Algorithmen und Datenstrukturen

Größe: px
Ab Seite anzeigen:

Download "Algorithmen und Datenstrukturen"

Transkript

1 Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von Uhr (Gruppen E, F, G, H; Vortestat für Prototyp) 2 1

2 Überblick Grundlagen Suchalgorithmen Sortieralgorithmen Analyse von Algorithmen 3 Binäre Suche nur geeignet für sortierte Datenbestände Schlüsselwerte müssen eindeutig sein (dürfen also nicht mehrfach im Datenbestand vorkommen) Teile-und-herrsche-Prinzip Verfahren: Vergleiche das mittlere Element des Datenbestands mit dem Suchschlüssel. Wenn Übereinstimmung dann fertig. Wenn Suchschlüssel größer, dann Suche in rechter Hälfte fortsetzen. ( mittleres Element der rechten Hälfte) Wenn Suchschlüssel kleiner, dann Suche in linker Hälfte fortsetzen. ( mittleres Element der linken Hälfte) 4 2

3 Binäre Suche Beispiel: Suchschlüssel: 30 [3..66] Vergleiche mit 36: [3..32] Vergleiche mit 17: [22..32] Vergleiche mit 30: 30<36 linke Hälfte 30>17 rechte Hälfte 30=30 gefunden! 5 Binäre Suche int search( int l, int r, int akey ) { int result = -1; int m; if (l <= r) { m = (l+r)/2; if (data[m].key == akey) { result = m; else { if (data[m].key < akey) { result = search( m+1, r, akey ); else { result = search( l, m-1, akey ); // if return result; 6 3

4 Binäre Suche Vorteile: zeitsparender gegenüber der seq. Suche weniger Vergleiche nötig geeignet für große Datenbestände Nachteile: erfordert sortierten Datenbestand eignet sich nicht, wenn Datenbestand in verketteter Liste vorliegt, da Bestimmung des Mittelelments zu aufwendig ist 7 Binäre Suche Bei einem Datenbestand von Datensätzen werden maximal 20 rekursive Aufrufe benötigt, bis feststeht ob und wenn ja an welcher Stelle ein bestimmtes Element steht. 8 4

5 Binäre Suche 2. Variante int BinSearch( int akey ) { int l, r, m; l = 0; r = N-1; while (l < r) { m = (l + r) / 2; if (data[m].key < akey) { l = m + 1; else { r = m; if (data[r].key == akey) { return(r); else { return(-1); 9 Binäre Suche 2. Variante Welche Unterschiede gibt es zwischen den beiden hier vorgestellten Varianten der binären Suche? 10 5

6 Interpolationssuche Stellt Verbesserung der binären Suche dar. Versucht zu erraten, wo sich der gesuchte Schlüssel im betrachteten Intervall befinden könnte, anstatt immer nur mit dem mittleren Element zu vergleichen. Vergleichbar mit der Suche in einem dicken Telefonbuch: Beginnt der Name mit B, sucht man weiter vorne, beginnt er mit W, sucht man weiter hinten. 11 Interpolationssuche Bei der binären Suche wurde die Mitte bestimmt, um dort den nächsten Vergleich durchzuführen: m = (l + r) / 2 = l + ½ (r - l) Bei der Interpolationssuche ersetzt man nun den Faktor ½ durch eine geeignete Schätzung für die wahrscheinliche (oder erwartete) Position des Suchschlüssels. 12 6

7 Interpolationssuche akey - data[l].key m = l + (r - l) data[r].key - data[l].key Voraussetzung: die Schlüsselwerte im Intervall data[l].key,..., data[r].key sind Zahlenwerte und einigermaßen gleichverteilt m wird bei der Berechnung korrekt gerundet 13 Interpolationssuche Beispiel (absolute Gleichverteilung: jeder Wert ist genau einmal vorhanden) Suchschlüssel akey=5 1. Durchgang: l=0, r=14 Die Berechnung ergibt: m=4 D.h. bereits der erste Vergleich trifft ins Schwarze! 14 7

8 Interpolationssuche Beispiel (weitgehende Gleichverteilung: zwischen dem kleinsten und dem größten Wert gibt es nur wenige Lücken) Suchschlüssel akey=6 1. Durchgang: l=0, r=14 Die Berechnung ergibt: m=3 D.h. auch hier trifft der erste Vergleich! 15 Interpolationssuche Beispiel Suchschlüssel akey=18 1. Durchgang: l=0, r=14 Die Berechnung ergibt: m=11 D.h. auch hier trifft der erste Vergleich! 16 8

9 Interpolationssuche Vorteile: I.d.R. weniger Vergleiche nötig als bei binärer Suche Nachteile: setzt gleichmäßig verteilte Schlüsselwerte voraus (ist in der Praxis nicht unbedingt gegeben) Berechnung von m ist komplexer 17 Interpolationssuche Der Quellcode der Interpolationssuche entspricht dem der Binären Suchen mit der einzigen Änderung, dass die Berechnung vom m entsprechend geändert wird. 18 9

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1

Sortieren durch Einfügen. Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Sortieren durch Einfügen Prof. Dr. W. Kowalk Sortieren durch Einfügen 1 Schon wieder aufräumen Schon wieder Aufräumen, dabei habe ich doch erst neulich man findet alles schneller wieder Bücher auf Regal

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("Routing-Tabelle")

Gegeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist (Routing-Tabelle) 8 Digitalbäume, Tries,, Suffixbäume 8.0 Anwendungen Internet-outer egeben Zieladresse, finde Nachbarknoten, an den Paket zu senden ist ("outing-tabelle") 3 network addr Host id 00 0000 000 0 00 0 0000

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

Algorithmen. Suchalgorithmen

Algorithmen. Suchalgorithmen Algorithmen Suchalgorithmen Suchen in Tabellen Der Standardfall. Wie in der Einleitung beschrieben, handelt es sich bei den Datensätzen, die durchsucht werden sollen, um Zahlen. Ein Array könnte beispielsweise

Mehr

Algorithmen und Programmieren II Einführung in Python

Algorithmen und Programmieren II Einführung in Python Algorithmen und Programmieren II Einführung in Python SS 2012 Prof. Dr. Margarita Esponda 1 Was ist Python? eine Skript-Sprache Anfang der 90er Jahre entwickelt. Erfinder: Guido van Rossum an der Universität

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

10. Kapitel (Teil1) BÄUME GRUNDLAGEN. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm 10. Kapitel (Teil1) BÄUME GRUNDLAGEN Algrithmen & Datenstrukturen Prf. Dr. Wlfgang Schramm Übersicht 1 1. Einführung 2. Algrithmen 3. EigenschaCen vn Prgrammiersprachen 4. Algrithmenparadigmen 5. Suchen

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Beheben von verlorenen Verknüpfungen 20.06.2005

Beheben von verlorenen Verknüpfungen 20.06.2005 Vor folgender Situation ist sicher jeder Solid Edge-Anwender beim Öffnen von Baugruppen oder Drafts schon einmal gestanden: Die Ursache dafür kann sein: Die Dateien wurden über den Explorer umbenannt:

Mehr

Zum Abschluss wird gezeigt, wie aus einem C++ Quell-Programm ein ausführbares Programm erzeugt wird. 1. Installation von NetBeans...

Zum Abschluss wird gezeigt, wie aus einem C++ Quell-Programm ein ausführbares Programm erzeugt wird. 1. Installation von NetBeans... Erste Schritte Dieser Teil der Veranstaltung gibt einen ersten Eindruck der Programmierung mit C++. Es wird ein erstes Gefühl von Programmiersprachen vermittelt, ohne auf die gezeigten Bestandteile genau

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK

Informatik-Sommercamp 2012. Mastermind mit dem Android SDK Mastermind mit dem Android SDK Übersicht Einführungen Mastermind und Strategien (Stefan) Eclipse und das ADT Plugin (Jan) GUI-Programmierung (Dominik) Mastermind und Strategien - Übersicht Mastermind Spielregeln

Mehr

LISE MEITNER GYMNASIUM NEUENHAUS UELSEN

LISE MEITNER GYMNASIUM NEUENHAUS UELSEN Entwurf eines schulinternen Curriculums im Fach Informatik für die Qualifikationsphase (Jahrgang 11 und 12) Für die Gestaltung des Informatikunterrichts in der Qualifikationsphase sind für das schulinterne

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

EUID. []Ihr persönlicher Code * 1 von 23 25.09.2014 13:52. Liebe Teilnehmerinnen und Teilnehmer an unserem Begleitprojekt,

EUID. []Ihr persönlicher Code * 1 von 23 25.09.2014 13:52. Liebe Teilnehmerinnen und Teilnehmer an unserem Begleitprojekt, 1 von 23 25.09.2014 13:52 Liebe Teilnehmerinnen und Teilnehmer an unserem Begleitprojekt, nochmals vielen Dank für Ihre Bereitschaft an unserem Projekt teilzunehmen. Wir sind mittlerweile beim letzten

Mehr

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren

Stefan Lucks Krypto und Mediensicherheit (2009) 4: Stromchiffren 4: Stromchiffren Zwei Grundbausteine der symmetrischen Kryptographie: Stromchiffren Verschlüsseln beliebig langer Klartexte, interner Zustand Blockchiffren Verschlüsseln von Blocks einer festen Größe,

Mehr

Rekursion. Was heißt "rekursiv" Page 1. Eine Methode m() heißt rekursiv, wenn sie sich selbst aufruft. Beispiel: Berechnung der Fakultät (n!

Rekursion. Was heißt rekursiv Page 1. Eine Methode m() heißt rekursiv, wenn sie sich selbst aufruft. Beispiel: Berechnung der Fakultät (n! Rekursion Was heißt "rekursiv" Eine Methode m() heißt rekursiv, wenn sie sich selbst aufruft m() { m(); direkt rekursiv m() { n() { m(); indirekt rekursiv Beispiel: Berechnung der Fakultät (n!) n! = 1

Mehr

Übung zur Vorlesung Einführung in die Computerlinguistik und Sprachtechnologie

Übung zur Vorlesung Einführung in die Computerlinguistik und Sprachtechnologie Übung zur Vorlesung Einführung in die Computerlinguistik und Sprachtechnologie Wintersemester 2009/10, Prof. Dr. Udo Hahn, Erik Fäßler Übungsblatt 3 vom 19.11.2009 Abgabe bis 26.11.2009, 14:30 Uhr; per

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Universität der Bundeswehr Fakultät für Informatik Institut 2 Priv.-Doz. Dr. Lothar Schmitz FT 2006 Zusatzaufgaben Lösungsvorschlag Objektorientierte Programmierung Lösung 22 (Java und UML-Klassendiagramm)

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Einführung in die Programmierung Konstanten, dynamische Datenstrukturen. Arvid Terzibaschian

Einführung in die Programmierung Konstanten, dynamische Datenstrukturen. Arvid Terzibaschian Einführung in die Programmierung Arvid Terzibaschian 1 Konstanten 2 Motivation Unveränderliche, wichtige Werte mathematische Konstanten z.b. PI String-Konstanten wie z.b. häufige statische Meldungen mögliche

Mehr

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von

Mehr

Übungsblatt 2. Abgabe: Freitag, 7. November 2014, 18:00 Uhr

Übungsblatt 2. Abgabe: Freitag, 7. November 2014, 18:00 Uhr Informatik I: Einführung in die Programmierung Prof. Dr. Bernhard Nebel Dr. Christian Becker-Asano, Dr. Stefan Wölfl Wintersemester 2014/2015 Universität Freiburg Institut für Informatik Übungsblatt 2

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Informatikpraktikum CE2. Übung 1: Einfach verkettete Liste

Informatikpraktikum CE2. Übung 1: Einfach verkettete Liste Informatikpraktikum CE2 Übung 1: Einfach verkettete Liste c Torben Nehmer 1998 INHALTSVERZEICHNIS INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Anforderungen an die Liste 3 1.1 Beschreibung

Mehr

Institut für Informatik

Institut für Informatik Technische Universität München Institut für Informatik Lehrstuhl für Computer Graphik & Visualisierung WS 2010 Praktikum: Grundlagen der Programmierung Lösungsblatt 7 Prof. R. Westermann, A. Lehmann, R.

Mehr

Äquivalente Grammatiken / attributierte Grammatik

Äquivalente Grammatiken / attributierte Grammatik Äquivalente Grammatiken / attributierte Grammatik Linksfaktorisierung Elimination von Linksrekursion Umwandlung von EBNF in BNF Attributierte Grammatik Semantikfunktionen und Übersetzungsschema Synthetisierte,

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Gierhardt. 1 import javakara. JavaKaraProgram ; 3 public class Playit1 extends JavaKaraProgram. 4 { // Anfang von Playit1. 6 void gehezumbaum ( ) 7 {

Gierhardt. 1 import javakara. JavaKaraProgram ; 3 public class Playit1 extends JavaKaraProgram. 4 { // Anfang von Playit1. 6 void gehezumbaum ( ) 7 { Informatik: Einführung in Java Gierhardt Play it again, Kara! (Lsg.) 1. Kara soll ein Kleeblatt finden, das sich in der gleichen Zeile (oder Spalte) befindet wie er selbst. Zwischen ihm und dem Kleeblatt

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

TA-STUDIE "MOBILE ARBEITSFORMEN: VERBREITUNG UND POTENZIAL VON TELEARBEIT UND DESKSHARING" MANAGEMENT-SUMMARY ZUM SCHLUSSBERICHT

TA-STUDIE MOBILE ARBEITSFORMEN: VERBREITUNG UND POTENZIAL VON TELEARBEIT UND DESKSHARING MANAGEMENT-SUMMARY ZUM SCHLUSSBERICHT Prof. Dr. rer. pol. Thomas M. Schwarb Diplompsychologe Albert Vollmer Prof. Dr. phil. II Ruedi Niederer TA-STUDIE "MOBILE ARBEITSFORMEN: VERBREITUNG UND POTENZIAL VON TELEARBEIT UND DESKSHARING" MANAGEMENT-SUMMARY

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Whitepaper. Produkt: combit Relationship Manager 7, address manager 17. Import von Adressen nach Firmen und Kontakte

Whitepaper. Produkt: combit Relationship Manager 7, address manager 17. Import von Adressen nach Firmen und Kontakte combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager 7, address manager 17 Import von Adressen nach Firmen und Kontakte Import von Adressen nach Firmen und Kontakte

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

Zum Einsatz von Operatoren im Informatikunterricht

Zum Einsatz von Operatoren im Informatikunterricht Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Professur für Didaktik der Informatik/Mathematik Claudia Strödter E-Mail: claudia.stroedter@uni-jena.de Zum Einsatz von Operatoren

Mehr

Speicherstrukturen. Aufgabe 1-1: Fragen zu FAT (File Allocation Table) Aufgabe 1-2: Datensätze variabler Länge. Kind.java:

Speicherstrukturen. Aufgabe 1-1: Fragen zu FAT (File Allocation Table) Aufgabe 1-2: Datensätze variabler Länge. Kind.java: Institut für Datenbanken und Informationssysteme Prof. Dr. M. Reichert, M. Predeschly, J. Kolb Lösung für Übungsblatt 1 Aufgabe 1-1: Fragen zu FAT (File Allocation Table) 1. Im Bootsektor der Festplatte

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 10. Klassen

Grundlagen der Programmierung Prof. H. Mössenböck. 10. Klassen Grundlagen der Programmierung Prof. H. Mössenböck 10. Klassen Motivation Wie würde man ein Datum speichern (z.b. 13. November 2004)? 3 Variablen int da; String month; int ear; Unbequem, wenn man mehrere

Mehr

Programmieren in C. Operatoren, Variablen und deren Sichtbarkeit. Prof. Dr. Nikolaus Wulff

Programmieren in C. Operatoren, Variablen und deren Sichtbarkeit. Prof. Dr. Nikolaus Wulff Programmieren in C Operatoren, Variablen und deren Sichtbarkeit Prof. Dr. Nikolaus Wulff Auswertung von Ausdrücken Was passiert wenn ein Ausdruck wie z. B. int y,x=2; y = ++x * x++; im Computer abgearbeitet

Mehr

Praktikum im Bereich Praktische Informatik Echtzeitgraphik in C++ und DirectX10. computer graphics & visualization

Praktikum im Bereich Praktische Informatik Echtzeitgraphik in C++ und DirectX10. computer graphics & visualization Praktikum im Bereich Praktische Informatik Echtzeitgraphik in C++ und DirectX10 Übersicht In den ersten Wochen: Einführung in objektorientierte Programmierung mit C++ Anschließend: Einführung in die programmierbare

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

Test. Dipl. Wirtsch. Ing. Alexander Werth 9-1

Test. Dipl. Wirtsch. Ing. Alexander Werth 9-1 Test Dipl. Wirtsch. Ing. Alexander Werth 9-1 Phasen der Problemdefinition Anforderungsanalyse Spezifikation Entwurf Implementation Erprobung Wartung Methoden der 9-2 Software Test / Erprobung Messen der

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

System Modell Programm

System Modell Programm Wolfgang P. Kowalk System Modell Programm Vom GOTO zur objektorientierten Programmierung Spektrum Akademischer Verlag Heidelberg Berlin Oxford Inhaltsverzeichnis Vorwort 3 Inhaltsverzeichnis 5 1 Einleitung

Mehr

Mehr Chancen zu gewinnen!

Mehr Chancen zu gewinnen! Spielanleitung Mehr Chancen zu gewinnen! Anteilsschein Spielanleitung Der Lotto Anteilsschein! Der Anteilsschein bietet Ihnen mehr Chancen zu gewinnen ganz einfach durch die Möglichkeit Anteile an einer

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Allgemein Teilgebiete der Informatik ohne Theoretische Grundlagen 2 Fragen an

Mehr

Kapitel 4: Flusschiffren

Kapitel 4: Flusschiffren Stefan Lucks 4: Flusschiffren 52 orlesung Kryptographie (SS06) Kapitel 4: Flusschiffren Als Basis-Baustein zur Verschlüsselung von Daten dienen Fluss- und Blockchiffren. Der Unterschied: Flusschiffren

Mehr

Performanceanalyse der Artikeldarstellung

Performanceanalyse der Artikeldarstellung PhPepperShop - Performanceanalyse José Fontanil und Reto Glanzmann Performanceanalyse der Artikeldarstellung José Fontanil / Reto Glanzmann Januar 2003 Performanceanalyse Artikel anzeigen im PhPepperShop.sxw

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Assertions (Zusicherungen)

Assertions (Zusicherungen) April 10, 2005 Oberseminar Software-Entwicklung Inhalt 1. Einführung (Motivation, Tony Hoare, Programmverifikation) 2. Design by Contract (Idee, Eiffel) 3. Praxis: Programming by Contract for Python 4.

Mehr