Fuzzy Logik Fuzzy Logik, Franka Zander, Dezember 2004

Größe: px
Ab Seite anzeigen:

Download "Fuzzy Logik Fuzzy Logik, Franka Zander, Dezember 2004"

Transkript

1 Fuzzy Logik Franka Zander, Dezember 2004

2 Franka Zander, Dezember /43 Inhaltsverzeichnis 1. Unscharfe Mengen 1.1 Einleitung 1.2 Unscharfe Mengen und deren Verknüpfung 1.3 Unscharfe Zahlen 2. Unscharfe Logik und Steuerung 2.1 Fuzzifizierung 2.2 Inferenz 2.3 Defuzzifizierung 3. Unscharfe Arithmetik 3.1 Verknüpfung unscharfer Zahlen 3.2 Größenvergleich unscharfer Zahlen

3 1.1 Einleitung Fuzzy unscharf, verschwommen, vage Seit ca entwickelte sich Zweig der Angewandten Mathematik ( Fuzzy-Methoden, L. A. Zadeh) Vollständige Messbarkeit nicht möglich subjektive Beurteilung nötig Franka Zander, Dezember /43

4 Beispiele unscharfer Begriffe: Ausreichende Festigkeit eines Werkstoffes Gesundheitsschädliche Strahlendosis Günstiger Kurs X und Y sind fast gleich Normale Betriebstemperatur Franka Zander, Dezember /43

5 Möglichkeiten im Falle einer unscharfen Situation: 1) Verzicht auf rationale Modellierung 2) Verwendung von scharfen Modellen 3) Einsatz von unscharfen Methoden, die die Unschärfe zum Gegenstand der Modellierung machen Robustheit der Ergebnisse Franka Zander, Dezember /43

6 Beispiel einer unscharfen Schlussweise: Die meisten Schweden sind groß Die meisten Schweden sind blond Nils ist Schwede Nils ist wahrscheinlich groß und blond Franka Zander, Dezember /43

7 Mit stochastischen Methoden behandelt: 90 % der Schweden sind 175 cm 90 % der Schweden sind blond P( blond und 175 ) = 81 % Nils ist mit 81 % Wahrscheinlichkeit groß und blond Merkmale groß und blond müssen scharf definiert werden Es gehen statistische Zusatzannahmen ein (hier: Unabhängigkeit der Merkmale groß und blond ) Franka Zander, Dezember /43

8 Beispiel einer Steuerung mit scharfen Angaben: Gehe 497 m geradeaus bis zur Straßenkreuzung mit 16,5 m Diagonale Schwenke 87 gegen Uhrzeigersinn Gehe weitere 6% der zurückgelegten Distanz Bis zum Bauwerk, das Licht von 520 nm Wellenlänge ausstrahlt Franka Zander, Dezember /43

9 Beispiel der Steuerung mit unscharfen Angaben: Gehe ca. einen halben Kilometer bis zur Kreuzung Dann links Dann noch eine kurze Distanz Bis zum grünen Haus Franka Zander, Dezember /43

10 Unscharfe Steuerung ist in unscharfen Situationen robuster wird großtechnologisch eingesetzt Anwendungsbeispiele sind Fuzzy-Steuerungen bei: Waschmaschinen Klimaanlagen Camcordern und Kameras Staubsaugern U-Bahn in Sendai (Japan), seit 1987 in Betrieb Franka Zander, Dezember /43

11 Franka Zander, Dezember / Unscharfe Mengen und deren Verknüpfung Ein Argument, das nur überzeugt, wenn es präzise ist, verliert alle Kraft, wenn die Annahmen, auf denen es beruht, leicht geändert werden; ein unpräzises aber überzeugendes Argument bleibt eher stabil unter Änderung der zugrundeliegenden Axiome (J. Schartz, 1962)

12 Klassische Mengenlehre: Teilmenge A von X ist eine Ansammlung von gewissen Elementen von X Von jedem Element steht fest, ob es zu A gehört oder nicht Zugehörigkeitsfunktion: m A (x) = 1, wenn x zu A gehört m A (x) = 0, wenn x nicht zu A gehört Franka Zander, Dezember /43

13 Beispiel: X ist Menge der reellen Zahlen Menge A alle reellen Zahlen kleiner oder gleich 8 Franka Zander, Dezember /43

14 Unscharfe Mengenlehre: Auch graduelle Zugehörigkeitsfunktionen zulassen Unscharfe Teilmenge A von X wird durch Zugehörigkeitsfunktion m A (x) auf X zu beschreiben sein, die beliebige Werte annehmen kann Normierung: 0 m A (x) 1 m A (x) wird als Zugehörigkeitsgrad von x zur Menge A interpretiert Franka Zander, Dezember /43

15 Beispiel: Bestimmter Messwert soll die Sicherheitsgrenze von 8 nicht überschreiten Menge der Messwerte im sicheren Bereich: Franka Zander, Dezember /43

16 A, B seien unscharfe Mengen mit Zugehörigkeitsfunktionen m A (x), m B (x) Unscharfer Durchschnitt A B: m A B (x) = min (m A (x), m B (x)) Unscharfe Vereinigung A B: m A B (x) = max (m A (x), m B (x)) Franka Zander, Dezember /43

17 A Menge der Messwerte im sicheren Bereich B Menge der Messwerte in der Nähe von 10 Zugehörigkeitsfunktion m A B (x): Zugehörigkeitsfunktion m A B (x): Franka Zander, Dezember /43

18 1.3 Unscharfe Zahlen Unscharfe Zahl a: Spezielle unscharfe Menge von Zahlen mit einer Zugehörigkeitsfunktion m A (x) Funktion hat linken ansteigenden Bereich, einen eindeutigen zentralen Wert z mit m A (x) = 1 und einen rechten abfallenden Bereich Funktion ist oberhalbstetig Franka Zander, Dezember /43

19 Sprechweise: eine Zahl ungefähr gleich z Die ansteigenden bzw. abfallenden Teile können linear, quadratisch, exponentiell sein; begrenzt oder ins Unendliche reichend; symmetrisch oder unsymmetrisch Zentraler Plateaubereich: Franka Zander, Dezember /43

20 Franka Zander, Dezember /43 Rechteckszahlen: a = a L,a R Dreieckszahlen: a = a L,a M,a R

21 Günstig, wenn keine besondere Information über die Art der Unschärfe vorliegt Fälle a L = a M oder a M = a R sind zugelassen a L = a M = a R scharfe Zahl als Spezialfall Franka Zander, Dezember /43

22 Trapezzahlen: analog Dreieckszahlen, jedoch mit zentralem Plateaubereich, also von der Form a = a L,a ML,a MR,a R Franka Zander, Dezember /43

23 Polygone Zahlen: sind durch Niveaus 0 = α 0 < α 1 <... < α n und Knickpunkte a L0 a L1... a Ln a Rn... a R1 a R0 mit m(a Li ) = m(a Ri ) = α i charakterisiert Franka Zander, Dezember /43

24 Quadratische Zahlen: Begrenzungen durch Parabelbögen gegeben Franka Zander, Dezember /43

25 2. Unscharfe Logik und Steuerung 2.1 Fuzzifizierung Für V = 90 km/h gilt: m Vmittel (90) = 3/4, m Vgroß (90) = 1/4 Franka Zander, Dezember /43

26 Für den Abstand von 100 m gilt: m Aklein (100) = 2/3, m Amittel (100) = 1/3 Franka Zander, Dezember /43

27 Franka Zander, Dezember / Inferenz Mehr als eine Eingangsvariable deren Kombination ( Aggregation ) muss festgelegt werden (Zugehörigkeitsgrad der Verknüpfungen und und oder )

28 Kernstück der Fuzzysteuerung Liste der Schlussregeln Franka Zander, Dezember /43

29 Schlussfolgerung erhält denselben Zugehörigkeitsgrad wie die Prämisse Prämissen: m P2 (90, 100) = min(3/4, 2/3) = 2/3 (mittel) m P3 (90, 100) = min(3/4, 1/3) = 1/3 (klein) m P4 (90, 100) = min(1/4, 2/3) = 1/4 (groß) m P5 (90, 100) = min(1/4, 1/3) = 1/4 (mittel) Tritt dieselbe Schlussfolgerung mehrmals auf Maximum der Zugehörigkeitsgrade Franka Zander, Dezember /43

30 Bremsdruck: m Bklein = 1/3 (aus P3) m Bmittel = max(2/3, 1/4) = 2/3 (aus P2 und P5) m Bgroß = 1/4 (aus P4) Franka Zander, Dezember /43

31 2.3 Defuzzifizierung Steuerinstrument verlangt scharfe Anweisung Schwerpunkt der Fläche unter dem Zugehörigkeitsgrad verwenden 1,9 bar Franka Zander, Dezember /43

32 3. Unscharfe Arithmetik 3.1 Verknüpfung unscharfer Zahlen a) Rechteckszahlen Summe und Differenz zweier Rechteckszahlen a = a L, a R, b = b L, b R ist wieder eine Rechteckszahl Summe: a L, a R + b L, b R = a L + b L, a R + b R Differenz: a L, a R b L, b R = a L b R, a R b L Franka Zander, Dezember /43

33 Zahlenbeispiel: Franka Zander, Dezember /43

34 b) Dreieckszahlen Summe und Differenz zweier Dreieckszahlen a = a L, a M, a R, b = b L, b M, b R ist wieder eine Dreieckszahl Summe: a L, a M, a R + b L, b M, b R = a L + b L, a M + b M, a R + b R Differenz: a L, a M, a R b L, b M, b R = a L b R, a M b M, a R b L Franka Zander, Dezember /43

35 Zahlenbeispiel: Franka Zander, Dezember /43

36 c) Trapezzahlen Summe und Differenz zweier Trapezzahlen a = a L, a ML, a MR, a R, b = b L, b ML, b MR, b R ist wieder eine Trapezzahl Summe: a L, a ML, a MR, a R + b L, b ML, b MR, b R = a L + b L, a ML + b ML, a MR + b MR, a R + b R Differenz: a L, a ML, a MR, a R b L, b ML, b MR, b R = a L b R, a ML b MR, a MR b ML, a R b L Franka Zander, Dezember /43

37 Zahlenbeispiel: Franka Zander, Dezember /43

38 Addition und Subtraktion von polygonen Zahlen erfolgt analog Im Allgemeinen ist (a b) + b a unscharfe Addition und Subtraktion haben nicht alle gewohnten algebraischen Eigenschaften Franka Zander, Dezember /43

39 Franka Zander, Dezember / Größenvergleich unscharfer Zahlen Keine natürliche Anordnung m max(a,b) (x) = sup min(m a (y), m b (z)) x=max(y,z)

40 Franka Zander, Dezember /43 Seien a = a L, a M, a R, b = b L, b M, b R zwei Dreieckszahlen und a b falls gilt: a L b L, a M b M, a R b R es gibt unvergleichbare Zahlen, für die weder a b noch b a gilt

41 Dreieckszahl c heißt Supremum von a und b, c = sup(a,b) falls gilt: i) a c und b c ii) c ist die kleinste Dreieckszahl mit dieser Eigenschaft sup(a,b) = max(a L,b L ), max(a M,b M ), max(a R,b R ) Franka Zander, Dezember /43

42 Beispiel: a = 3,5,8, b = 2,6,7 ; sup(a,b) = 3,6,8 Franka Zander, Dezember /43

43 Vielen Dank für eure Aufmerksamkeit! Franka Zander, Dezember /43

Fuzzy Logic & Control

Fuzzy Logic & Control The more, the fuzzier... Prof. Dr.-Ing. Doris Danziger Prof. Dr. rer. nat. Nikolaus Wulff Fuzzy Theorie Lofi Zadeh enwickelte 1967 die Fuzzy Theorie. Er erweiterte die klassische Mengenlehre um den Begriff

Mehr

Computational Intelligence 1 / 29. Computational Intelligence Fuzzy Systeme Einleitung 3 / 29

Computational Intelligence 1 / 29. Computational Intelligence Fuzzy Systeme Einleitung 3 / 29 Gliederung 1 / 29 1 Fuzzy Systeme Einleitung Grundlagen Zadehs Operationen auf Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Relationen Einsatzgebiete Fuzzy-Systeme Historisches Fuzzy Systeme Einleitung

Mehr

FUZZY-LOGIK - WAS IST DAS?

FUZZY-LOGIK - WAS IST DAS? LEHRERFORTBILDUNG TRAMIN 2003 FUZZY-LOGIK - WAS IST DAS? Michael Oberguggenberger Institut für Technische Mathematik, Geometrie und Bauinformatik Universität Innsbruck Fuzzy-Logik und unscharfe Mengen.

Mehr

Der Begriff Fuzzy kommt aus dem Englischen und heißt soviel wie fusselig, verschwommen, unscharf.

Der Begriff Fuzzy kommt aus dem Englischen und heißt soviel wie fusselig, verschwommen, unscharf. F A C H H O C H S C H U L E S T R A L S U N D Fachbereich Maschinenbau Prof.Dr.-Ing. Ch.Wahmkow Fuzzy- logic Eine Einführung Der Begriff Fuzzy kommt aus dem Englischen und heißt soviel wie fusselig, verschwommen,

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005 Kapitel 3 und Relationen 29. April 2005 Rückblick Tarski s Deduktionsbegriff, Verbandstheorie, Abstrakte Logik über Verbänden Wohldefinierte Eigenschaften P wohldefinierte Eigenschaft auf einer Menge M,

Mehr

Einführung in die Fuzzy Logik

Einführung in die Fuzzy Logik Einführung in die Fuzzy Logik Einleitung und Motivation Unscharfe Mengen fuzzy sets Zugehörigkeitsfunktionen Logische Operatoren IF-THEN-Regel Entscheidungsfindung mit dem Fuzzy Inferenz-System Schlußbemerkungen

Mehr

Fuzzy Logic und Wahrscheinlichkeit

Fuzzy Logic und Wahrscheinlichkeit Philosophische Fakultät Institut für Philosophie, Lehrstuhl für Theoretische Philosophie, Holm Bräuer M.A. Fuzzy Logic und Wahrscheinlichkeit Ein Kurzüberblick Was ist Fuzzy Logic? Fuzzy-Logik (englisch:

Mehr

Repräsentation und Umgang mit unsicherem Wissen (SoSe 2010) Fuzzy Logic I. Alexander Fabisch und Benjamin Markowsky. Universität Bremen

Repräsentation und Umgang mit unsicherem Wissen (SoSe 2010) Fuzzy Logic I. Alexander Fabisch und Benjamin Markowsky. Universität Bremen Repräsentation und Umgang mit unsicherem Wissen (SoSe 2010) Fuzzy Logic I Alexander Fabisch und Benjamin Markowsky Universität Bremen 25.05.2010 Alexander Fabisch und Benjamin Markowsky (Universität Bremen)

Mehr

Kapitel L:IV. IV. Nichtklassische Logiken. Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung

Kapitel L:IV. IV. Nichtklassische Logiken. Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung Kapitel L:IV IV. Nichtklassische Logiken Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung L:IV-45 Nonclassical Logics LETTMANN/STEIN 1998-2013 Aussagenlogik

Mehr

Fuzzy Logic Prof. Dr. Lotfi Zadeh, Erfindervon Fuzzy Logic

Fuzzy Logic Prof. Dr. Lotfi Zadeh, Erfindervon Fuzzy Logic Fuzzy Logic Nouri@nouri.ch 25.09.14 Prof. Dr. Lotfi Zadeh, Erfindervon Fuzzy Logic Theoretische Einführung Was ist Fuzzy Logic? Entwicklungsgeschichte Fuzzy Logic Information und Komplexität Arten der

Mehr

Fuzzy-Logik und Fuzzy-Control

Fuzzy-Logik und Fuzzy-Control Georg Jaanineh / Markus Maijohann Fuzzy-Logik und Fuzzy-Control Vogel Buchverlag Inhaltsverzeichnis Vorwort 5 TEIL1 1 Einleitung 13 2 Klassische Mengen und klassische Logik 17 2.1 Klassische Mengen 17

Mehr

Technische Anwendungen von Fuzzy-Systemen. Inhalt

Technische Anwendungen von Fuzzy-Systemen. Inhalt Seite 1 von 83 Technische Anwendungen von Fuzzy-Systemen Zusammenfassung "Technische Anwendungen von Fuzzy-Systemen" erläutert den Aufbau eines Fuzzy-Systems und stellt verschiedene Anwendungsgebiete vor.

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Fuzzy Systeme vom Typ 1. Inhalt Fuzzy Mengen Fuzzy Relationen Fuzzy Logik Approximatives Schließen Fuzzy Regelung

Fuzzy Systeme vom Typ 1. Inhalt Fuzzy Mengen Fuzzy Relationen Fuzzy Logik Approximatives Schließen Fuzzy Regelung Fuzzy Systeme vom Typ Sommersemester 2008 Ausgewählte Kapitel der Computational Intelligence (Vorlesung) Inhalt Fuzzy Mengen Fuzzy Relationen Fuzzy Logik Fuzzy Regelung Prof. Dr. Günter Rudolph Fachbereich

Mehr

5 Fuzzy Unscharfe Mengen

5 Fuzzy Unscharfe Mengen 5 Fuzzy Unscharfe Mengen Fuzzy Unscharfe Mengen Motivation Einfaches Modell eines Fuzzy Reglers Unscharfe Mengen Interpretation linguistischer Werte Operationen auf unscharfen Mengen Fuzzy Relationen Fuzzy

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler Wintersemester 2018/19 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Soft Control (AT 3, RMA)

Soft Control (AT 3, RMA) Soft Control (AT 3, RMA) Zur 3. Übung Fuzzy Control Einfaches Fuzzy-Beispiel Titelmasterformat durch Klicken bearbeiten Prinzip eines Fuzzy Systems: 2 Einfaches Fuzzy-Beispiel Titelmasterformat durch Klicken

Mehr

Fuzzy Logik und negative Zahlen

Fuzzy Logik und negative Zahlen Fuzzy Logik und negative Zahlen Ablauf Unscharfe Mengen Fuzzyfizierung Fuzzy Operatoren Inferenz Defuzzyfizierung Ablauf Darstellung negativer Zahlen Vorzeichen und Betrag Exzess Einerkomplement Zweierkomplement

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 1 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Mengen

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 12. Mai 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 12. Mai 2005 Kapitel 3 Fuzzy-Mengen und Relationen 12. Mai 2005 Rückblick Darstellung unscharfer Konzepte mit Hilfe von Fuzzy-Mengen, Definition von Fuzzy-Mengen, Fuzzy-Mengen über einem festen Universum bilden einen

Mehr

6 Fuzzy die Theorie. 6.1 Fuzzymengen. Die Zugehörigkeit zu einer (klassischen) Menge M X kann man durch eine sogenannte charakteristische

6 Fuzzy die Theorie. 6.1 Fuzzymengen. Die Zugehörigkeit zu einer (klassischen) Menge M X kann man durch eine sogenannte charakteristische 6 Fuzzy die Theorie In den vorangehenden Kapiteln wurde die Fuzzyregelung eher heuristisch betrachtet. Auf eine tiefere theoretische Fundierung war verzichtet worden. Wir wollen dies nun nachholen. Zum

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Fundamente der Computational Intelligence Teil 3

Fundamente der Computational Intelligence Teil 3 Fundamente der Computational Intelligence Teil 3 Günter Rudolph Fachbereich Informatik, Lehrstuhl XI Fachgebiet Computational Intelligence WS 2006/07 Standard Fuzzy Operatoren Bisher betrachtet: Standard

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Kapitel L:IV. IV. Nichtklassische Logiken. Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung

Kapitel L:IV. IV. Nichtklassische Logiken. Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung Kapitel L:IV IV. Nichtklassische Logiken Fuzzy-Mengen Modifizierer für Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung L:IV-1 Nonclassical Logics LETTMANN/STEIN 1998-2013 Fuzzy-Mengen

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Fuzzy-Logik Kontext C mit Interpretation. A B

Fuzzy-Logik Kontext C mit Interpretation. A B Unexaktes Schlußfolgern Einführung Fuzzy-Mengen Fuzzy-Logik Formel. A B Kontext C mit Interpretation. A B Modifizierer von Fuzzy-Mengen Operationen auf Fuzzy-Mengen Fuzzy-Inferenz Defuzzifizierung C mit

Mehr

Die reellen Zahlen nach Dedekind

Die reellen Zahlen nach Dedekind Die reellen Zahlen nach Dedekind Dustin Lazarovici 25. November 2013 Die Idee der ZAHL entspringt der Beobachtung von Verhältnissen und der ungeheuren Denkleistung, diese Verhältnisse als unabhängig von

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1

Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Mathematik I für E-Techniker C. Erdmann WS 011/1, Universität Rostock, 1. Vorlesungswoche Zusatzmaterial zur Mathematik I für E-Techniker Übung 1 Wiederholung - Theorie: Mengen Der grundlegende Begriff

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Kapitel Fuzzy Logic. Überblick. 20_1_fuzzy_logic.PRZ

Kapitel Fuzzy Logic. Überblick. 20_1_fuzzy_logic.PRZ Kapitel.3 Fuzzy Logic Überblick 2 fuzzy_logic.prz 2..5 Definition Fuzzy Logik Erweiterung der klassischen Logik um unscharfe Mengenzugehörigkeiten und Regeln, für die keine exakten Vorschriften bestehen.

Mehr

Kapitel 2: Fuzzy Systeme

Kapitel 2: Fuzzy Systeme Kapitel 2: Fuzzy Systeme Wintersemester 2005/06 Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Inhalt Fuzzy Mengen

Mehr

4. Vorlesung Fuzzy Systeme

4. Vorlesung Fuzzy Systeme Soft Control (AT 3, RMA) 4. Vorlesung Fuzzy Systeme Fuzzy Inferenz 4. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

2 Aufbau des Zahlensystems

2 Aufbau des Zahlensystems 2 Aufbau des Zahlensystems 2.1 Die natürlichen Zahlen N Das Abzählen von Mengen ist eine uralte menschliche Betätigung und so hat der berühmte Ausspruch Kroneckers (1823-1892) Die Zahlen hat der liebe

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie

Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

Topologische Räume und stetige Abbildungen

Topologische Räume und stetige Abbildungen TU Dortmund Mathematik Fakultät Proseminar Lineare Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Julia Schmidt Dozent: Prof. Dr. L. Schwachhöfer Datum: 29.11.2013 Inhaltsverzeichnis

Mehr

3. Vorlesung Fuzzy Systeme

3. Vorlesung Fuzzy Systeme Soft Control (AT 3, RMA) 3. Vorlesung Fuzzy Systeme Fuzzy Mengen 3. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Inhaltsverzeichnis. 1.1 Problemstellung und Zielsetzung der Arbeit Aufbau der Arbeit 5

Inhaltsverzeichnis. 1.1 Problemstellung und Zielsetzung der Arbeit Aufbau der Arbeit 5 Abbildungsverzeichnis XII Tabellenverzeichnis XV Symbolverzeichnis XIX 1 Problemstellung, Zielsetzung und Aufbau der Arbeit 1 1.1 Problemstellung und Zielsetzung der Arbeit 1 1.2 Aufbau der Arbeit 5 2

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016

MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/ OKTOBER 2016 MATHEMATIK FÜR NATURWISSENSCHAFTLER I WINTERSEMESTER 2016/17 MARK HAMILTON LMU MÜNCHEN 1.1. Grundbegriffe zu Mengen. 1. 17. OKTOBER 2016 Definition 1.1 (Mengen und Elemente). Eine Menge ist die Zusammenfassung

Mehr

3. Entscheidungen bei mehreren Szenarien. Entscheidungen. bei Unsicherheit A i, S j und x ij sowie die Zielfunktion

3. Entscheidungen bei mehreren Szenarien. Entscheidungen. bei Unsicherheit A i, S j und x ij sowie die Zielfunktion 3. Entscheidungen bei mehreren Szenarien Entscheidungen bei Sicherheit A i und x i sowie die Zielfunktion determinieren das Entscheidungsproblem bei Unsicherheit A i, S j und x ij sowie die Zielfunktion

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Fuzzy Control methodenorientiert. von Universitätsprofessor Dr. rer. nat. Harro Kiendl Mit 212 Bildern

Fuzzy Control methodenorientiert. von Universitätsprofessor Dr. rer. nat. Harro Kiendl Mit 212 Bildern Fuzzy Control methodenorientiert von Universitätsprofessor Dr. rer. nat. Harro Kiendl Mit 212 Bildern R. Oldenbourg Verlag München Wien 1997 Inhaltsverzeichnis Vorwort XI 1 Einführung 1 1.1 Entstellung

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

1.4 Die rellen Zahlen

1.4 Die rellen Zahlen 1.4 Die rellen Zahlen Die reellen Zahlen R Beobachtung Es gibt physikalische Größen (dh. Abstände, Flächeninhalte... ), die nicht in Q liegen. Beispiele 2 (Diagonale im Quadrat mit Seitenlänge 1) π (Flächeninhalt

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 1 Kapitel 1: Grundlagen 4 / 1 Kap.1

Mehr

Observable und Zustände in klassischer Mechanik

Observable und Zustände in klassischer Mechanik Observable und Zustände in klassischer Mechanik Einleitung: Algebraische Aspekte, Zustände, Observable Algebraische Aspekte der Hamiltonschen Mechanik Die Quantenmechanik (/-theorie) ist vor allem algebraisch

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Methoden der unscharfen Optimierung

Methoden der unscharfen Optimierung Methoden der unscharfen Optimierung Mike Hüftle Juli 2005 Inhaltsverzeichnis 1 Einleitung 2 1.1 Unscharfe Mengen.......................... 2 2 Unscharfe Mengen 3 2.1 Zugehörigkeit.............................

Mehr

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I

Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Humboldt-Universität zu Berlin.0.08. Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik A. Filler Übungsklausur zur Vorlesung Lineare Algebra und Analytische Geometrie I Bitte lösen

Mehr

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele

Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Wahrscheinlichkeitstheorie Kapitel I - Einführende Beispiele Georg Bol georg.bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Wahrscheinlichkeitstheorie Agenda:

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Fuzzy-Logic. René K. Bokor - 5 HBa Fuzzy Logic Seite: 1

Fuzzy-Logic. René K. Bokor - 5 HBa Fuzzy Logic Seite: 1 Fuzzy-Logic Einleitung In den letzten Jahren kommt die Theorie der unscharfen Mengen, auch Fuzzy Sets genannt, immer mehr Bedeutung zu. Das nun folgende Referat soll einen Überblick über die wesentlichen

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Was bisher geschah. Modellierung von Aussagen in klassischer Aussagen-Logik

Was bisher geschah. Modellierung von Aussagen in klassischer Aussagen-Logik Was bisher geschah Modellierung von Aussagen in klassischer Aussagen-Logik Modellierung von Daten durch Mengen Darstellung: extensional durch Angabe aller Elemente (nur für endliche Mengen möglich) intensional

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018

Mengenlehre Zahlbereiche. II Mengenlehre. Propädeutikum Holger Wuschke. 18. September 2018 Propädeutikum 2018 18. September 2018 in der Mengenlehre Denition einer Menge (Georg Cantor, 1869) Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unsrer

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

2 Entscheidungsfmdung mittels Fuzzy-Methoden

2 Entscheidungsfmdung mittels Fuzzy-Methoden 2 Entscheidungsfmdung mittels Fuzzy-Methoden Die Automatisierungstechnik übernimmt Aufgaben der Diagnose, Überwachung, Steuerung und Regelung technischer Prozesse sowie der Vorhersage und Planung. In der

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Fundamente der Computational Intelligence Teil 2

Fundamente der Computational Intelligence Teil 2 Fundamente der Computational Intelligence Teil 2 Günter Rudolph Fachbereich Informatik, Lehrstuhl XI Fachgebiet Computational Intelligence WS 2006/07 Grobe Gliederung 1. Fuzzy Methoden 2. Evolutionäre

Mehr

Vollständigkeit der reellen Zahlen

Vollständigkeit der reellen Zahlen Vollständigkeit der reellen Zahlen Vorlesung zur Didaktik der Analysis Oliver Passon Vollständigkeit von R 1 take home message I Wollte man mit Zahlen nur rechnen, könnte man mit den rationalen Zahlen

Mehr

Inhaltsverzeichnis (Ausschnitt)

Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Inhaltsverzeichnis (Ausschnitt) 8 Messbarkeit und Bildwahrscheinlichkeit Messbare Abbildungen Bildwahrscheinlichkeit Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Eine Einführung mit Beispielen und Übungsaufgaben von Prof. Dr. Karl Bosch 14., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis 1 Grundlagen der Mengenlehre 1 1.1

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren

Literatur und Videos. ISM WS 2017/18 Teil 4/Algebren Literatur und Videos [4-1] http://www.iti.fh-flensburg.de/lang/krypto [4-2] Forster, Otto: Algorithmische Zahlentheorie. 2. Auflage, Springer, 2015 [4-3] Teschl, Gerald; Teschl, Susanne: Mathematik für

Mehr