite 1 Hauptklausur, geschrieben am.07.01 Vorname Nachname Matrikel-Nr Diese Klausur ist mein letzter Prüfungsversuch (bitte ankreuzen): Ja Nein Ihre Lösung für Aufgabe 1 können Sie direkt

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung

Grundlagen der Programmierung Prof. H. Mössenböck. 14. Schrittweise Verfeinerung Grundlagen der Programmierung Prof. H. Mössenböck 14. Schrittweise Verfeinerung Entwurfsmethode für Algorithmen Wie kommt man von der Aufgabenstellung zum Programm? Beispiel geg.: Text aus Wörtern ges.:

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Allgemeine Hinweise:

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 12/13 Einführung in die Informatik I Wiederholungsklausur Prof. Dr. Helmut Seidl, A. Lehmann,

Mehr

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte)

1. Typen und Literale (6 Punkte) 2. Zuweisungen (6 = Punkte) Praktische Informatik (Software) Vorlesung Softwareentwicklung 1 Prof. Dr. A. Ferscha Hauptklausur am 01. 02. 2001 Zuname Vorname Matr. Nr. Stud. Kennz. Sitzplatz HS / / / Punkte Note korr. Fügen Sie fehlende

Mehr

ihrer Klasse benötigt die Funktion einfuegenan:

ihrer Klasse benötigt die Funktion einfuegenan: Aufgabe 11 Verkettete Listen Entwickeln Sie einen Algorithmus, der Ihnen das Einfügen eines Elementes an einer beliebigen Position innerhalb der Liste erlaubt. Der Algorithmus soll beispielsweise erlauben,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2006/2007 Praktikum Grundlagen der Programmierung Lösungsvorschläge zu Blatt 3 F. Forster, M.

Mehr

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht:

In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: Typprüfung (Compiler / Laufzeit) In C und Java müssen Variablen und Methodenergebnisse durch Typangaben erläutert werden. Welche der folgenden Aussagen sind korrekt und welche nicht: 1) Der Compiler prüft

Mehr

Musterlösungen zur Klausur Informatik 3

Musterlösungen zur Klausur Informatik 3 Musterlösungen zur Klausur Informatik 3 Justus-Liebig-Universität Gießen Wintersemester 2003/2004 Aufgabe 1 (6 Punkte) Man kreuze bei den folgenden Deklarationen und Definitionen jeweils an, ob sie aus

Mehr

Lösungen zum Übungsblatt 10: Entwicklung von Softwaresystemen I (WS 2003/04)

Lösungen zum Übungsblatt 10: Entwicklung von Softwaresystemen I (WS 2003/04) Prof. Dr. A. Poetzsch-Heffter Dipl.-Inform. N. Rauch Dipl.-Inform. C. Stenzel Technische Universität Kaiserslautern Fachbereich Informatik AG Softwaretechnik Lösungen zum Übungsblatt 10: Entwicklung von

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

ListElement (E i n f o, ListElement prev, ListElement next ) {

ListElement (E i n f o, ListElement<E> prev, ListElement<E> next ) { TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 11 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

Ausnahmebehandlung in Java

Ausnahmebehandlung in Java Ausnahmebehandlung in Java class A { void foo() throws Help, SyntaxError {... class B extends A { void foo() throws Help { if (helpneeded()) throw new Help();... try {... catch (Help e) {... catch (Exception

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

! 1. Unterklassen und Vererbung! 2. Abstrakte Klassen und Interfaces! 3. Modularität und Pakete. II.4.2 Abstrakte Klassen und Interfaces - 1 -

! 1. Unterklassen und Vererbung! 2. Abstrakte Klassen und Interfaces! 3. Modularität und Pakete. II.4.2 Abstrakte Klassen und Interfaces - 1 - ! 1. Unterklassen und Vererbung! 2. Abstrakte Klassen und Interfaces! 3. Modularität und Pakete II.4.2 Abstrakte Klassen und Interfaces - 1 - Ähnliche Programmteile public class Bruchelement { Bruch wert;

Mehr

1 Polymorphie (Vielgestaltigkeit)

1 Polymorphie (Vielgestaltigkeit) 1 Polymorphie (Vielgestaltigkeit) Problem: Unsere Datenstrukturen List, Stack und Queue können einzig und allein int-werte aufnehmen. Wollen wir String-Objekte, andere Arten von Zahlen oder andere Objekttypen

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

1. Unterklassen und Vererbung 2. Abstrakte Klassen und Interfaces 3. Modularität und Pakete. II.4.2 Abstrakte Klassen und Interfaces - 1 -

1. Unterklassen und Vererbung 2. Abstrakte Klassen und Interfaces 3. Modularität und Pakete. II.4.2 Abstrakte Klassen und Interfaces - 1 - 1. Unterklassen und Vererbung 2. Abstrakte Klassen und Interfaces 3. Modularität und Pakete II.4.2 Abstrakte Klassen und Interfaces - 1 - Ähnliche Programmteile public class Bruchelement { Bruch wert;

Mehr

Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte

Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte Klausur C-Programmierung / 15.02.2014 / Klingebiel / 60 Minuten / 60 Punkte Musterlösung 1. Aufgabe (5 Punkte) Im folgenden Programmcode sind einige Fehler enthalten. Finden und markieren Sie mindestens

Mehr

1. Grundlegende Konzepte in Java (6 Punkte)

1. Grundlegende Konzepte in Java (6 Punkte) 1. Grundlegende Konzepte in Java (6 Punkte) a) Welches der folgenden Literale ist korrekt und wenn ja, von welchem Typ ist es? "true" nicht korrekt X korrekt vom Typ String 'true' X nicht korrekt korrekt

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java)

4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java) 4. Algorithmen und Datenstrukturen I Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 8./15. November 2005 Einordnung

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

public static void replace(stringbuffer b) { for (int i = 0; i < b.length(); i++) { char replacechar; switch( b.charat(i) ) {

public static void replace(stringbuffer b) { for (int i = 0; i < b.length(); i++) { char replacechar; switch( b.charat(i) ) { Klausur aus Softwareentwicklung 1 Klausur am 3.2.2005 Institut für Pervasive Computing Univ.-Prof. Dr. Alois Ferscha Zuname Vorname Matr. Nr. SKZ HS Sitzplatz Punkte Note 1.Mehrfachverzweigung In einem

Mehr

Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012

Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012 Hochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Prof. Dr. Peter Becker Klausur Sommersemester 2012 Datenstrukturen und Algorithmen 24. September 2012 Bevor Sie mit der

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Einführung in die Programmierung I. 2.0 Einfache Java Programme. Thomas R. Gross. Department Informatik ETH Zürich

Einführung in die Programmierung I. 2.0 Einfache Java Programme. Thomas R. Gross. Department Informatik ETH Zürich 252-0027 Einführung in die Programmierung I 2.0 Einfache Java Programme Thomas R. Gross Department Informatik ETH Zürich Uebersicht 2.0 Einfache Java Programme Struktur Namen Output 2 Graphische Darstellung

Mehr

II.4.5 Generische Datentypen - 1 -

II.4.5 Generische Datentypen - 1 - 1. Unterklassen und Vererbung 2. Abstrakte Klassen und Interfaces 3. Modularität und Pakete 4. Ausnahmen (Exceptions) 5. Generische Datentypen 6. Collections II.4.5 Generische Datentypen - 1 - Ähnliche

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Übung 10: Dynamische Datenstrukturen und Rekursion

Übung 10: Dynamische Datenstrukturen und Rekursion Übung 10: Dynamische Datenstrukturen und Rekursion Abgabetermin: TT.MM.JJJJ Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Wolfinger) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben

Mehr

II.4.2 Abstrakte Klassen und Interfaces - 1 -

II.4.2 Abstrakte Klassen und Interfaces - 1 - 1. Unterklassen und Vererbung 2. Abstrakte Klassen und Interfaces 3. Modularität und Pakete 4. Ausnahmen (Exceptions) 5. Generische Datentypen 6. Collections II.4.2 Abstrakte Klassen und Interfaces - 1

Mehr

II.4.4 Exceptions - 1 -

II.4.4 Exceptions - 1 - n 1. Unterklassen und Vererbung n 2. Abstrakte Klassen und Interfaces n 3. Modularität und Pakete n 4. Ausnahmen (Exceptions) n 5. Generische Datentypen n 6. Collections II.4.4 Exceptions - 1 - Ausnahmen

Mehr

Abgabe: (vor 12 Uhr)

Abgabe: (vor 12 Uhr) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 7 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,

Mehr

6. Verkettete Strukturen: Listen

6. Verkettete Strukturen: Listen 6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten

Mehr

Schnittstellen, Stack und Queue

Schnittstellen, Stack und Queue Schnittstellen, Stack und Queue Schnittstelle Stack Realisierungen des Stacks Anwendungen von Stacks Schnittstelle Queue Realisierungen der Queue Anwendungen von Queues Hinweise zum Üben Anmerkung: In

Mehr

13. Bäume: effektives Suchen und Sortieren

13. Bäume: effektives Suchen und Sortieren Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder

Mehr

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Suchen in Texten Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Textsuche Gegeben ist ein Zeichensatz (Alphabet) Σ. Für einen Text T Σ n und

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

13. Dynamische Datenstrukturen

13. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Sortierte Liste 40 40 Motivation: Stapel ( push, pop, top, empty ) Wir brauchen einen neuen

Mehr

Primitive Datentypen

Primitive Datentypen Primitive Datentypen 2 Arten von Datentypen: primitive Datentypen (heute) Objekte (später) Java ist streng typisiert, d.h. für jede Variable muß angegeben werden was für eine Art von Wert sie aufnimmt.

Mehr

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren II Dr. Werner Struckmann 29. August 2014 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

TCP/IP Programmierung. C# TimeServer Java6 TimeClient

TCP/IP Programmierung. C# TimeServer Java6 TimeClient TCP/IP Programmierung C# TimeServer Java6 TimeClient Stand 19.10.11 21:24:32 Seite 1 von 16 Inhaltsverzeichnis Erläuterung...3 Software...3 C#TimeServer...4 Klasse ServerThread...6 Starten und Beenden...7

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

Prof. Dr. Uwe Schmidt. 30. Januar 2017

Prof. Dr. Uwe Schmidt. 30. Januar 2017 Prof. Dr. Uwe Schmidt 30. Januar 2017 Aufgaben zur Klausur Algorithmen und Datenstrukturen im WS 2016/17 ( B Inf, B TInf, B MInf, B CGT, B WInf, B Ecom, B ITE) Zeit: 75 Minuten erlaubte Hilfsmittel: keine

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Beispiel: DB-Mock (1/7)

Beispiel: DB-Mock (1/7) Beispiel: DB-Mock (1/7) Aufgabe: DB, auf die vereinfachend nur lesend zugeriffen wird mocken warum: benötigte keine DB-Lizenz, garantiert gleiche Werte ohne aufwändiges reset, kein Zeitverlust durch Verbindungsaufbau

Mehr

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18 EINI LogWing/ Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 17/18 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays)

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.3. Anweisungen und Kontrollsttukturen - 1 - 3. Anweisungen und Kontrollstrukturen

Mehr

Inf 12 Aufgaben 14.02.2008

Inf 12 Aufgaben 14.02.2008 Inf 12 Aufgaben 14.02.2008 Übung 1 (6 Punkte) Ermitteln Sie eine mathematische Formel, die die Abhängigkeit der Suchzeit von der Anzahl der Zahlen N angibt und berechnen Sie mit Ihrer Formel die durchschnittliche

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

16. Dezember 2004 Dr. M. Schneider, P. Ziewer

16. Dezember 2004 Dr. M. Schneider, P. Ziewer Technische Universität München WS 2004/2005 Fakultät für Informatik Lösungsvorschläge zu Blatt 8 A. Berlea, M. Petter, 16. Dezember 2004 Dr. M. Schneider, P. Ziewer Übungen zu Einführung in die Informatik

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays)

1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) 1. Erste Schritte 2. Einfache Datentypen 3. Anweisungen und Kontrollstrukturen 4. Verifikation 5. Reihungen (Arrays) II.1.3. Anweisungen und Kontrollstrukturen - 1 - Anweisung Anweisung Zuweisung Methodenaufruf

Mehr

Klausur zur Informatik A WS 2001/2002 Name: Korrektor: Punkte: a) Zeichnen Sie zu der nachstehenden Syntax in EBNF die passenden Syntaxdiagramme.

Klausur zur Informatik A WS 2001/2002 Name: Korrektor: Punkte: a) Zeichnen Sie zu der nachstehenden Syntax in EBNF die passenden Syntaxdiagramme. Aufgabe 1 a) Zeichnen Sie zu der nachstehenden Syntax in EBNF die passenden Syntaxdiagramme. Drei0 ::= 0 3 6 9 Drei1 ::= 1 4 7 Drei2 ::= 2 5 8 Drei ::= Drei0 Drei0 Drei1 Drei2 Drei2 Drei1 b) Gegeben sei

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 14/15. Kapitel 11. Fehler und Ausnahmen 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 14/15. Kapitel 11. Fehler und Ausnahmen 1 Kapitel 11 Fehler und Ausnahmen Fehler und Ausnahmen 1 Ziele Fehlerquellen in Programmen und bei der Programmausführung verstehen Das Java-Konzept der Ausnahmen als Objekte kennenlernen Ausnahmen auslösen

Mehr

2. Einfache Suchverfahren. Beispiel-Spezifikation in Java. Lineare Listen (2) Lineare Listen Sequentielle Suche Binäre Suche

2. Einfache Suchverfahren. Beispiel-Spezifikation in Java. Lineare Listen (2) Lineare Listen Sequentielle Suche Binäre Suche Lineare Listen Sequentielle Suche Binäre Suche. Einfache Suchverfahren Weitere Suchverfahren auf sortierten Feldern - Fibonacci-Suche - Sprungsuche - Exponentielle Suche - Interpolationssuche Auswahlproblem

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 10. Klassen

Grundlagen der Programmierung Prof. H. Mössenböck. 10. Klassen Grundlagen der Programmierung Prof. H. Mössenböck 10. Klassen Motivation Wie würde man ein Datum speichern (z.b. 13. November 2004)? 3 Variablen int da; String month; int ear; Unbequem, wenn man mehrere

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Java - Programmierung - Objektorientierte Programmierung 1

Java - Programmierung - Objektorientierte Programmierung 1 Java - Programmierung - Objektorientierte Programmierung 1 // Klassen und Objekte public class KlaObj public static void main(string args []) Klasse1 a; a = new Klasse1("heute", 47); Klasse1 b = new Klasse1

Mehr

Selbststudium OOP7 & ALG2 Auftrag

Selbststudium OOP7 & ALG2 Auftrag Selbststudium OOP7 & ALG2 Auftrag Kapitel 5.6 1. zu bearbeitende Aufgaben: 5.24 bis 5.30 5.24: Return Method Set entryset() V get(object key) Set keyset() V put(k key, V value) void

Mehr

Vorkurs Informatik Wintersemester 2015/2016. Programmtexte

Vorkurs Informatik Wintersemester 2015/2016. Programmtexte www.vorkurs-informatik.de Vorkurs Informatik Wintersemester 2015/2016 Programmtexte 1 Grundkonzepte der Programmierung Java-Programm zur Suche des Minimums: class ProgrammMinSuche{ int[] a = {11,7,8,3,15,13,9,19,18,10,4;

Mehr

Abteilung Informatik, JFC/Swing 2004 Diego Schmidlin V2.2

Abteilung Informatik, JFC/Swing 2004 Diego Schmidlin V2.2 Inhalt 1. Drag and Drop (DnD) 1. Transfer-Mechanismus 2. Transfer-Support 3. Cursor-Symbole 4. Einführendes Beispiel 5. Komponenten DnD-fähig machen 6. Standard DnD-Verhalten ändern Folie 1 Lernziele Sie

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (07 - Skiplisten) Prof. Dr. Susanne Albers

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (07 - Skiplisten) Prof. Dr. Susanne Albers Vorlesung Informatik 2 Algorithmen und Datenstrukturen (07 - Skiplisten) Prof. Dr. Susanne Albers Skiplisten. Perfekte Skiplisten 2. Randomisierte Skiplisten 3. Verhalten von randomisierten Skiplisten

Mehr

Fortgeschrittenes Programmieren mit Java. Test Driven Development

Fortgeschrittenes Programmieren mit Java. Test Driven Development Fortgeschrittenes Programmieren mit Java Test Driven Development Test getriebene Programmierung Benedikt Boeck Hochschule für Angewandte Wissenschaften Hamburg 6. November 2009 B. Boeck (HAW Hamburg) Test

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr