Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule"

Transkript

1 Elektrischer Strom erzeugt ein Magnetfeld Oersted Ein Kupferdraht wird so eingespannt, dass er in NordSüdRichtung verläuft. Wir schließen den Schalter für kurze Zeit (Kurzschluss!) und beobachten die Magnetnadel (sie muss sich nahe beim Draht befinden). Wir polen um und wiederholen den Versuch. Wie erfolgt jetzt die blenkung? Wir können die blenkung auch mit Hilfe der Magnetfeldsonde rings um den Draht untersuchen. U = 3 V dc W N S O Kupferdraht (18 cm) Erkenntnis: Ein stromdurchflossener Leiter lenkt eine Magnetnadel ab. Die Richtung der blenkung hängt davon ab, in welcher Richtung der Strom fließt und wo sich die Magnetnadel befindet. Stromdurchflossene Leiter sind von einem ringförmigen Magnetfeld umgeben. E 6.1 Magnetfeld einer Spule Der Stromkreis mit der Spule (2x Windungen) wird geschlossen und wir tasten den Raum um die Spule mit der Magnetfeldsonde ab. Spule Die wird mit dem Baustein Klemmbuchse und Klemmhalter so 9 V dc eingespannt, dass ein Ende ca. 1 cm von der Spule entfernt ist. Nach dem Schließen des Schalters beobachten wir, ob die von der Spule angezogen wird. Wir wiederholen den zweiten Versuch nachdem wir den zylindrischen Eisenkern in die Spule gesteckt haben. Die wird nun angezogen (nach dem bschalten löst sie sich nicht, da im Eisenkern ein Restmagnetismus bleibt). Erkenntnis: Elektrischer Strom erzeugt in einer Spule ein Magnetfeld. Es entspricht dem Feld eines Stabmagneten. Die Magnetpole befinden sich an den Enden der Spule. Ein Eisenkern verstärkt das Magnetfeld der Spule. E 6.2 1

2 Magnetschalter Relais In diesem Modellversuch zum Relais bestehen die Schaltkontakte (rbeitskontakt und Ruhekontakt R) aus Krokoklemmen mit Steckerstift. ls Elektromagnet dient die Spule (2x) mit Eisenkern. 1. Relais mit rbeitskontakt: Beim Schließen des Schalters wird die Spule mit Eisenkern zu einem Magneten, der die anzieht und den Stromkreis mit dem Glühlämpchen über den rbeitskontakt schließt. rbeitsstromkreis Steuerstromkreis V ac Lampe Schalter Halterung Spule mit Eisenkern 12 V dc 1 2. Relais mit Ruhekontakt: Beim Schließen des Schalters wird die Spule mit Eisenkern zu einem Magneten, der die vom Ruhekontakt R wegzieht und den Stromkreis mit dem Glühlämpchen unterbricht. rbeitsstromkreis R Steuerstromkreis Er St fu Halterung Spule mit Eisenkern R 12 V dc V ac Lampe Schalter 2 Erkenntnis: Ein Relais ist ein elektromagnetischer Schalter. Beim Schließen des Steuerstromkreises wird der rbeitskontakt geschlossen, und der Ruhekontakt unterbrochen. E 6.3, 6.4

3 SelbstunterbrecherSchalter 4 9 V dc Die Spule (mit Eisenkern), der Kontaktstift, die Stahlblattfeder und der Schalter sind in Reihe geschaltet. Die soll ca. 7 mm vom Eisenkern entfernt sein. Wird der Schalter geschlossen, so wird die vom Eisenkern der Spule angezogen und der Stromkreis wird unterbrochen. Der Eisenkern lässt die wieder los und der Stromkreis schließt sich wieder. Die schwingt hin und her und schließt und öffnet dabei ständig den Stromkreis. Erkenntnis: Eine kann durch geeignete Schaltung einen Stromkreis immer wieder öffnen und schließen. Nach diesem Prinzip funktionieren z.b. elektrische Klingeln. E 6.6 WechselstromSummer Der Wechselstrom Summer benötigt keinen Selbstunterbrecher. Für die Unterbrechung sorgt der Wechselstrom. 12 V ac Nach dem Schließen des Schalters wird die angezogen und sofort wieder losgelassen. Der Vorgang wiederholt sich 100 mal pro Sekunde. Erkenntnis: Die wird in Schwingung versetzt, weil hundert mal in jeder Sekunde die Stromstärke anwächst und wieder auf Null zurück geht (hundert Halbperioden des Wechselstromes). E 6.7 Die soll ca. 810 mm vom Eisenkern entfernt sein.

4 .6.7 Relais mit rbeits und Ruhekontakt Vor dem Schließen des Schalters L1 ist die beim V ac Ruhekontakt R. Die Lampe L1 leuchtet. Nach dem Schließen des Schalters zieht die Spule die weg vom Ruhekontakt hin zum rbeitskontakt, die Lampe L1 verlischt und die Lampe L2 leuchtet auf. 12 V dc Modell einer Magnetsicherung Eine Magnetsicherung soll bei Kurzschluss den Stromkreis schnell unterbrechen. K Messing R Eisen Spule mit Eisenkern Lampe 12 Vdc E 6.5 Die Messing wird durch die Stahl nach oben gegen die Krokoklemme (K) gedrückt. Dadurch wird der Kontakt (Stromkreis) geschlossen. Die Stahl ist ca. 810 mm vom Eisenkern der Spule entfernt. Im Kurzschlussfall wird die Stahl von der Spule mit Eisenkern angezogen und gibt die aus Messing frei. Diese schnellt nach unten und unterbricht den Stromkreis (Die Stahl selbst liegt nicht im Stromkreis) Erkenntnis: Die Magnetsicherung unterbricht einen Stromkreis sofort, wenn die Stromstärke infolge eines Kurzschlusses zur groß wird. E 6.8 L2 Spule mit Eisenkern Schalter Erkenntnis: Durch Verwenden beider Kontakte ( und R) kann ein Relais als Umschalter zwischen zwei Verbrauchern verwendet werden. Kurzschluss

5 Motorische Wirkung des el. Stromes.5 8 Nach dem Schließen des Stromkreises nähern wir dem Metallfaden von oben zuerst den Nordpol, dann den Südpol des Stabmagneten (der Schalter soll nicht unnötig lange geschlossen bleiben!). U = V dc LorentzKraft Kupferdraht (ca. 10 cm) Erkenntnis: Ein stromdurchflossener Leiter (im Versuch der Metallfaden) bewegt sich normal zur Stromrichtung und normal zur Richtung des Magnetfeldes. Es wirkt also eine Kraft auf den stromdurchflossenen Leiter. Die Spule mit Windungen wird mit dem UKern versehen. Der Metallfaden hängt lose zwischen Eisenkern und Spule. Wir schließen zunächst den Schalter im Stromkreis mit dem Elektromagneten. Danach wird der zweite Schalter geschlossen. Sofort bewegt sich der Metallfaden (Schalter rasch wieder öffnen!). Durch Umpolen der Spannung am Metallfaden ändert sich die Bewegungsrichtung. 3 V dc Schalter nur kurz schließen! S Metallfaden Ein Änderung der Magnetfeldrichtung können wir durch Umpolen des Stromkreises durch die Spule erreichen. Erkenntnis: Ein stromduchflossener Leiter wird in einem Magnetfeld N durchhängen lassen E V dc abgelenkt. Die Kraft auf den stromdurchflossenen Leiter ist die Lorentz Kraft. Ihre Richtung ist normal zur Richtung des Stromes und zur Richtung des Magnetfeldes (Merkregel: "DreiFingerRegel") E 7.1.1

6 Spule. E 6.2 Prinzip des Elektromotors Der Elektromotor beruht auf dem Zusammenwirken zweier Magnetfelder, von denen eines (oder beide) durch elektrischen Strom verursacht wird. Die Spule (2x Wdg.) erhält einen Eisenkern. Neben der Schaltung steht der Nadelfuß mit Stecker und Nadel. Die Lagerhülse wird mit zwei zylindrischen Stabmagneten auf die Nadel aufgesetzt. Die usgangsstellung des Stabmagneten ist stets gemäß der Zeichnung einzustellen V dc Minuspol an die Klemmbuchse halten Wir schalten die Gleichspannung ein indem wir den Kontakt bei B schließen. Der Nordpol des Stabmagneten wird vom Eisenkern in der Spule angezogen. Wir unterbrechen den Stromkreis wieder. Wir bringen den Stabmagneten wieder in usgangsstellung und schließen bei B den Stromkreis nur kurzzeitig. Noch bevor der Nordpol des Magneten bei der Spule angelangt ist unterbrechen wir den Stromkreis wieder. Der Magnet dreht sich auf Grund der Trägheit weiter. Wenn der Nordpol wieder in der Nähe der usgangsstellung ist, wird der Kontakt wieder geschlossen. Dadurch lässt sich eine ganze Drehung des Stabmagneten ausführen. Noch besser wäre es, den Stromkreis nicht zu unterbrechen, sondern statt dessen die Polung der angelegten Gleichspannung zu vertauschen. Warum? Erkenntnis: Durch Unterbrechen oder durch Umpolen der angelegten Spannung kann der elektrische Strom eine Drehbewegung bewirken. B N S E 7.2

7 2 E 6.3, Erkenntnis: Modell eines Elektromotors Polblech Beim Gleichstrommotor dreht sich eine Spule in einem konstanten Magnetfeld, weil der Strom durch die Spule und damit das Magnetfeld der Spule nach jeder Halbdrehung umgepolt wird. Die Umpolung erfolgt durch den geteilten Schleifkontakt (Kommutator) Einen Motor mit Permanentmagnet kann man nicht mit Wechselstrom betreiben. Gleichstrommotor Wir tasten vor dem Einschalten mit der Magnetfeldsonde den Raum um den Gleichstrommotor ab. Man erkennt, dass sich im Gehäuse des Motors ein Permanentmagnet befinden muss. Nach dem Schließen des Schalters beobachten wir die Drehrichtung des Motors. Dann öffnen wir den Schalter und und vertauschen die nschlüsse an der Spannungsquelle. Nach dem Einschalten dreht sich der Motor nun in die andere Richtung V dc M E 7.3 Erkenntnis: In einem kleinen Gleichstrommotor wird meist ein Permanentmagnet zur Erzeugung des äußeren Magnetfeldes eingesetzt. Die Drehrichtung des Motors wird durch die Richtung des Gleichstroms bestimmt. E N 6 V dc S Spule () mit Eisenkern (Joch des UKerns) Kommutatorscheibe Bürsten 1. 2.

8 4 geht (hundert Halbperioden des Wechselstromes). E Hauptschlussmotor (HSM) Permanentmagnete werden nur in kleinen Motoren verwendet. Elektromagnete sind für die Felderzeugung vorteilhafter (warum?). Die felderzeugende Spule und die Rotorspule sind beim HSM in Reihe geschaltet. 12 V dc 12 V ac Polblech Bürsten Spule (2x) mit Eisenkern Erkenntnis: Ein Elektromotor mit Elektromagnet kann mit Gleichoder Wechselspannung betrieben werden (Universalmotor). Spule () mit Eisenkern (Joch des UKerns) 1. Nach dem Schließen des Schalters dreht sich die Rotorspule. Durch Umpolen der angelegten Spannung können wir die Drehrichtung nicht ändern, weil sich dadurch die Stromrichtung sowohl im Rotor als auch in der Feldspule ändert. 2. Wir legen nun 12 V Wechselspannung an und erkennen nach dem Schließen des Schalters, dass sich dieses Motormodell auch mit Wechselspannung betreiben lässt. Nebenschlussmotor (NSM) Beim NSM werden felderzeugende Spule und Rotorspule parallel geschaltet. Der Schalter 1 dient zum Schließen des Stromkreises in der Feldspule, mit dem Schalter 2 wird der Stromkreis im Rotor geschlossen. Der Motor läuft. Versuche und Erkenntnis: wie beim HSM 1 2 Polblech Bürsten V dc Kommutatorscheibe Kommutatorscheibe E 7.4 Spule (2x) mit Eisenkern Spule () mit Eisenkern (Joch des UKerns) E 7.5

9 .7 E 6.8 Induktion durch Bewegung 4 In der Schaltung befindet sich keine Spannungsquelle. Wir erzeugen Spannung durch die sog. Induktion. N S 1. Wir bewegen den Stabmagneten gleichmäßig langsam in die Öffnung der Spule (2x) hinein und ziehen in dann nach kurzer Pause wieder heraus. Das V Voltmeter zeigt jeweils eine Spannung unterschiedlicher Polarität an. 2. Wir bewegen den Stabmagneten ruckartig schnell in die Öffnung der Spule (2x) hinein und nach kurzer Pause wieder schnell heraus. Die angezeigte Spannung ist nun größer als im 1. Versuch. 3. Wir bewegen den Stabmagneten ruckartig schnell in die Öffnung der Spule () hinein und nach kurzer Pause wieder schnell heraus. Die angezeigte Spannung ist nun kleiner als im 2. Versuch (ca. halb so groß). Erkenntnis: Durch Relativbewegung zwischen einem Magneten und einer Spule wird in dieser Spannung erzeugt (induziert). Die Größe der Spannung hängt ab von: der Geschwindigkeit der Relativbewegung, der Windungszahl der Spule und der Stärke des Magneten. E 8.1 Generatorprinzip Schaltskizze wie oben, jedoch wird der Stabmagnet drehbar gelagert. Wir versetzen den Stabmagneten in langsame Drehung und beobachten das Voltmeter. Bei nnäherung des Nordpols und des Südpols entstehen Spannungsstöße mit unterschiedlicher Polarität. Ve Erkenntnis: Wenn sich ein Magnet vor einer Induktionsspule dreht, entsteht in der Spule Wechselspannung. Das ist das Grundprinzip des Generators. E 8.2

10 8 E Induktionsspannung durch Feldänderung Die beiden Spulen ( und 2x) werden mit dem geschlossenen Eisenkern (UKern mit Joch und Spannbügel) verbunden. Das mperemeter misst den Strom im Primärstromkreis, das Voltmeter die induzierte Spannung im Sekundärstromkreis. FG 0,1 Hz (0,2 Hz) Wir stellen den Funktionsgenerator (FG) auf "Dreieckspannung" und wählen eine Frequenz von 0,1 Hz. Den Spannungsregler am FG stellen wir so, dass die Stromstärke etwa 0,6 beträgt. m Voltmeter lesen wir die induzierte Spannung ab. Nun erhöhen wir die Frequenz auf 0,2 Hz und stellen fest, dass die Induktionsspannung größer ist. Erkenntnis: Bei der Änderung des Magnetfeldes in einer Spule (durch Stromänderung) wird elektrische Spannung induziert. Wenn sich in der Spule das Magnetfeld rascher ändert, entsteht eine größere Induktionsspannung. Die Induktionsspannung ist proportional zur Änderungsgeschwindigkeit des Magnetfeldes. E Transformator Versuchsaufbau wie Schaltskizze oben, statt des mperemeters im Primärkreis wird jedoch auch ein Voltmeter angeschlossen. ls Primärspannungen verwenden wir 2 V, 4 V und 6 V Wechselspannung. = 4 V = 6 V N 1 :N 2 = 1:2 Erkenntnis: Die Spannungen an der Primärspule und an der Sekundärspule verhalten sich wie die Windungszahlen der Spulen. Primärstromkreis Sekundärstromkreis 1. Wir stellen die Primärspannung auf drei Werte ein und messen die Sekundärspannung. 2. Wir vertauschen beiden Spulen und messen wieder die Sekundärspannungen für 3 Werte. 3. Wir verwenden bei der Sekundärspule den nschluss mit Windungen und messen wieder. 1. = 2 V 2. U 3. 1 = 2 V = 2 V = 4 V = 6 V = 4 V = 6 V N 1 :N 2 = 2:1 N 1 :N 2 = 1:1 V E 8.8, 8.9

DE740-2M Motor-Generator-Einheit, Demo

DE740-2M Motor-Generator-Einheit, Demo DE740-2M Motor-Generator-Einheit, Demo Versuchsanleitung INHALTSVERZEICHNIS 1. Generator ELD MG 1.1 ELD MG 1.2 ELD MG 1.3 Die rotierende Spule Wechselstromgenerator Gleichstromgenerator 2. Motor ELD MG

Mehr

Wechselspannung, Wechselstrom, Generatoren

Wechselspannung, Wechselstrom, Generatoren Wechselspannung, Wechselstrom, Generatoren Ein Generator ist eine Maschine, die kinetische Energie in elektrische Energie umwandelt. Generatoren erzeugen durch Induktion Strom (z.b. Fahrraddynamo). Benötigt

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit Schleifringen

Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit Schleifringen Elektrik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit

Mehr

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes:

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes: Elektromagnetische Induktion Eperiment: Ergebnis: Ein Fahrraddynamo wandelt Bewegungsenergie in elektrische Energie um. Er erzeugt trom (zuerst pannung). Wir zerlegen einen Dynamo. Ein Dynamo besteht aus

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Seminarunterlagen Elektrizität. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt

Seminarunterlagen Elektrizität. Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Seminarunterlagen Elektrizität Versuchsanleitungen von Mag. Otto Dolinsek BG/BRG Lerchenfeld Klagenfurt Das Ohmsche Gesetz Der Zusammenhang zwischen Spannung und Stromstärke soll untersucht werden. Materialliste:

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

KRG NW, Physik Klasse 10, Elektromagnetismus, Fachlehrer Stahl Seite 15

KRG NW, Physik Klasse 10, Elektromagnetismus, Fachlehrer Stahl Seite 15 Seite 15 Zieht man den Stabmagneten aus dem Ring, kehren sich die oben beschriebenen Verhältnisse um. Der Ring baut mittels Induktionsspannung und daraus resultierendem Strom ein Magnetfeld auf, das dem

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Wechselstromgenerator (Innenpolmaschine)

Wechselstromgenerator (Innenpolmaschine) Wechselstromgenerator (Innenpolmaschine) Versuche: 1. Wir versetzen den Magneten in langsame Drehung und beobachten die Spannungsanzeige am Voltmeter. Wir merken uns für jede Halbdrehung die Polarität

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

MOTORANSTEUERUNG. Schaltzeichen eines Relais:

MOTORANSTEUERUNG. Schaltzeichen eines Relais: A1 H-Brücke: MOTORANSTEUERUNG Je nachdem, wie herum die beiden Pole eines Gleichstrommotors an eine Gleichspannungsquelle angeschlossen werden, ändert er seine Drehrichtung. Die Schaltung links wird als

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Protokoll. Induktion

Protokoll. Induktion Protokoll Induktion Michael Aichinger 9855264 Inhaltsverzeichnis: 1.Einleitung S.2 2. Lernziele S.2 3. Didaktische Hinleitung S.3 4. Versuche 4.1 Relativbewegung Magnetfeld Spule S.4 4.2 Induktionsspannung

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Magnetfeldrichtung - +

Magnetfeldrichtung - + S. 280 Aufgabe 1: In Versuch 2 gilt (ohne Änderungen): Die Richtung der Lorentzkraft auf einen stromdurchflossenen Leiter erhält man durch Anwendung der 3-Finger-Regel der linken Hand. Dabei (S.280 V2)

Mehr

Hinweise zu den Aufgaben:

Hinweise zu den Aufgaben: Versuchsworkshop: Arbeitsaufgaben Lehrerblatt Hinweise zu den Aufgaben: Blatt 1: Die Papierschnipsel werden vom Lineal angezogen.es funktioniert nicht so gut bei feuchtem Wetter. Andere Beispiele für elektrische

Mehr

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz

Mehr

Schülerübung Elektromagnetismus

Schülerübung Elektromagnetismus Station 1 Magnetisches Feld Untersuchen Sie mit Hilfe kleiner Magnetnadeln bzw. mit Eisenfeilspänen das magnetische Feld verschiedener Magnete. Wo befinden sich die Magnetpole? Skizzieren Sie sauber in

Mehr

Experimentiersatz Elektromotor

Experimentiersatz Elektromotor Experimentiersatz Elektromotor Demonstration der Erzeugung von elektrischem Stromfluss durch Umwandlung von mechanischer Energie (Windrad) in elektrische Energie. Einführung Historisch gesehen hat die

Mehr

Anwendungen zum Elektromagnetismus

Anwendungen zum Elektromagnetismus Anwendungen zum Elektromagnetismus Fast alle Anwendungen des Elektromagnetismus nutzen zwei grundlegende Wirkungen aus. 1. Fließt durch eine Spule ein elektrischer Strom, so erzeugt diese ein Magnetfeld

Mehr

Die Schaltung wird wie abgebildet zusammengestellt. Der Schalter ist zunächst in der Position links.

Die Schaltung wird wie abgebildet zusammengestellt. Der Schalter ist zunächst in der Position links. Der Umschalter, 1 Buchse 1 STE Leitung, T-förmig 1 STE Leitung, Umschalter, links 2 STE Lampenfassung E10 2 Glühlampe 3,5 V/0,2 A 1 STE Batterie, 3 V Ein Schalter soll zwischen 2 Stromkreisen hin- und

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Elektrik Grundlagen 1

Elektrik Grundlagen 1 Elektrik Grundlagen. Was versteht man unter einem Stromlaufplan? Er ist die ausführliche Darstellung einer Schaltung in ihren Einzelheiten. Er zeigt den Stromverlauf der Elektronen im Verbraucher an. Er

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite)

Lösungen. Lösungen LEVEL LEVEL. Arbeitsform. Übungsaufgabe 1 Thema: Transformator (Lösungen s. Rückseite) Übungsaufgabe 1 Wahr oder falsch? Kreuze an. N 1 N 2 I 1 I 2 wahr falsch 250 1000 1,2 A 4,8 A 1000 250 1,2 A 4,8 A 250 500 0,9 A 450 ma 750 15000 20 ma 0,4 A 300 900 600 ma 3,6 A Wahr oder falsch? Kreuze

Mehr

Das Demonstrationsexperiment WS 08/09 Der Transformator: Modellversuche, Grundlagen

Das Demonstrationsexperiment WS 08/09 Der Transformator: Modellversuche, Grundlagen Das Demonstrationsexperiment WS 08/09 Der Transformator: Modellversuche, Grundlagen Wolfgang Riedl 21. 01. 2009 1 Inhaltsverzeichnis 1 Versuchsbeschreibung 3 1.1 Einstiegsversuch:,,Wie kommt der Strom

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Arbeitsblatt Elektrotechnik

Arbeitsblatt Elektrotechnik 11. Elektrotechnik Grundlagen Haustechnik Sanitär Arbeitsblatt Elektrotechnik Lernziele: SI-Einheiten nennen, anwenden und einfache Rechnungen aus führen. Den Unterschied zwischen Gleich- und Wechselstrom

Mehr

Experimentalpraktikum zur Induktion Blatt 1

Experimentalpraktikum zur Induktion Blatt 1 Experimentalpraktikum zur Induktion Blatt 1 Vorbemerkung: Diese Ausführungen sind nicht als eine fertige, sensationell gut Unterrichtsreihe zu verstehen, sondern sie sollen ein Beitrag zur Diskussion über

Mehr

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch:

und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Die Lorentzkraft Versuch: Die Lorentzkraft Versuch: und senkrecht zur technischen Stromrichtung steht. Diese Kraft wird als Lorentz-Kraft bezeichnet. Wie kann man die Bewegungsrichtung der Leiterschaukel bei bekannter technischer

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Arbeitsblatt zur Station A

Arbeitsblatt zur Station A Arbeitsblatt zur Station A Versuch: Rotation eines Magneten vor einer Spule mit Eisenkern Versuchsausführung: 1. Verbinde das Versuchsgerät mit dem schwarzen Messgerät, das auf den Messbereich I = 1...0...1

Mehr

1. Einleitung Der Versuch wurde am Mittwoch den durchgeführt. Alle Versuche sind dem Teilgebiet der Experimente mit Elektromagneten entnomm

1. Einleitung Der Versuch wurde am Mittwoch den durchgeführt. Alle Versuche sind dem Teilgebiet der Experimente mit Elektromagneten entnomm Protokoll Magnetismus Michael Aichinger Für die 4.Klasse Teilgebiet: Elektromagnetismus Inhaltsverzeichnis: 1 Einleitung S.2 2 Lernziele S.2 3 Versuche S.3 3.1 Versuch nach Oersted S.3 3.2 Magnetfeld stromdurchflossener

Mehr

VORSCHAU. zur Vollversion. Elektrizitätslehre 5. Dauermagnete und Elektromagnete. 1. Vervollständige.

VORSCHAU. zur Vollversion. Elektrizitätslehre 5. Dauermagnete und Elektromagnete. 1. Vervollständige. Dauermagnete und Elektromagnete 1. Vervollständige. Magnetische Felder entstehen um oder um. Wir können es nachweisen durch Kraftwirkungen auf. Alle Magnetfelder haben einen und einen Pol. Abstoßungskräfte

Mehr

Motor Generator (AHS 7. Klasse)

Motor Generator (AHS 7. Klasse) Physikalisches Schulversuchspraktikum Motor Generator 1/12 Übungsdatum: 29.11.2001 Abgabetermin: 06.12.2001 Physikalisches Schulversuchspraktikum Motor Generator (AHS 7. Klasse) Mittendorfer Stephan Matr.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Das komplette Material finden Sie hier: Download bei School-Scout.de SCHOOL-SCOUT

Mehr

Experimente zur elektromagnetischen Induktion I

Experimente zur elektromagnetischen Induktion I Fließt ein elektrischer Strom durch eine Spule, entsteht in der Spule ein Magnetfeld. Der umgekehrte Fall gilt allerdings nicht: Ein Stabmagnet, der sich im Innern einer Spule befindet, verursacht in der

Mehr

Physik * Jahrgangsstufe 9 * Schülerübung

Physik * Jahrgangsstufe 9 * Schülerübung Geräte: Induktion 1 Spule (400 Wdg. / 800 Wdg.), 1 Mikroamperemeter (± 50 A), 2 blaue Kabel, 2 Krokodilklemmen, 2 Stabmagnete, 1 Weicheisenkern, 1 drehbarer Magnethalter Beantworte die folgenden Fragen

Mehr

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER PROT OKOLL Versuche mit dem NT L Elektronik Baukasten DER GENERA T OR Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER Inhaltsverzeichnis

Mehr

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren.

Stoffe, durch die Strom fließen kann, heißen Leiter. Stoffe, durch die er nicht fließen kann, nennt man Nichtleiter oder Isolatoren. Elektrizitätslehre 1 Ein elektrischer Strom fließt nur dann, wenn ein geschlossener Stromkreis vorliegt. Batterie Grundlagen Schaltzeichen für Netzgerät, Steckdose: Glühlampe Schalter Stoffe, durch die

Mehr

1. Kann Glas Elektrizität leiten?

1. Kann Glas Elektrizität leiten? Die Antworten sind auf den ersten Blick kinderleicht. Wenn Sie oder Ihre Kommilitonen verschiedene Antworten haben, dann fragen Sie mich. Schicken Sie mir bitte Ihre Fragen. alexander.akselrod@hs-bochum.de

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 R. rinkmann http://brinkmann-du.de eite 1 26.11.2013 Verhalten eines Leiters im Magnetfeld Kraftwirkungen im Magnetfeld. Gleichnamige Magnetpole stoßen sich ab, ungleichnamige ziehen sich an. Im Magnetfeld

Mehr

Induktion. Methoden zum Nachweis dieser Magnetfelder:

Induktion. Methoden zum Nachweis dieser Magnetfelder: Induktion 1. Aufgabe a) Beschreiben Sie grundsätzliche Möglichkeiten, um im Physikunterricht zeitlich konstante sowie zeitlich variierende Magnetfelder zu erzeugen! Erläutern Sie für beide Fälle jeweils

Mehr

Die magnetische Wirkung eines stromdurchflossenen Leiters (Artikelnr.: P )

Die magnetische Wirkung eines stromdurchflossenen Leiters (Artikelnr.: P ) Lehrer-/Dozentenblatt Die magnetische Wirkung eines stromdurchflossenen Leiters (Artikelnr.: P1375500) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre

Mehr

U-Kern mit Joch, geblättert 114.2035 I-Kern, geblättert 114.2034 E-Kern mit Joch, geblättert 114.2036

U-Kern mit Joch, geblättert 114.2035 I-Kern, geblättert 114.2034 E-Kern mit Joch, geblättert 114.2036 Schüleraufbautransformator [ Schüleraufbautransformator_neu.doc ] Einleitung Schüler können selbstständig Versuche zu den Themen Induktion und Kräfte in magnetischen Feldern durchführen. Das System verfügt

Mehr

Wie wird eigentlich meine elektrische Zahnbürste aufgeladen? Die Funktion der Basisstation (Netzteil)

Wie wird eigentlich meine elektrische Zahnbürste aufgeladen? Die Funktion der Basisstation (Netzteil) Die Funktion der Basisstation (Netzteil) Expertenpuzzle Gruppe: E1 Material: - 1x Steckbrett - 1x Magnet auf Drehscheibe - 1x Netzgerät - 2x Anschlussleitungen - 1x Spule (1000 Windungen) - 1x Eisenkern

Mehr

M316 Spannung und Strom messen und interpretieren

M316 Spannung und Strom messen und interpretieren M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Mündliche Prüfung Physik Leitfragen

Mündliche Prüfung Physik Leitfragen Mündliche Prüfung Physik Leitfragen Themengebiete: - Optik - Elektrik - Mechanik 1 Themengebiet: Optik 1 Wie lautet das Reflexionsgesetz? 2. Wie lautet das Brechungsgesetz? 3. Benenne die folgenden Linsentypen:

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

ELEXBO. ELektro - EXperimentier - BOx

ELEXBO. ELektro - EXperimentier - BOx ELEXBO ELektro - EXperimentier - BOx 1 Inhaltsverzeichnis 2 Einleitung.3 Grundlagen..3 Der elektrische Strom 4 Die elektrische Spannung..6 Der Widerstand...9 Widerstand messen..10 Zusammenfassung der elektrischen

Mehr

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung.

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung. Matura Komplementärfragen Gleichstrommaschinen Allgemeines zu Spannungserzeugung im Magnetfeld: Die Ankerwicklung wird im Magnetfeld der feststehenden Aussenpole gedreht und dadurch wird eine Spannung

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Solare Energieversorgung - Photovoltaik. 0. Station: e-car solar

Solare Energieversorgung - Photovoltaik. 0. Station: e-car solar 0. Station: e-car solar ecs Ein reines Solarauto benötigt eine sehr große Fläche, um genügend Solarleistung zu liefern. Günstiger ist die Speicherung elektrischer Energie, die an einer Solartankstelle

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Wie funktioniert ein Lautsprecher?

Wie funktioniert ein Lautsprecher? Wie funktioniert ein Lautsprecher? Ein Lautsprecher erzeugt aus elektrischen Signalen hörbare Töne. Wenn ein Radio Musik abspielt, müssen, nachdem die Töne von Radio empfangen wurden, diese in elektrische

Mehr

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Elektrizitätslehre

Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Elektrizitätslehre Realschulabschluss Physik (Sachsen) Aufgaben im Stil der Abschlussprüfung: Elektrizitätslehre Elektrischer Widerstand 1 Bei einem Experiment wurde für ein Bauelement folgende Messreihe aufgenommen: U in

Mehr

Feldlinien charakterisieren das elektrische Feld...

Feldlinien charakterisieren das elektrische Feld... Feldlinien charakterisieren das elektrische Feld... Eisen- Feldlinien-Bilder kann man z.b. durch feilspäne sichtbar machen... Einige wichtige Regeln: Durch jeden Punkt verläuft genau eine Feldlinie, d.h.

Mehr

Selbstinduktion. Versuchsdurchführung : Der Schalter S wird wahlweise geschlossen bzw. geöffnet

Selbstinduktion. Versuchsdurchführung : Der Schalter S wird wahlweise geschlossen bzw. geöffnet Selbstinduktion Das Induktionsgesetz besagt, dass immer dann in einem Leiter eine Spannung induziert wird, wenn eine zeitliche Änderung des magnetischen Flusses auftritt! Versuch: In einer Parallel- und

Mehr

KLASSE: 8TE NAME: Vorname: Datum:

KLASSE: 8TE NAME: Vorname: Datum: Kapitel II : Die Geräte im Alltag (S. 306-327) Achtung : Arbeite bei den Versuchen auf den folgenden Seiten nie mit dem Strom aus der Steckdose. Das kann lebensgefährlich sein! II.1) Ein einfacher Stromkreis

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Projekt: Elektromotor

Projekt: Elektromotor Projekt: Elektromotor Wir bauen einen Gleichstrommotor aus fünf Teilen das Elektrotechnik- und Informatik-Labor der Fakultät IV http://www.dein-labor.tu-berlin.de Projekt: Elektromotor Liebe Schülerinnen

Mehr

Die linke Schaltung der Schalterbox wird verwendet. Der Schalter ist zunächst in der Position offen.

Die linke Schaltung der Schalterbox wird verwendet. Der Schalter ist zunächst in der Position offen. Der Umschalter 1 Schalterbox 1 Batteriehalter 1 Batterie, Baby, 1,5 V 2 Glühlampe 1,5 V Ein Schalter soll zwischen 2 Stromkreisen hin- und herschalten. Die linke Schaltung der Schalterbox wird verwendet.

Mehr

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan

Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Physik LK 12, 3. Kursarbeit Induktion - Lösung

Physik LK 12, 3. Kursarbeit Induktion - Lösung Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Lernkontrolle Motoren

Lernkontrolle Motoren Lernkontrolle Motoren Zeit 45 Min. 40 40 Pkt. Hinweise Wird nicht benotet! Lösen Sie die Aufgaben auf separatem Papier. Ich wünsche Ihnen viel Erfolg! Aufgabenstellung 1. Wie kann Dreiphasenwechselstrom

Mehr

68 Jetzt kommt richtig Bewegung ins Spiel

68 Jetzt kommt richtig Bewegung ins Spiel Magnetismus und Elektrizität 345 68 Jetzt kommt richtig Bewegung ins Spiel Das brauchst du für diesen Versuch: eine Flachbatterie 4,5V zwei Versuchsleitungen mit Krokodilklemmen 1 bis 2 m Kupferdraht (Kupferlackdraht

Mehr

IPN Curriculum Physik. Der elektrische Stromkreis als System

IPN Curriculum Physik. Der elektrische Stromkreis als System IPN Curriculum Physik Unterrichtseinheiten für das 7. und 8. Schuljahr Der elektrische Stromkreis als System Stromstärke Spannung Widerstand orschläge für Testaufgaben 2 3 1 Teil 1: Strom und Widerstand

Mehr

Messgröße Abk. Einheit Abk. Messgerät Schaltezeichen. 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol

Messgröße Abk. Einheit Abk. Messgerät Schaltezeichen. 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol Gruppe 1 2. (2) Die elektrische Spannung Ergänze: Je größer der am Minuspol und je größer der am, desto größer ist die! 3. (2) Von welchen vier Faktoren hängt der elektrische Widerstand eines elektrischen

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

IIE4. Modul Elektrizitätslehre II. Transformator

IIE4. Modul Elektrizitätslehre II. Transformator IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten

Mehr

Verbraucher. Schalter / offen

Verbraucher. Schalter / offen Elektrischer Strom Strom... treibt Maschinen an... Licht... Heizung... Kraftwerk... GEFAHR Begriffe: Stromkreis Stromquelle Schaltskizze (Schaltplan) Symbole für die Schaltskizze: Verbraucher (z. B. Glühlämpchen)

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0 Protokoll der Physikdoppelstunde am 25.02.2002 Protokollant: Alexander Rudyk Zu Beginn der Stunde haben wir uns mit den Gesetzmäßigkeiten der Induktion bei rotierender Induktionsspule beschäftigt und insbesondere

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

1. Lernzielkontrolle / Stegreifaufgabe

1. Lernzielkontrolle / Stegreifaufgabe Magnetisches und elektrisches Feld, elektrische Ladungen 1. Ein Stabmagnet mit Nord- und Südpol wird ungefähr in der Mitte durchtrennt (siehe Abb.). a) Welche Aussagen sind zutreffend? O Jedes Teilstück

Mehr

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise 33. Wechselstrom II 33.. Siebkette und Sperrkreis... sind interessante Beispiele für Wechselstromkreise 33... Siebkette... ist eine Reihenschaltung von Widerstand, Spule und Kondensator. Wir gehen wieder

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Aufgabe: -Bauen Sie alle Schemas nacheinander auf und beschreiben Ihre Feststellungen. -Beschreiben Sie auch die Unterschiede zum vorherigen Schema. Bauen Sie diese elektrische Schaltung auf und beschreiben

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

4. Klasse. Letzte Aktualisierung am 6. März Lehrer: Christian Graf, PHS Krems

4. Klasse. Letzte Aktualisierung am 6. März Lehrer: Christian Graf, PHS Krems 4. Klasse Letzte Aktualisierung am 6. März 2016 Lehrer: Christian Graf, PHS Krems Frage 1 Antwort 1 Woran erkennt man einen physikalischen Vorgang? Bei einem physikalischen Vorgang ändern sich die Stoffe

Mehr

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o Zeitlich veränderliche Felder Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise) Dafür gilt rot E 0 rot B o j div E div B 0 j E o E grad B rot A Wie verändern sich

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis. 8 Magnetismus 8.1 Der Gleichstrom-Elektromotor

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis. 8 Magnetismus 8.1 Der Gleichstrom-Elektromotor TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 8 Magnetismus 8.1 Der Gleichstrom-Elektromotor. November 009 www.ibn.ch TG TECHNOLOGISCHE GRUNDLAGEN 8 Magnetismus 0. Dezember 014 www.ibn.ch TG TECHNOLOGISCHE

Mehr

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V Kojak-Sirene: Experimente zur Funktionsweise 1. astabile Kippstufe 2. astabile Kippstufe Die Schaltung der Kojak-Sirene besteht aus zwei miteinander verbundenen astabilen Kippstufen (Anhang) und einem

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr