Der LASSO-Schätzer. Verfahren zur Modellschrumpfung und Variablenselektion. Jona Cederbaum. Institut für Statistik Ludwig-Maximilians-Universität

Größe: px
Ab Seite anzeigen:

Download "Der LASSO-Schätzer. Verfahren zur Modellschrumpfung und Variablenselektion. Jona Cederbaum. Institut für Statistik Ludwig-Maximilians-Universität"

Transkript

1 Der LASSO-Schätzer Verfahren zur Modellschrumpfung und Variablenselektion Jona Cederbaum Institut für Statistik Ludwig-Maximilians-Universität 10. Juni 009

2 Übersicht 6 Einleitung 6.1. Das Modell 6.. KQ-Schätzer und Motivation für neue Schätzerverfahren 6.3. Ridge-Regression 6.4. Subset Selection 1.1. Spezialfall orthonormales Design 1.. Schätzung des Standardfehlers 1.3. Bestimmung des Lasso-Parameters Beispiel Prostatakrebs 3 Zusammenfassung 7 Der Lasso-Schätzer 7.1. Definition und Herleitung 7.. Allgemeine Eigenschaften 7.3. Geometrie im 4 Grenzen des Lasso-Schätzers 5 Ausblick

3 Das Modell Betrachtet wird das lineare Regressionsmodell y X y y, y,..., y, y X unabhängig, zentriert X ist eine n 1 n p Designmatrix, standardisiert : Fehlerterme, für die gilt: N0, ²I 1 n n i 1 y y 0 n n 1 1 ij n i1 n i1 i x 0, x ² 1 ij 3

4 Kleinste-Quadrate-Schätzer Residuenquadratsumme n i i RSS y x y X y X i1 Falls X vollen Rang hat, definiert sich der Kleinste-Quadrate-Schätzer als 1 KQ arg min y X y X X X X y RSS 4

5 Eigenschaften des KQ-Schätzers (1) Erwartungstreuer Schätzer für, d.h. Bias KQ E KQ 0 Minimale Varianz und somit minimaler Mean-Squared-Error unter den unverzerrten Schätzern (BLUE) MSE KQ Var KQ Bias KQ * Bias KQ 0 Var 1 KQ X X 5

6 Eigenschaften des KQ-Schätzers () endenziell zu groß geschätzte Länge des Schätzers, d.h. KQ Keine Variablenselektion, sehr geringe Effekte bleiben im Modell Eingeschränkte Interpretierbarkeit Existiert nur für vollen Rang der Designmatrix ( Multikollinearität) Idee: Suche in Länge beschränkten Schätzer, der Aspekte Prädiktionsgenauigkeit Interpretierbarkeit 6

7 Ridge-Regression Ausweitung der Suche auf die Klasse der verzerrten Schätzer Minimierung der RSS unter linearer Nebenbedingung, die die Länge des Schätzers beschränkt arg min RSS unter der Nebenbedingung Ridge RSS arg min y X y X, 0 p j1 j t, t 0 1 X X I X y, I: Einheitsmatrix 7

8 Eigenschaften des Ridge-Schätzers (1) Lineare Lösung in y. Hy, mit H X X I 1 Ridge Kein erwartungstreuer Schätzer Für geeignete Wahl von gilt: MSE KQ-Schätzer Bias-Quadrat MSE Ridge MSE KQ Ridge-Schätzer Varianz 8

9 Eigenschaften des Ridge-Schätzers () Je größer, desto stärker der Schrumpfungseffekt Designmatrix X muss nicht den vollen Rang haben löst Multikollinearitäts-Problematik Keine Variablenselektion Wahl von zum Beispiel mit Kreuzvalidierung (siehe Vortrag L0) Fazit: Einer der beiden Aspekte bzgl. des KQ-Schätzers verbessert Verbesserung der Prädiktionsgenauigkeit durch geeignete Wahl von möglich ABER: Keine Verbesserung der Interpretierbarkeit 9

10 Least Absolute Shrinkage and Selection Operator (LASSO) Ziel: Simultane Schrumpfung und Variablenselektion Minimierung der RSS unter linearer Nebenbedingung arg min RSS unter der Nebenbedingung Lasso p j1 j t, t 0 p arg min y X y X j, 0 j1 RSS Im Allgemeinen nicht explizit darstellbar, da keine lineare Lösung in y 13

11 Allgemeine Eigenschaften des Lasso-Schätzers Mit t : p KQ,j gilt: für alle Werte KQ j1 t t KQ Schrumpfung, einige Koeffizienten exakt auf Null t t KQ (sofern existent) Lasso KQ hat genau entgegen gerichtete Wirkung auf den Schätzer Designmatrix X muss nicht den vollen Rang haben Lasso ist unabhängig vom KQ-Schätzer 14

12 Geometrische Aspekte im (1) Betrachtet wird der Fall p Sowohl Ridge- als auch Lasso-Schätzer minimieren die RSS unter Nebenbedingungen Ridge: -Penalisierung Lasso: 1-Penalisierung RSS KQ X X KQ const, wobei, 1 RSS c, für c beliebig hat elliptische, um KQ zentrierte, Konturlinien Hauptachsen der Ellipsen in 45 mit Koordinatenachsen des 1 - Koordinatensystems 15

13 Geometrische Aspekte im () LASSO Elliptische Konturlinien RIDGE ^ ^ KQ KQ Graphische Darstellung der Schätzer im für verschiedene Wahl von t p j 1 im t j 1 im p j 1 j 1 t 16

14 Spezialfall orthonormales Design (1) X hat orthonormale Einträge, d.h. es gilt X X I, I: Einheitsmatrix Lasso-Schätzer geschlossener Form darstellbar (, + : positiver eil) Schätzer Ridge-Schätzer Best Subset der Größe k Lasso-Schätzer Formel Ridge j KQ,j 1,, Ridge,falls Subset, j KQ,j KQ, j sign, La sso, j KQ,j KQ,j Lasso 17

15 Spezialfall orthonormales Design () RIDGE BES SUBSE SELECION LASSO Schätzfunktionen im Vergleich zur KQ-Schätzung im orthonormalen Design, für Linear, Proportionale Schrumpfung Sprungstelle bei Variablenselektion eilweise linear Schrumpfung & Selektion 18

16 Geometrie im im orthomalen Design Konturlinien von LASSO KQ X X KQ sind kreisförmig Kreisförmige Konturlinien RIDGE ^ ^ KQ KQ Graphische Darstellung der Schätzer im für verschiedene Wahl von t im Spezialfall des orthonormalen Designs 19

17 Schätzung des Standardfehlers des Lasso-Schätzers Lasso-Schätzer ist nichtlineare, nichtdifferenzierbare Funktion Schätzung des Standardfehlers se j Var j, j 1,...,p schwierig Vergleich: 1 KQ X X - KQ-Schätzer: Var Ridge - Ridge-Schätzer: Var X XI X X X X I Ein Ansatz: Approximation durch Ridge-Schätzer 1 1 0

18 Schätzung des Standardfehlers durch Ridge-Approximation (1) ransformation der Lasso-Nebenbedingung p p j t zu j j j1 j1 Approximation des Lasso-Schätzers 1 mit W diag, j 1,...,p, Lasso, j t X X W X y, Verallgem. Ridge-Schätzer W : verallgem. Inverse von W, d.h. WW W=W derart gewählt, dass p j t erfüllt ist j1 1

19 Schätzung des Standardfehlers durch Ridge-Approximation () 1 1 Var X X W X X X X W : Schätzer für Fehlervarianz, Diagonalelemente als Schätzer für Varianz des jeweiligen Lasso,j, j 1,...,p Nachteil: Für Lasso,j 0 Varianz wird automatisch Null Vernachlässigung der Unsicherheit

20 Wahl des Lasso-Parameters t (1) Anhand Generalisierter Kreuzvalidierung (GCV) Ziel: Minimierung des Vorhersagefehlers PE Ey X Wieder: ransformation der Lasso-Nebenbedingung p p j t zu j j j1 j1 t und Approximation durch verallgemeinerten Ridge-Schätzer (vgl. Folie 1) X X W X y 1 3

21 Wahl des Lasso-Parameters t () Zu minimierendes Generalisiertes Kreuzvalidierungskriterium allgemein in Abhängigkeit vom Parameter - GCV n 1 yi f x i n i1 1 tr H n f x i : Schätzwert an der Stelle i in Abhängigkeit von - tr: Spur der Matrix - H: Hatmatrix, d.h. y Hy 4

22 Wahl des Lasso-Parameters t (3) gilt: Im unrestringierten Fall des KQ-Schätzers mit 1 trh = p Für die Ridge-Regression mit 1 H X X X X gilt H X X X I X im orthonormalen Design trh p 1 X X W X y Für die Approximation 1 1 H X X X W X trh pt mit GCV t (effektive Parameteranzahl) des Lasso-Schätzers gilt: (effektive Parameteranzahl) n * 1 y X 1 RSS t i1, n 1 p t n n 1 p t n RSSt als RSS für Schätzung unter Nebenbedingung mit Restriktion t 5

23 Beispiel Prostatakrebs (1) Datensatz Prostate aus dem R-Paket lasso Beschreibung der Daten: - Zusammenhang zwischen dem Level eines prostataspezifischen Antigens und mehreren klinischen Messungen bei Männern, die kurz vor der operativen Entfernung der Prostata standen - Response: logarithmiertes Level des prostataspezifschen Antigens (lpsa) - Einflussgrößen: lcavol, lweight, age, lbph, svi, lcp, gleason, pgg45 Zunächst Standardisieren: n n 1 1 xij 0, x ij² 1, y unzentriert n i1 n i1 6

24 Beispiel Prostatakrebs () KQ-, Ridge- und Lasso-Schätzer im Vergleich Wahl des Lasso-Parameters anhand von Leave-One-Out Kreuzvalidierung (vgl. Vortrag (L0)) Leave-One-Out CV CV Ergebnis: t t 0.69 s [0,1] t KQ t 7

25 Beispiel Prostatakrebs (3) Lasso 16.8 Name KQ Ridge Ridge 57,87 Lasso s 0.43 Schätzer Std.Error Schätzer Std.Error Schätzer Std.Error lcavol lweight age lbph svi lcp gleason pgg Farbig: signifikant zum Niveau

26 Beispiel Prostatakrebs (4) Mittelwerte der Schätzer und Standardabweichung Mittelwerte der Schätzer Variablen 9

27 Beispiel Prostatakrebs (5) Standardisierte Koeffizienten Pfade der Lasso-Koeffizienten für verschiedene Wahl von s t t s [0,1] p t KQ KQ, j j1 30

28 Zusammenfassung Methode zur simultanen Schrumpfung und Variablenselektion Art stetige Subset Selection Designmatrix braucht keinen vollen Rang ibshirani betrachtet in seinem Paper 3 Szenarien: Am besten bzgl. MSE: a. wenige starke Effekte Subset, Lasso, Ridge b. eine kleine bis mittlere Anzahl moderater Effekte Lasso, Ridge, Subset c. eine große Anzahl kleiner Effekte Ridge, Lasso, Subset Lasso-Schätzer relativ gut bzgl. Vorhersage Außerdem: gute Interpretierbarkeit 31

29 Grenzen des Lasso-Schätzers In einigen Fällen stößt das Lasso-Verfahren an seine Grenzen: - Mehr Kovariablen als Beobachtungen d.h. p n: maximal n Variablen können durch Lasso-Schätzung ausgewählt werden - Hohe paarweise Korrelation: Lasso-Methode wählt lediglich eine der korrelierten Kovariablen aus (vgl.: H. Zou,. Hastie) 3

30 Ausblick Ausweitungen möglich beispielsweise auf GLMs Im 1-Penalisierung Spezialfall von r-penalisierung: : p r j, r j1 ) idg, r : (a) r 4,(b r R e (c) r 1 Lasso,(d) r 1, (e) r 1 10 Bayesianische Herangehensweise mit Doppelexponentialverteilung als Priori für, j 1,...,p j (vgl. ibshirani (1996), Park und Casella (008)) 33

31 Literaturverzeichnis [1] B. Efron,. Hastie, I. Johnstone, R. ibshirani: Least Angle Regression (00). [] L. Fahrmeir,. Kneib, S. Lang: Regression. Modelle, Methoden und Anwendungen. Springer- Verlag Berlin Heidelberg (007). [3]. Hastie, R. ibshirani, J. Friedman: he Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, New York (001). [4] A. Hoerl, R. Kennard: Ridge regression: biased estimation for nonorthogonal problems. echnometrics, Vol. 1:55-67 (1970). [5] L. Huan, H. Motoda: Computational methods of feature selection. Chapman&Hall (008). [6] S. Konrath: Bayesianische Regularisation mit Anwendungen. Masterthesis. (007). [7]. Park und G. Casellea: he Bayesian Lasso. echnical report. University of Florida (005). [8] R. ibshirani: Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), Volume 58, Issue 1 (1996), [9] H. outenburg: Lineare Modelle. heorie und Anwendungen. Physica- Verlag Heidelberg (003). [10] H. Zou,. Hastie : Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B, Volume 67 (005),

Verfahren zur Variablenselektion und Modellschrumpfung im linearen Regressionsmodell

Verfahren zur Variablenselektion und Modellschrumpfung im linearen Regressionsmodell Verfahren zur Variablenselektion und Modellschrumpfung im linearen Regressionsmodell Tobias Liboschik Verena Ueberfeldt Seminar Modellwahlkriterien Wintersemester 2009/10 13. November 2009 1 / 48 Inhaltsverzeichnis

Mehr

Lasso in LMs und GLMs

Lasso in LMs und GLMs Lasso in LMs und GLMs Seminar Regularisierungstechniken und strukturierte Regression, Prof. Dr. Gerhard Tutz, Institut für Statistik, Ludwig-Maximilians-Universität München Referent: Patrick Schenk Betreuer:

Mehr

Elastic Net und Lasso: Lassen Sie in unübersichtlichen Situationen Software statistische Modelle finden.

Elastic Net und Lasso: Lassen Sie in unübersichtlichen Situationen Software statistische Modelle finden. Elastic Net und Lasso: Lassen Sie in unübersichtlichen Situationen Software statistische Modelle finden. Bernd Heinen SAS Institute GmbH In der Neckarhelle 168 Heidelberg Bernd.heinen@jmp.com oder Zusammenfassung

Mehr

Statistisches Lernen

Statistisches Lernen Statistisches Lernen Einheit 12: Modellwahl und Regularisierung Dr. rer. nat. Christine Pausch Institut für Medizinische Informatik, Statistik und Epidemiologie Universität Leipzig WS 2014/2015 1 / 28

Mehr

Regularisierung (Shrinkage Methoden) Steve Finger

Regularisierung (Shrinkage Methoden) Steve Finger Regularisierung (Shrinkage Methoden) Steve Finger Inhalt 1. Motivation 2. Regularisierung 3. Vergleich der Shrinkage Methoden 4. Zusammenfassung 1. Motivation 1. Kleinste Quadrate Methode Lineare Regression:

Mehr

Das elastic net und Gruppierung korrelierter Prädiktoren

Das elastic net und Gruppierung korrelierter Prädiktoren Das elastic net und Gruppierung korrelierter Prädiktoren Bettina Wiebe 8 Dezember 04 Wiederholung Im folgenden Kapitel, welches nicht vorgetragen wird, wird kurz an das vorliegende Modell sowie einige

Mehr

Least Absolute Shrinkage And Seletion Operator (LASSO)

Least Absolute Shrinkage And Seletion Operator (LASSO) Least Absolute Shrinkage And Seletion Operator (LASSO) Peter von Rohr 20 März 2017 Lineare Modell und Least Squares Als Ausgangspunkt haben wir das Lineare Modell und Least Squares y = Xβ + ɛ (1) ˆβ =

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

Sparse Hauptkomponentenanalyse

Sparse Hauptkomponentenanalyse Sparse Referent: Thomas Klein-Heßling LMU München 20. Januar 2017 1 / 36 1 Einführung 2 3 4 5 2 / 36 Einführung Ziel: vorhandene Datenmenge verstehen Daten komprimieren Bei der Sparse (SPCA) handelt es

Mehr

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität

Kapitel 10. Multikollinearität. Exakte Multikollinearität Beinahe Multikollinearität Kapitel 0 Multikollinearität Exakte Multikollinearität Beinahe Multikollinearität Exakte Multikollinearität Unser Modell lautet y = Xb + u, Dimension von X: n x k Annahme : rg(x) = k Wenn sich eine oder

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN 1 EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN UFBAU 1 Historie 2 Anwendungen / Ziele 3 Lineare Regression/ Beispiel KQ 4 Nichtlineare Regression 5 Eigenschaften der Schätzer istorie früheste Form

Mehr

Vergleich von Partial Cox Regression und Lasso zur Analyse von U berlebenszeiten bei hochdimensionalen Daten

Vergleich von Partial Cox Regression und Lasso zur Analyse von U berlebenszeiten bei hochdimensionalen Daten Vergleich von Partial Cox Regression und Lasso zur Analyse von U berlebenszeiten bei hochdimensionalen Daten Claudia-Martina Messow Robertson Centre for Biostatistics, University of Glasgow Situation Methoden

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Modelluntersuchung bei Anwendung von Lasso auf Bootstrap-Stichproben

Modelluntersuchung bei Anwendung von Lasso auf Bootstrap-Stichproben - LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN - INSTITUT FÜR STATISTIK Modelluntersuchung bei Anwendung von Lasso auf Bootstrap-Stichproben BACHELORARBEIT ZUR ERLANGUNG DES AKADEMISCHEN GRADES BACHELOR OF SCIENCE

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0

y = b 0 + b 1 x 1 x 1 ε 1. ε n b + b 1 1 x n 2) Hat die Größe x einen Einfluss auf y, d.h. gilt die Hypothese: H : b 1 = 0 8 Lineare Modelle In diesem Abschnitt betrachten wir eine spezielle Klasse von statistischen Modellen, in denen die Parameter linear auftauchen Wir beginnen mit zwei Beispielen Beispiel 8 (lineare Regression)

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Thomas Kneib & Ludwig Fahrmeir Institut für Statistik, Ludwig-Maximilians-Universität München 1. Regressionsmodelle für geoadditive Daten

Mehr

Lineare Regression 1 Seminar für Statistik

Lineare Regression 1 Seminar für Statistik Lineare Regression 1 Seminar für Statistik Markus Kalisch 17.09.2014 1 Statistik 2: Ziele Konzepte von einer breiten Auswahl von Methoden verstehen Umsetzung mit R: Daten einlesen, Daten analysieren, Grafiken

Mehr

Praxis der Regressionsanalyse

Praxis der Regressionsanalyse Praxis der Regressionsanalyse Von Samprit Chatterjee New York University und Bertram Price Price Associates, Inc., Washington, D. C. Aus dem Amerikanischen übertragen von Prof. Dr. Gunter Lorenzen Universität

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

Multiplizitätskorrektur bei Variablenselektion

Multiplizitätskorrektur bei Variablenselektion Multiplizitätskorrektur bei Variablenselektion Seminar: Multiples Testen Dozent: Prof. Dr. T. Dickhaus Referent: Maximilian Mönch - 22.11.2010 - Überblick 1) Einleitung 2) Multiplizitätskorrektur 3) Median

Mehr

Proxies, Endogenität, Instrumentvariablenschätzung

Proxies, Endogenität, Instrumentvariablenschätzung 1 4.2 Multivariate lineare Regression: Fehler in den Variablen, Proxies, Endogenität, Instrumentvariablenschätzung Literatur: Wooldridge, Kapitel 15, Appendix C.3 und Kapitel 9.4 Wahrscheinlichkeitslimes

Mehr

Vorlesung 4: Spezifikation der unabhängigen Variablen

Vorlesung 4: Spezifikation der unabhängigen Variablen Vorlesung 4: Spezifikation der unabhängigen Variablen. Fehlspezifikation der unabhängigen Variablen. Auswirkungen einer Fehlspezifikation a. auf die Erwartungstreue der Schätzung b. auf die Effizienz der

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Man kann also nicht erwarten, dass man immer den richtigen Wert trifft.

Man kann also nicht erwarten, dass man immer den richtigen Wert trifft. 2.2.2 Gütekriterien Beurteile die Schätzfunktionen, also das Verfahren an sich, nicht den einzelnen Schätzwert. Besonders bei komplexeren Schätzproblemen sind klar festgelegte Güteeigenschaften wichtig.

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 20 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 20 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Frequentisten und Bayesianer. Volker Tresp

Frequentisten und Bayesianer. Volker Tresp Frequentisten und Bayesianer Volker Tresp 1 Frequentisten 2 Die W-Verteilung eines Datenmusters Nehmen wir an, dass die wahre Abhängigkeit linear ist, wir jedoch nur verrauschte Daten zur Verfügung haben

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen

Dabei bezeichnet x die Einflussgrösse (Regressor), y die Zielvariable (die eine Folge der Ursache x ist) und die Störung. Die n = 3 Beobachtungen Lineare Regression und Matrizen. Einführendes Beispiel Der im Kapitel Skalarprodukt gewählte Lösungsweg für das Problem der linearen Regression kann auch mit Matrizen formuliert werden. Die Idee wird zunächst

Mehr

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft

Prof. Dr. Marc Gürtler WS 2015/2016. Prof. Dr. Marc Gürtler. Klausur zur 10/12 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Prof. Dr. Marc Gürtler WS 015/016 Prof. Dr. Marc Gürtler Klausur zur 10/1 SWS-Vertiefung Empirische Finanzwirtschaft Finanzwirtschaft Lösungsskizze Prof. Dr. Marc Gürtler WS 015/016 Aufgabe 1: (11+5+1+8=56

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff.

Vorlesung: Lineare Modelle. Verschiedene Typen von Residuen. Probleme bei der Regression und Diagnose. Prof. Dr. Helmut Küchenhoff. Vorlesung: Lineare Modelle Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München SoSe 205 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen.

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9.

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 7.-9. Januar 2011 BOOTDATA11.GDT: 250 Beobachtungen für die Variablen...

Mehr

6. Tutoriumsserie Statistik II

6. Tutoriumsserie Statistik II 6. Tutoriumsserie Statistik II 1. Aufgabe: Eine Unternehmensabteilung ist ausschließlich mit der Herstellung eines einzigen Produktes beschäftigt. Für 10 Perioden wurden folgende Produktmenge y und Gesamtkosten

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 9. Vorlesung - 2017 Monte Carlo Methode für numerische Integration Sei g : [0, 1] R stetige Funktion; man möchte 1 0 g(t)dt numerisch approximieren mit Hilfe von Zufallszahlen: Sei (U n ) n eine Folge

Mehr

Statistik II für Betriebswirte Vorlesung 8

Statistik II für Betriebswirte Vorlesung 8 Statistik II für Betriebswirte Vorlesung 8 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 3. Dezember 2018 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 8 Version:

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Lineare Regression und Varianzanalyse

Lineare Regression und Varianzanalyse Lineare Regression und Varianzanalyse Von Prof. Dr. Fritz Pokropp Universität der Bundeswehr Hamburg R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Grundstruktur linearer Modelle

Mehr

(1 Punkt) i) Bestimmen Sie formal den marginalen Effekt der Häufigkeit des Alkoholkonsums für männliche

(1 Punkt) i) Bestimmen Sie formal den marginalen Effekt der Häufigkeit des Alkoholkonsums für männliche Aufgabe 1 [14 Punkte] Sie möchten untersuchen, wovon die Abwesenheit der Studierenden in den Vorlesungen an einer Universität abhängt. Sie verfügen über einen Datensatz zu 282 Studierenden mit folgenden

Mehr

Distribution-free calculation of the standard error of Chain Ladder reserve estimates

Distribution-free calculation of the standard error of Chain Ladder reserve estimates Distribution-free calculation of the standard error of Chain Ladder reserve estimates David Fischinger 31. März 2018 David Fischinger 31. März 2018 1 / 41 Inhaltsverzeichnis 1) Einleitung 2) Chain Ladder

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. Juli 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Ein exakter Test für die Meta-Analyse von Studien mit binären Endpunkten. Oliver Kuß, Cora Gromann

Ein exakter Test für die Meta-Analyse von Studien mit binären Endpunkten. Oliver Kuß, Cora Gromann Ein exakter Test für die Meta-Analyse von Studien mit binären Endpunkten Oliver Kuß, Cora Gromann Institut für Medizinische Epidemiologie, Biometrie und Informatik, Universität Halle-Wittenberg, Halle

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

W09 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

W09 p. 1. Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Der Verhältnisschätzer - Ratio estimator Beispiel: Schätzung der Anzahl Objekte (Bäume) in einem bestimmten Gebiet. Situation: Die Fläche ist unterteilt in Streifen / Transekte. Man wählt zufällig n =

Mehr

MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN

MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN Verteidigung der Bachelorarbeit MERKMALSAUSWAHL ZUR OPTIMIERUNG VON PROGNOSEPROZESSEN Von: Tom Fels 23.11.2015 Betreut durch: Prof. Dr.-Ing. Wolfgang Lehner Motivation Motivation PROGNOSEN Schätzung zukünftiger

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, 2. Juli 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Konjugierte Prior Konjugierte Prior

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Mainz, 26. Juni 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

10 Statistisches Schätzen

10 Statistisches Schätzen 10 Statistisches Schätzen 620 10 Statistisches Schätzen 10.1 Punktschätzung 623 10.1.1 Schätzer und ihre Gütekriterien 623 10.1.2 Erwartungstreue 627 10.1.3 Erwartete quadratische Abweichung (MSE) 634

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Methoden der Ökonometrie

Methoden der Ökonometrie Dr. Matthias Opnger Lehrstuhl für Finanzwissenschaft WS 2013/14 Dr. Matthias Opnger Methoden d. Ökonometrie WS 2013/14 1 / 21 Dr. Matthias Opnger Büro: C 504 Sprechzeit: nach Vereinbarung E-Mail: opnger@uni-trier.de

Mehr

Einführung in die Statistik

Einführung in die Statistik Einführung in die Statistik Analyse und Modellierung von Daten Von Prof. Dr. Rainer Schlittgen 4., überarbeitete und erweiterte Auflage Fachbereich Materialwissenschaft! der Techn. Hochschule Darmstadt

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

V. Das lineare Regressionsmodell

V. Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Tino Conrad, M.Sc. Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2016 Übung zur

Mehr

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II

Statistik II. Regressionsrechnung+ Regressionsanalyse. Statistik II Statistik II Regressionsrechnung+ Regressionsanalyse Statistik II - 16.06.2006 1 Regressionsrechnung Nichtlineare Ansätze In einigen Situation könnte man einen nichtlinearen Zusammenhang vermuten. Bekannte

Mehr

Instrument zur Untersuchung eines linearen Zusammenhangs zwischen zwei (oder mehr) Merkmalen.

Instrument zur Untersuchung eines linearen Zusammenhangs zwischen zwei (oder mehr) Merkmalen. Gliederung Grundidee Einfaches lineares Modell KQ-Methode (Suche nach der besten Geraden) Einfluss von Ausreißern Güte des Modells (Bestimmtheitsmaß R²) Multiple Regression Noch Fragen? Lineare Regression

Mehr

Statistische Eigenschaften der OLS-Schätzer, Residuen,

Statistische Eigenschaften der OLS-Schätzer, Residuen, Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß

Mehr