7.3 Anwendungsbeispiele aus Physik und Technik

Größe: px
Ab Seite anzeigen:

Download "7.3 Anwendungsbeispiele aus Physik und Technik"

Transkript

1 Differenzialrechnung Anwendungsbeispiele aus Physik und Technik Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit ist die Ableitung des Weg-Zeit-Gesetzes nach der Zeit v (t) := ṡ (t) = d dt s (t) (Geschwindigkeit) und die Beschleunigung gibt die Änderung der Geschwindigkeit an: a (t) := v (t) = d dt v (t) = s (t). (Beschleunigung) (1) Für den freien Fall gilt s (t) = 1 2 g t2 + v 0 t + s 0, wenn s 0 die Anfangsposition und v 0 die Anfangsgeschwindigkeit. Es gilt hier für die Geschwindigkeit und Beschleunigung v (t) = ṡ (t) = g t + v 0, a (t) = v (t) = g = const. (2) Ein durch Luftreibung gedämpftes Federpendel schwingt mit x (t) = x 0 e γ t cos (ωt), Abb Federpendel wenn x 0 die Anfangsauslenkung, γ der Reibungskoeffizient und ω die Schwingungsfrequenz. Die Geschwindigkeit und Beschleunigung sind v (t) = ẋ (t) = γ x 0 e γ t cos (ωt) ω x 0 e γ t sin (ωt), a (t) = v (t) = γ 2 x 0 e γ t cos (ωt) + γ ω x 0 e γ t sin (ωt) +γ ω x 0 e γ t sin (ωt) ω 2 x 0 e γ t cos (ωt)

2 7.2 Rechenregeln bei der Differenziation 263 a (t) = ( γ 2 ω 2) x 0 e γ t cos (ωt) + 2 γ ω x 0 e γ t sin (ωt). Für den Spezialfall ohne Reibung (γ = 0) ist x (t) = x 0 cos (ωt) und ẍ (t) = a (t) = ω 2 x 0 cos (ωt) = ω 2 x (t). Dann ist die Rückstellkraft der Feder F = m a = m ẍ (t) = m ω 2 x (t) x (t). Dies ist das Hooksche Gesetz, welches besagt, dass die Rückstellkraft proportional zur Auslenkung x (t) ist Induktionsgesetz Das Induktionsgesetz aus der Physik lautet: Eine zeitliche Änderung des magnetischen Flusses φ induziert in einem Leiter mit Windungszahl n eine elektrische Spannung U i gemäß U i (t) = n d dt φ(t). Dabei ist der magnetische Fluss φ = B A eff, B das angelegte Magnetfeld und A eff die vom Magnetfeld durchdrungene Fläche. (1) Wenden wir das Induktionsgesetz auf eine in einem konstanten Magnetfeld rotierende Spule an, so ist die effektiv vom Magnetfeld durchdrungene Fläche A eff = A cos ϕ (t) = A cos (ωt). Nach dem Induktionsgesetz wird die Wechselspannung U i = n d dt φ = n d B A cos (ωt) dt = n B A ω sin (ωt) Abb Drehender Leiter mit der Scheitelspannung U 0 = n B A ω induziert. (2) Ist die Leiterschleife fest und variiert das Magnetfeld senkrecht zur Leiterschleife gemäß B = B 0 cos (ωt) mit Amplitude B 0 und Frequenz ω, so wird in der Leiterschleife (Querschnittsfläche A) die Spannung U i induziert gemäß der Formel U i = n d dt φ = n d dt A B 0 cos (ωt) = n A B 0 ω sin (ωt).

3 Differenzialrechnung Elektrostatik (1) In einem Plattenkondensator mit Anodenspannung φ A, Kathodenspannung φ K und Spaltabstand d ist das Potenzial φ (x) gegeben durch ( φ (x) = 1 x ) φ A + x d d φ K ( x ) = φ A + (φ K φ A ). d Das zugehörige elektrische Feld E ist definiert als Dann ist E (x) := d dx φ (x) (elektrisches Feld). E (x) = d dx φ (x) = 1 d (φ K φ A ) = φ A φ K d = const. (2) Kondensatormikrophon. An den Platten eines Kondensatormikrophons liegt eine konstante Spannung U 0 an. Der Druck der Schallwellen (Frequenz ω) ändert den Plattenabstand nach der Formel d = d 0 + a sin (ωt). Damit variiert die Ladung Q am Kondensator Q (t) = C (t) U 0 = ε 0 A d (t) U 0, da sich die Kapazität C zeitlich ändert. Der zeitliche Verlauf des Stromes I (t) = d dt Q (t) ist demnach gegeben durch I (t) = d dt Q (t) = ε 0 A U 0 d dt = ε 0 A U 0 ω a cos (ωt) [d 0 + a sin (ωt)] 2. 1 d 0 + a sin (ωt)

4 7.4 Differenzial einer Funktion Differenzial einer Funktion In diesem Abschnitt untersuchen wir das Verhalten von Funktionen, indem wir den Zuwachs der Funktion mit dem Zuwachs der Tangente vergleichen. Die Formeln bei der Linearisierung von Funktionen und der Fehlerrechnung basieren auf diesem Vergleich. 7.4 Um den Zuwachs einer differenzierbaren Funktion f in unmittelbarer Umgebung eines Punktes x 0 zu bestimmen, berechnen wir den Funktionswert an der Stelle x 0 und bei x 0 + x. Ändert sich der Abszissenwert um x, so ändert sich der Funktionswert um y. Für den Zuwachs y der Funktion f gilt y = f (x 0 + x) f (x 0 ). Abb Differenzial einer Funktion Wir vergleichen den Zuwachs der Funktion mit der Änderung der Tangente dy. Man nennt dx : unabhängiges Differenzial dy : abhängiges Differenzial (= Änderung der Kurventangente) Es gilt nach Abb. 7.6 tan α = f (x 0 ) = dy dx dy = f (x 0 ) dx. Definition: (Differenzial einer Funktion). Das Differenzial dy = df = f (x 0 ) dx einer Funktion y = f (x) beschreibt die Änderung längs der Tangente im Punkte x 0, wenn sich die Abszisse um dx ändert. df wird auch das Differenzial der Funktion f im Punkte x 0 bezeichnet.

5 Differenzialrechnung y: Änderung der Funktion bei Änderung des x-wertes um x. dy: Änderung der Tangente bei Änderung des x-wertes um dx. Beispiele 7.17: ➀ Gesucht ist das Differenzial der Funktion f (x) = x + 1 bei x 0 = 0: f (x) = (x + 1) 1 2 f (x) = 1 2 (x + 1) 1 2 f (x 0 = 0) = 1 2. Damit ist df = f (x 0 ) dx = 1 2 dx. ➁ Gesucht ist das Differenzial von f (x) = arctan x an der Stelle x 0 = 0: f (x) = arctan (x) f (x) = x 2 f (x 0 = 0) = 1. Damit ist df = 1 dx Linearisierung von Funktionen Aus dem Differenzial df einer Funktion werden wir nun noch eine für die Anwendungen wichtige Folgerung ziehen: Für kleine x = dx gilt näherungsweise y dy. Denn für kleine x = dx ist die Änderung der Tangente vergleichbar mit der Änderung der Funktion. Setzt man noch die Formel für dy ein, erhält man y dy = f (x 0 ) x. Abb Linearisierung einer Funktion Für kleine x kann die Funktion f in unmittelbarer Umgebung des Punktes x 0 durch die Kurventangente ersetzt werden. Man nennt dieses Vorgehen die

6 7.4 Differenzial einer Funktion 267 Linearisierung der Funktion f. Wegen y = f (x) f (x 0 ) dy = f (x 0 ) (x x 0 ) folgt für die Linearisierung der Funktion f an der Stelle x 0 : f (x) f (x 0 ) + f (x 0 ) (x x 0 ). Beispiele 7.18: ➀ Gegeben ist die Funktion f (x) = der Funktion bei x 0 = 1: Wegen f (x) = 4x. Gesucht ist die Linearisierung x (x + 1) 4x (x + 1) 4x (2x + 1) x 2 (x + 1) 2 ist f (x 0 = 1) = 1 f (x) f (x 0 ) + f (x 0 ) (x x 0 ) = 2 + ( 1) (x 1) = 3 x. ➁ Gegeben ist die Funktion f (ϕ) = sin ϕ. Gesucht ist die Linearisierung der Funktion bei ϕ 0 = 0: Wegen f (ϕ) = cos ϕ ist f (ϕ 0 = 0) = 1 f (ϕ) f (ϕ 0 ) + f (ϕ 0 ) (ϕ ϕ 0 ) = (ϕ 0) = ϕ sin ϕ ϕ (für kleine Winkel). Anwendungsbeispiel 7.19 (Harmonisches Pendel). An einem Faden der Länge l sei eine Masse m befestigt. Gesucht ist der Winkel ϕ (t) als Funktion der Zeit, wenn die Masse um einen kleinen Winkel ϕ 0 ausgelenkt wird. Wir bestimmen alle auf die Masse wirkenden Kräfte, denn nach dem Newtonschen Bewegungsgesetz ist die Beschleunigungskraft gegeben durch die Summe aller Kräfte. Gehen wir von einer reibungsfreien Bewegung aus, wirkt auf den Massenpunkt nur die Gewichtskraft F G = m g. Da die Beschleunigung der Masse senkrecht zum Faden erfolgt, wirkt als Beschleunigungskraft Abb Fadenpendel F B = F G sin ϕ = m g sin ϕ. Bei einer Kreisbewegung ist die Geschwindigkeit v (t) = l ω = l ϕ (t) und damit die Beschleunigung a (t) = v (t) = l ϕ (t). Insgesamt gilt nach dem

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Feldlinien charakterisieren das elektrische Feld...

Feldlinien charakterisieren das elektrische Feld... Feldlinien charakterisieren das elektrische Feld... Eisen- Feldlinien-Bilder kann man z.b. durch feilspäne sichtbar machen... Einige wichtige Regeln: Durch jeden Punkt verläuft genau eine Feldlinie, d.h.

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0 Protokoll der Physikdoppelstunde am 25.02.2002 Protokollant: Alexander Rudyk Zu Beginn der Stunde haben wir uns mit den Gesetzmäßigkeiten der Induktion bei rotierender Induktionsspule beschäftigt und insbesondere

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Vorlesung Physik für Pharmazeuten PPh - 09 b

Vorlesung Physik für Pharmazeuten PPh - 09 b Vorlesung Physik für Pharmazeuten PPh - 09 b Elektrizitätslehre (II) 29.01.2007 IONENLEITUNG 2 Elektrolytische Leitfähigkeit Kationen und Anionen tragen zum Gesamtstrom bei. Die Ionenleitfähigkeit ist

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Magnetodynamik elektromagnetische Induktion

Magnetodynamik elektromagnetische Induktion Physik A VL34 (5.0.03) Magnetodynamik elektromagnetische nduktion Das Faraday sche nduktionsgesetz nduktion in einem bewegten Leiter nduktion einem Leiterkreis/einer Spule Lenz sche egel Exkurs: Das Ohm

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Das statische magnetische Feld

Das statische magnetische Feld Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Oszilloskop/Elektrische Schwingungen

Oszilloskop/Elektrische Schwingungen 11-1 Oszilloskop/Elektrische Schwingungen 1. Vorbereitung : Kathodenstrahloszilloskop; Komplexe Formulierung der Wechselstromlehre; Hoch- und Tiefpaß; Reihenschwingkreis, elektrische Schwingungen. Literatur

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie:

Newton: Joule: Watt: Pascal: Coulomb: Volt: Ohm: Farad: Tesla: Henry: Hertz: Dioptrie: Formelsammlung zur Klausur Physik für Studierende der Biologie, Biochemie, Chemie, Geologischen Wissenschaften, Informatik, Mathematik und Pharmazie, Wintersemester 2009/0 bgeleitete Einheiten mit eigenem

Mehr

Vorbereitung auf das schriftliche Abitur

Vorbereitung auf das schriftliche Abitur Vorbereitung auf das schriftliche Abitur Wiederholung: Elektrische Grundschaltungen elektrische Stromstärke Ohm sches Gesetz und elektrischer Widerstand Reihen- und Parallelschaltung von Widerständen Elektrische

Mehr

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o Zeitlich veränderliche Felder Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise) Dafür gilt rot E 0 rot B o j div E div B 0 j E o E grad B rot A Wie verändern sich

Mehr

Einführung. in die. Der elektrische Strom Wesen und Wirkungen

Einführung. in die. Der elektrische Strom Wesen und Wirkungen Einführung in die Theoretische Physik Der elektrische Strom Wesen und Wirkungen Teil II: Elektrische Wirkungen magnetischer Felder Siegfried Petry Fassung vom 19 Januar 13 I n h a l t : 1 Kraft auf einen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Formelsammlung Physik

Formelsammlung Physik Formelsammlung Physik http://www.fersch.de Klemens Fersch 20. August 2015 Inhaltsverzeichnis 1 Mechanik 3 1.1 Grundlagen Mechanik.............................. 3 1.1.1 Gewichtskraft...............................

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes

Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes Ein einfacher Versuch zur Bestimmung der Stärke des Erdmagnetfeldes Roland Berger und Markus Schmitt FB 18/Physikdidaktik, Universität Gh Kassel, 34109 Kassel Lässt man ein Verlängerungskabel im Erdmagnetfeld

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise 33. Wechselstrom II 33.. Siebkette und Sperrkreis... sind interessante Beispiele für Wechselstromkreise 33... Siebkette... ist eine Reihenschaltung von Widerstand, Spule und Kondensator. Wir gehen wieder

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Experimentalpraktikum zur Induktion Blatt 1

Experimentalpraktikum zur Induktion Blatt 1 Experimentalpraktikum zur Induktion Blatt 1 Vorbemerkung: Diese Ausführungen sind nicht als eine fertige, sensationell gut Unterrichtsreihe zu verstehen, sondern sie sollen ein Beitrag zur Diskussion über

Mehr

Enseignement secondaire technique

Enseignement secondaire technique Enseignement secondaire technique Régime technique Division technique générale Cycle supérieur Section technique générale Électrotechnique Classe de 1GE Nombre de leçons: 3.0 Nombre minimal de devoirs:

Mehr

Fragen zur Lernkontrolle

Fragen zur Lernkontrolle Fragen zur Lernkontrolle 1) a) Erläutern Sie die Zusammenhänge zwischen Masse, Kraft und Gewicht! b) Beschreiben Sie die Vorgänge bei der Elektrolyse und geben Sie die dafür von Faraday gefundene Gesetzmäßigkeiten

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung)

20. Vorlesung. III Elektrizität und Magnetismus. 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) 20. Vorlesung III Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen IV. Optik 22. Elektromagnetische Wellen (Fortsetzung) Versuche: Aluring (Nachtrag zur Lenzschen Regel, s.20)

Mehr

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein.

Aufgabe A1. 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. Aufgabe A1 1 In der Geschichte der Physik nehmen Atommodelle eine bedeutende Rolle ein. 1.1 Beim rutherfordschen Atommodell nimmt man einen Kern an, der Sitz der positiven Ladung und nahezu der gesamten

Mehr

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld:

Induktion 1. Induktion Phänomenologie 2. Induktion in einem zeitlich veränderlichen Magnetfeld: Induktion. Induktion Phänomenologie. Induktion in einem zeitlich veränderlichen Magnetfeld: i. Induktionsgesetz ii. enzsche Regel iii. Wirbelströme 3. Induktivität einer eiteranordnung: i. Gegeninduktivität

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Sachkompetenzen und Methodenkompetenzen im Fach Physik Klassenstufen 7 bis 10 der DSJ gültig ab 2012

Sachkompetenzen und Methodenkompetenzen im Fach Physik Klassenstufen 7 bis 10 der DSJ gültig ab 2012 Sachkompetenzen und Methodenkompetenzen im Fach Physik Klassenstufen 7 bis 10 der DSJ gültig ab 2012 Inhaltsverzeichnis: Sachkompetenz:... 1 Methodenkompetenz... 2 Klasse 7 Basic Science... 3 Klasse 8

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

=N 2. 10 Induktivität

=N 2. 10 Induktivität 10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung

Mehr

2. Magnetisches Feld Stationäre und zeitabhängige magnetische Felder.

2. Magnetisches Feld Stationäre und zeitabhängige magnetische Felder. Stationäre und zeitabhängige magnetische Felder. Themen: Begriff des magnetischen Feldes Kraftwirkungen im magnetischen Feld Magnetische Flussdichte und magnetische Feldstärke, magnetischer Fluss Materie

Mehr

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit Bogenschießen Jan-Patrick Wo hner/jonas Pfeil 30. Januar 2014 Institut fu r experimentelle Physik, Projektpraktikum Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

E 21 - Gekoppelte Schwingungen

E 21 - Gekoppelte Schwingungen Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: E 21 - Gekoppelte Schwingungen 1. Grundlagen Zur Vorbereitung müssen Sie sich mit den folgenden physikalischen

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Ferienkurs - Experimentalphysik 2

Ferienkurs - Experimentalphysik 2 Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 Dienstag Daniel Jost Datum 21/08/2012 Inhaltsverzeichnis 1 Magnetostatik 1 1.1 Feldgleichungen der Magnetostatik.....................

Mehr

11 Elektromagnetische Schwingungen und Wellen

11 Elektromagnetische Schwingungen und Wellen 16 11 Elektromagnetische Schwingungen und Wellen 11.1 Elektromagnetischer Schwingkreis Ein elektromagnetischer Schwingkreis besteht aus einer Induktivität L und einem Kondensator C (LC-Kreis) Lädt man

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Protokoll zum Grundversuch Wechselstrom

Protokoll zum Grundversuch Wechselstrom Protokoll zum Grundversuch Wechselstrom Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 15.05.2007 Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen 2 2.1 Wechselstrom................................

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert SW0 Schwingende Saite am Monochord (Pr_PhI_SW0_Monochord_6, 08.09.009)

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

M07. Foucault-Pendel. Coriolis-Beschleunigung (1) Dieser Beschleunigung entspricht eine Kraft. Coriolis-Kraft (2)

M07. Foucault-Pendel. Coriolis-Beschleunigung (1) Dieser Beschleunigung entspricht eine Kraft. Coriolis-Kraft (2) M07 Foucault-Pendel Unter Verwendung eines Foucault-Pendels wird die Erddrehung nachgewiesen. Die auftretende Corioliskraft und der Breitengrad des Versuchsortes werden bestimmt. 1. Theoretische Grundlagen

Mehr

Einführung in die Elektrotechnik

Einführung in die Elektrotechnik Prof. Dr.-Ing. habil. Klaus Lunze Einführung in die Elektrotechnik Lehrbuch für Elektrotechnik als Hauptfach 12., überarbeitete Auflage Dr. Alfred Hüthig Verlag Heidelberg Inhaltsverzeichnis 0. Vorbetrachtungen

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

Hertzsche Wellen. Physik 9

Hertzsche Wellen. Physik 9 Hertzsche Wellen Physik 9 ohne Hertzsche Wellen geht nichts? Wie entstehen Hertzsche Wellen? Man braucht eine Spule mit Eisenkern und einen Kondensator Fließt durch eine Spule ein Strom, so wird ein magnetisches

Mehr

Kapitel 18 Numerisches Differenzieren und Integrieren

Kapitel 18 Numerisches Differenzieren und Integrieren Kapitel 8 Numerisches Differenzieren und Integrieren 8 8 8 Numerisches Differenzieren und Integrieren.......... 43 8. Numerische Differenziation... 43 8.. Differenzenformeln für die erste Ableitung...

Mehr