Was war vor dem Startwert?
|
|
|
- Curt Bösch
- vor 10 Jahren
- Abrufe
Transkript
1 63 Hans Walser Was war vor dem Startwert? Das mathematische Analogon zur Frage, was vor Adam und Eva war, ist die Frage, ob und wie Folgen und mathematische Strukturen, welche einen natürlichen Anfang haben, nach rückwärts in die Vergangenheit fortgesetzt werden können. Es wird gezeigt, wie sich durch diese Frage beim Pascal-Dreieck ein weites Aktivitätsfeld öffnet, das sogar einen ersten Zugang zur Taylor-Entwicklung enthält. 1. Pascal mit einer Spitze Ein jedermann im Lande kennt, was man ein Pascal- Dreieck nennt: Abb. 1 Pascal-Dreieck Aufgabe 1 Wie geht es weiter? Aufgabe 2 Wie lässt sich das Rechenschema grafisch darstellen? Aufgabe 3 Genügt die Angabe des Rechenschemas für die Berechnung des Pascal-Dreieckes? Bei der Darstellung im Hexagonalmuster ist das Pascal-Dreieck ein gleichseitiges Dreieck, das aber nach unten ins Bodenlose geht. Das Rechenschema (die Rekursion) besteht darin, dass jede Zahl die Summe der unmittelbar links oben und rechts oben stehenden Zahlen ist (vgl. Aufgabe 2). Das Rechenschema funktioniert auch an den Rändern, wenn das Hexagonalnetz weitergedacht wird, aber mit Nullen gefüllt. Einzige Ausnahme ist die Eins an der Spitze, die wie ein Deus ex Machina aus dem Nichts erscheint. Man spricht dann beschönigend von einem Startwert, so wie Adam und Eva die Startwerte der Menschheit waren. Die Frage ist, ob und wie man diesen Schönheitsfehler vermeiden kann. 2. Fibonacci comes in Die Schrägzeilensummen im Pascal-Dreieck ergeben die Fibonacci-Zahlen. So ist zum Beispiel: 34 =
2 64 Abb. 2 Fibonacci-Zahlen In der Abbildung 2 sind diese Schrägzeilen es sind die Senkrechten auf die Dreiecksseite rechts jeweils fett hervorgehoben. Aufgabe 4 Wie geht es mit den Fibonacci-Zahlen weiter? Aufgabe 5 Nach welcher Gesetzmäßigkeit lassen sich die Fibonacci-Zahlen bilden? Lässt sich diese Gesetzmäßigkeit aus dem Pascal-Dreieck ablesen? 3. Was war vor den Startwerten? Aufgabe 6 Lässt sich die Fibonacci-Folge auch nach rückwärts laufen lassen? Nun drängt sich die Frage auf: Wie kann das Pascal-Dreieck über seine Spitze mit der ominösen Eins hinaus so zurück verfolgt werden, dass die Sache kompatibel mit der ins Negative fortgesetzten Fibonacci-Folge ist? Die Abbildung 3 zeigt eine mögliche Lösung (vgl. [1], S. 197, [2], S. 163). Abb. 3 Pascal und Fibonacci Die neuen, von Null verschiedenen Zahlen sind auch Pascal-Zahlen, aber mit alternierenden Vorzeichen. In diesem neuen Pascal-Dreieck besteht der untere Rand aus den Zahlen ±1.
3 65 In der Abbildung 4 sind die Fibonacci-Zahlen weggelassen und nur noch die Pascal-Zahlen dieser Lösung angegeben; dafür wurde das Hexagonalschema nach rechts oben mit Nullen ergänzt. Abb. 4 Pascal Nun ist das in allen Richtungen ins Unendliche fortgesetzte Hexagonalnetz so mit Zahlen gefüllt, dass überall, und insbesondere auch an der Spitze des ursprünglichen Pascal-Dreieckes, die Pascal-Rekursion spielt. Dabei ist zu beachten, dass die Pascal-Rekursion immer von oben nach unten arbeitet. Die Vergangenheit ist also oben und die Zukunft unten, wie im Weltbild der alten Römer. 4. Pascal-Ebenen Eine Pascal-Ebene ist ein in allen Richtungen ins Unendliche fortgesetzte Hexagonalnetz, deren Hexagone so mit Zahlen gefüllt sind, dass überall die Pascal-Rekursion erfüllt ist. Wir haben oben ein Beispiel dazu. Ein triviales Beispiel besteht ausschließlich aus Nullen. Aufgabe 7 Wer findet weitere Beispiele? Dazu kann das leere Hexagonalnetz (Abb. 5) als Vorlage verwendet werden. 5. Binomialkoeffizienten Abb. 5 Hexagonalnetz
4 66 Für die Pascal-Zahlen wird in der Regel die folgende tabellarische Darstellung und Symbolik verwendet. Für die Berechnung gilt die Formel: Wegen gilt aber auch: Exemplarisch: n n ( k)= n k n ( k)= n ( n 1) L n k L k () 1 1 ( 1 2 ) ( 2 2 ) ( 1 3 ) ( 2 3 ) ( 3 3 ) ( 1 4 ) ( 2 4 ) ( 3 4 ) ( 4 4 ) ( 1 5 ) ( 2 5 ) ( 5 3) ( 5 4) ( 5 5 ) n n ( k)= n k n ( n 1) L n n k = +1 n ( n 1) L = ( k+1 ) 1 2 L n k 1 2 L ( n k) 5 5 ( 3)= ( 2 )= = 10 Wir haben oben und unten gleich viele Faktoren, nämlich ( n k). Oben fängt es mit dem Faktor n an und geht ( n k) Schritte runter, unten fängt es mit dem Faktor 1 an und geht n k Regel, hier wird ( n n )= 1 definiert. Schritte rauf. Für k = n versagt die Diese Regeln sind auf die Verallgemeinerung der Abbildung 4 übertragbar. Die tabellarische Darstellung in senkrechten Spalten und waagerechten Zeilen ergibt: oder symbolisch:
5 67 ( 5) 4 4 ( 5) ( 5) ( 4) ( 3) ( 5) ( 4) ( 3) ( 2) ( 5) ( 4) ( 3) ( 2) ( 1) 0 ( 0) 1 ( 0) () ( 0) ( 1 2 ) ( 2 2 ) ( 0 3 ) ( 1 3 ) ( 2 3 ) ( 3 3 ) ( 0 4 ) ( 1 4 ) ( 2 4 ) ( 3 4 ) ( 4 4 ) Die Rechenregel ( k n )= n ( n 1) L k L n k gilt auch im negativen Fall: n ( ( k)= n ) ( n 1) L k L n+k Aufgabe 8 n ( Exemplarische Kontrolle der Rechenregel ( k)= n ) ( n 1) L ( k+1 ) 1 2 L ( n+k) Aufgabe 9 Wie können die Zahlen des negativen Pascal-Dreieckes auch über die gewöhnlichen Pascal-Zahlen berechnet werden? im negati- Aufgabe 10 Leider funktioniert die im klassischen Pascal-Dreieck vorhandene Symmetrie ( k n n )= n k ven Pascal-Dreieck nicht mehr. Was lässt sich davon retten?. 6. Binomische Formel In einem pragmatischen Schulunterricht wird das Pascal-Dreieck über die binomische Formel eingeführt: an k b k ( a + b) n n n = n k k=0 Eigentlich könnten wir wegen ( r n )= 0 für n > 0 und r < 0 auch schreiben: Nun wird es spannend. Aufgabe 11 Was ist a + b ( a + b) n n = n k k=0 an k b k 3? Lässt sich das Ergebnis kontrollieren?
6 68 7. Taylor-Entwicklung Wir erhielten im Abschnitt 6 die verallgemeinerte Binomische Formel: Insbesondere ist a 3 k b k ( a + b) 3 3 = 3 k = a 3 3a 4 b + 6a 5 b 2 10a 6 b a 7 b 4 21a 8 b 5 ±L k=0 ( 1 + x) 3 = 1 3x + 6x 2 10x x 4 21x 5 ±L Das ist aber genau die Taylor-Entwicklung der Funktion f( x)= ( 1 + x) 3 an der Stelle x 0 = 0. Aufgabe 12 Plotten Sie die Funktion f( x)= 1+ x p( x)= 1 3x + 6x 2 10x x 4 21x 5 3 und die Approximation 5. Grades: 8. Lösungshinweise zu den Aufgaben Aufgabe 1 Abb. 6 Pascal-Dreieck Aufgabe 2 Abb. 7 Rechenschema Dieses Rechenschema bezeichnen wir als Pascal-Rekursion. Allgemein ist eine Rekursion ein Rechenschema, bei welchem eine neue Zahl aus bisherigen Zahlen berechnet wird. Aufgabe 3 Das Rechenschema allein genügt nicht. Wir brauchen als Startwerte die Einsen am linken und rechten Rand sowie an der Spitze. Aufgabe 4 Es sei f n die n-te Fibonacci-Zahl. Damit ist: n f n Aufgabe 5
7 69 Es gilt das Bildungsgesetz (Rekursionsformel): f n = f n 1 + f n 2 mit den Startwerten f 1 = 1 und f 2 = 1. Abb. 8 Herleitung der Rekursion Exemplarische Herleitung der Fibonacci-Rekursion: Die Zahl 21 setzt sich aus Zahlen zusammen, welche ihrerseits die Summe von Zahlen sind, aus denen sich die Zahlen 8 und 13 zusammensetzen: 21 = = ( 0 + 1)+ ( 1 + 5)+ ( 4 + 6)+ ( 3 + 1)= ( )+ ( )= Aufgabe 6 Wir können die Fibonacci-Folge problemlos auch nach rückwärts laufen lassen: n L L f n L L Es erscheinen zunächst die Null und dann spiegelbildlich die schon bekannten Fibonacci-Zahlen, aber mit alternierenden Vorzeichen. Wir müssen also nicht zwingend mit den beiden Startwerten f 1 = 1 und f 2 = 1 arbeiten. Aufgabe 7 Es handelt sich um eine offene Aufgabe mit unendliche vielen Lösungen. Im Folgenden einige Beispiele. Unsystematisches Beispiel In diesem Beispiel haben wir Einsen in einer Diagonalen, rechts oben davon Nullen, und links unten Zahlen, welche bald einmal keine Gesetzmäßigkeit mehr erkennen lassen. Es wurde in Schrägen parallel zu den Einsen gearbeitet und in jeder Schräge willkürlich eine Null gesetzt. Abb. 9 Wilde Zahlen Zweierpotenzen Ein simples Beispiel, das aber Brüche benötigt, besteht aus Potenzen der Zahl 2.
8 70 Abb. 10 Zweierpotenzen Zwei Dreiecke und viele Nullen Sobald sich eine Reihe mit alternierend entgegengesetzt gleichen Zahlen ergibt, gibt es darunter nur noch Nullen. Im folgenden Beispiel erkennen wir wieder die Pascal-Zahlen mit alternierendem Vorzeichen. Abb. 11 Halbebene Wir bilden nun in diesem Beispiel die Spaltensummen, das heißt, wir addieren jeweils die Zahlen, welche senkrecht übereinander stehen. Die untere Halbebene mit den Nullen können wir weglassen. Die Spaltensummen ergeben die Folge: Abb. 12 Spaltensummen
9 71 n f n Diese Folge ist periodisch mit der Periodenlänge 6 und der Antiperiodenlänge 3. Sie ergibt sich aus den Startwerten f 1 = 1 und f 2 = 1 und der Rekursion: f n = f n 1 f n 2 Die Folge ist also eine nur geringfügige Modifikation der Fibonacci-Folge. Aufgabe in der Aufgabe : Was ergibt sich bei anderen Startwerten? Mit den allgemeinen Starterwerten f 1 = a und f 2 = b erhalten wir: n f n... a b b a a b b+a a b b a a b b+a... Auch im allgemeinen Fall ist die Folge periodisch mit der Periodenlänge 6 und der Antiperiodenlänge 3. Ändern der Vorzeichen Nun ändern wir im Dreieck rechts alle Vorzeichen. Dann ergibt sich die folgende achsensymmetrische Figur mit drei Dreiecken (vgl. [1], S. 197, [2], S. 163). Abb. 13 Drei Dreiecke Wir erkennen unten ein Dreieck mit den doppelten Pascal-Zahlen. Null in der Mitte Wir schieben die beiden oberen symmetrischen Dreiecke um eine Einheit auseinander (Abb. 14). Dann ergibt sich unten das ursprüngliche Pascal-Dreieck, aber ohne die ominöse Eins an der Spitze. Eine Art Götterdämmerung.
10 72 Abb. 14 Null in der Mitte Aufgabe 8 Kontrolle an Rechenbeispielen: 4 ( 5)= ( 4) = ( ( 5)= 3 ) ( 4 ) = ( ( 5)= 1 ) ( 2) ( 3) ( 4 ) = ( 5)= 1 (Definition für k = n) Aufgabe 9 Natürlich können die Zahlen des negativen Pascal-Dreieckes auch über die gewöhnlichen Pascal-Zahlen berechnet werden: k 1 n 1 n ( k)= ( 1) n+k Aufgabe 10 Im negativen Pascal-Dreieck gilt spaltenweise eine vertikale Symmetrie, bei der auch noch mit wechselnden Vorzeichen gerechnet werden muss: n ( k)= ( 1) k+1 n k 1 ( k ) für n, k Aufgabe 11 Es ergibt sich: also: a 3 k b k ( a + b) 3 3 = 3 k k=0 a 3 k b k ( a + b) 3 3 = 3 k = a 3 3a 4 b + 6a 5 b 2 10a 6 b a 7 b 4 21a 8 b 5 ±L k=0 Wir erhalten eine Reihe. Kontrollüberlegung: Wenn wir mit a + b erhalten. Tatsächlich ergibt sich: multiplizieren, sollten wir 1 +3, also mit a 3 + 3a 2 b + 3ab 2 + b 3
11 73 ( a 3 + 3a 2 b + 3ab 2 + b 3 ) ( a 3 3a 4 b + 6a 5 b 2 10a 6 b a 7 b 4 21a 8 b 5 ±L ) = 1 3a 1 b 6a 2 b 2 10a 3 b 3 +15a 4 b 4 21a 5 b 5 ±L +3a 1 b 9a 2 b 2 +18a 3 b 3 30a 4 b 4 +45a 5 b 5 63a 6 b 6 3a 2 b 2 9a 3 b 3 +18a 4 b 4 30a 5 b 5 +45a 6 b 6 +a 3 b 3 3a 4 b 4 +6a 5 b 5 10a 6 b 6 = L Aufgabe 12 Wir erhalten: Abb. 15 Funktion und Taylor-Approximation Wir sehen, dass die Approximation 5. Grades nur in einer kleinen Umgebung von x 0 = 0 etwas taugt. Literatur Hilton, Peter / Holton, Derek / Pedersen, Jean [1]: Hilton, Peter / Holton, Derek / Pedersen, Jean [2]: Mathematical Reflections: In a Room with Many Mirrors. 2nd printing. New York: Springer Mathematical Vistas: From a Room with Many Mirrors. New York: Springer 2002 DR. HANS WALSER Mathematisches Institut der Uni Basel Rheinsprung 21 CH-4051 Basel [email protected]
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
Dossier: Rechnungen und Lieferscheine in Word
www.sekretaerinnen-service.de Dossier: Rechnungen und Lieferscheine in Word Es muss nicht immer Excel sein Wenn Sie eine Vorlage für eine Rechnung oder einen Lieferschein erstellen möchten, brauchen Sie
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten
Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während
http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".
Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden
Eine Logikschaltung zur Addition zweier Zahlen
Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Der Kalender im ipad
Der Kalender im ipad Wir haben im ipad, dem ipod Touch und dem iphone, sowie auf dem PC in der Cloud einen Kalender. Die App ist voreingestellt, man braucht sie nicht laden. So macht es das ipad leicht,
5. Bildauflösung ICT-Komp 10
5. Bildauflösung ICT-Komp 10 Was sind dpi? Das Maß für die Bildauflösung eines Bildes sind dpi. Jeder spricht davon, aber oft weiß man gar nicht genau was das ist. Die Bezeichnung "dpi" ist ein Maß, mit
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer
Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der
Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik
Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Erstellen einer digitalen Signatur für Adobe-Formulare
Erstellen einer digitalen Signatur für Adobe-Formulare (Hubert Straub 24.07.13) Die beiden Probleme beim Versenden digitaler Dokumente sind einmal die Prüfung der Authentizität des Absenders (was meist
Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang
sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche
Anwendungsbeispiele Buchhaltung
Rechnungen erstellen mit Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Rechnungen erstellen mit Webling 1.1 Rechnung erstellen und ausdrucken 1.2 Rechnung mit Einzahlungsschein erstellen
Jede Zahl muss dabei einzeln umgerechnet werden. Beginnen wir also ganz am Anfang mit der Zahl,192.
Binäres und dezimales Zahlensystem Ziel In diesem ersten Schritt geht es darum, die grundlegende Umrechnung aus dem Dezimalsystem in das Binärsystem zu verstehen. Zusätzlich wird auch die andere Richtung,
EINMALEINS BEZIEHUNGSREICH
EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder
3.2 Spiegelungen an zwei Spiegeln
3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.
Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in
Sollsaldo und Habensaldo
ollsaldo und abensaldo Man hört oft die Aussage "Ein ollsaldo steht im aben, und ein abensaldo steht im oll". Da fragt man sich aber, warum der ollsaldo dann ollsaldo heißt und nicht abensaldo, und warum
Alle gehören dazu. Vorwort
Alle gehören dazu Alle sollen zusammen Sport machen können. In diesem Text steht: Wie wir dafür sorgen wollen. Wir sind: Der Deutsche Olympische Sport-Bund und die Deutsche Sport-Jugend. Zu uns gehören
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Diese Ansicht erhalten Sie nach der erfolgreichen Anmeldung bei Wordpress.
Anmeldung http://www.ihredomain.de/wp-admin Dashboard Diese Ansicht erhalten Sie nach der erfolgreichen Anmeldung bei Wordpress. Das Dashboard gibt Ihnen eine kurze Übersicht, z.b. Anzahl der Beiträge,
Webalizer HOWTO. Stand: 18.06.2012
Webalizer HOWTO Stand: 18.06.2012 Copyright 2003 by manitu. Alle Rechte vorbehalten. Alle verwendeten Bezeichnungen dienen lediglich der Kennzeichnung und können z.t. eingetragene Warenzeichen sein, ohne
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
Das Leitbild vom Verein WIR
Das Leitbild vom Verein WIR Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich A2: noch leichter verständlich
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:
VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt
Novell Client. Anleitung. zur Verfügung gestellt durch: ZID Dezentrale Systeme. Februar 2015. ZID Dezentrale Systeme
Novell Client Anleitung zur Verfügung gestellt durch: ZID Dezentrale Systeme Februar 2015 Seite 2 von 8 Mit der Einführung von Windows 7 hat sich die Novell-Anmeldung sehr stark verändert. Der Novell Client
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit
sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit liegen, an Bedeutung verlieren. Die Mannschaften haben sich verändert. Spieler
Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.
Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt
Erklärung zu den Internet-Seiten von www.bmas.de
Erklärung zu den Internet-Seiten von www.bmas.de Herzlich willkommen! Sie sind auf der Internet-Seite vom Bundes-Ministerium für Arbeit und Soziales. Die Abkürzung ist: BMAS. Darum heißt die Seite auch
Anleitung zur Daten zur Datensicherung und Datenrücksicherung. Datensicherung
Anleitung zur Daten zur Datensicherung und Datenrücksicherung Datensicherung Es gibt drei Möglichkeiten der Datensicherung. Zwei davon sind in Ges eingebaut, die dritte ist eine manuelle Möglichkeit. In
Was ist Sozial-Raum-Orientierung?
Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume
10.1 Auflösung, Drucken und Scannen
Um einige technische Erläuterungen kommen wir auch in diesem Buch nicht herum. Für Ihre Bildergebnisse sind diese technischen Zusammenhänge sehr wichtig, nehmen Sie sich also etwas Zeit und lesen Sie dieses
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009)
Zahlen und das Hüten von Geheimnissen (G. Wiese, 23. April 2009) Probleme unseres Alltags E-Mails lesen: Niemand außer mir soll meine Mails lesen! Geld abheben mit der EC-Karte: Niemand außer mir soll
2. Negative Dualzahlen darstellen
2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Die Post hat eine Umfrage gemacht
Die Post hat eine Umfrage gemacht Bei der Umfrage ging es um das Thema: Inklusion Die Post hat Menschen mit Behinderung und Menschen ohne Behinderung gefragt: Wie zufrieden sie in dieser Gesellschaft sind.
Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.
MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei
Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit
Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit Frau Dr. Eva Douma ist Organisations-Beraterin in Frankfurt am Main Das ist eine Zusammen-Fassung des Vortrages: Busines
Ebenenmasken Grundlagen
Ebenenmasken Grundlagen Was sind Ebenmasken? Was machen sie? Wofür braucht man sie? Wie funktionieren sie? Ebenmasken sind eines der sinnvollsten Tools in anspruchvollen EBV Programmen (EBV = elektronische
Formelsammlung zur Kreisgleichung
zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,
Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65
OZ-Verlags-GmbH Papierstreifen. Die Enden des vierten gefalteten Papierstreifens weiter durch den zweiten gefalteten Streifen oben ziehen. 1 Die vier Papierstreifen jeweils waagerecht in der Mitte falten.
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Hans Walser, [20090509a] Wurzeln aus Matrizen
Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn
Berechnungen in Access Teil I
in Access Teil I Viele Daten müssen in eine Datenbank nicht eingetragen werden, weil sie sich aus anderen Daten berechnen lassen. Zum Beispiel lässt sich die Mehrwertsteuer oder der Bruttopreis in einer
Im Folgenden wird Ihnen an einem Beispiel erklärt, wie Sie Excel-Anlagen und Excel-Vorlagen erstellen können.
Excel-Schnittstelle Im Folgenden wird Ihnen an einem Beispiel erklärt, wie Sie Excel-Anlagen und Excel-Vorlagen erstellen können. Voraussetzung: Microsoft Office Excel ab Version 2000 Zum verwendeten Beispiel:
Was man mit dem Computer alles machen kann
Was man mit dem Computer alles machen kann Wie komme ich ins Internet? Wenn Sie einen Computer zu Hause haben. Wenn Sie das Internet benutzen möchten, dann brauchen Sie ein eigenes Programm dafür. Dieses
Leichte-Sprache-Bilder
Leichte-Sprache-Bilder Reinhild Kassing Information - So geht es 1. Bilder gucken 2. anmelden für Probe-Bilder 3. Bilder bestellen 4. Rechnung bezahlen 5. Bilder runterladen 6. neue Bilder vorschlagen
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
Erstellen einer GoTalk-Auflage
Erstellen einer GoTalk-Auflage 1. Bei dem Startbild Vorlage öffnen wählen 2. In dem folgenden Fenster Geräte Schablonen doppelt anklicken. - und schon öffnet sich der gesamte Katalog der verfügbaren Talker-Auflagen...eigentlich
Rekursionen (Teschl/Teschl 8.1-8.2)
Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Thema: Winkel in der Geometrie:
Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild
Dieser Ablauf soll eine Hilfe für die tägliche Arbeit mit der SMS Bestätigung im Millennium darstellen.
Millennium SMS Service Schnellübersicht Seite 1 von 6 1. Tägliche Arbeiten mit der SMS Bestätigung Dieser Ablauf soll eine Hilfe für die tägliche Arbeit mit der SMS Bestätigung im Millennium darstellen.
der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.
Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?
Ein und dieselbe Taufe
1 Ein und dieselbe Taufe Eph. 4,5 Nach V. 3 geht es um die Einheit des Geistes. In diesem Zusammenhang nennt Paulus sieben Aspekte der geistlichen Einheit: Ein [geistlicher] Leib Ein Geist Eine Hoffnung
Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:
Die neue Aufgabe von der Monitoring-Stelle Das ist die Monitoring-Stelle: Am Deutschen Institut für Menschen-Rechte in Berlin gibt es ein besonderes Büro. Dieses Büro heißt Monitoring-Stelle. Mo-ni-to-ring
5.2 Neue Projekte erstellen
5.2 Neue Projekte erstellen Das Bearbeiten von bestehenden Projekten und Objekten ist ja nicht schlecht wie aber können Sie neue Objekte hinzufügen oder gar völlig neue Projekte erstellen? Die Antwort
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: If-clauses - conditional sentences - Nie mehr Probleme mit Satzbau im Englischen! Das komplette Material finden Sie hier: School-Scout.de
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Kurzanleitung. MEYTON Aufbau einer Internetverbindung. 1 Von 11
Kurzanleitung MEYTON Aufbau einer Internetverbindung 1 Von 11 Inhaltsverzeichnis Installation eines Internetzugangs...3 Ist mein Router bereits im MEYTON Netzwerk?...3 Start des YAST Programms...4 Auswahl
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10
Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist
Einstellungen im Internet-Explorer (IE) (Stand 11/2013) für die Arbeit mit IOS2000 und DIALOG
Einstellungen im Internet-Explorer (IE) (Stand 11/2013) für die Arbeit mit IOS2000 und DIALOG Um mit IOS2000/DIALOG arbeiten zu können, benötigen Sie einen Webbrowser. Zurzeit unterstützen wir ausschließlich
Das Mathematik-Abitur im Saarland
Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die
Dieses erste Kreisdiagramm, bezieht sich auf das gesamte Testergebnis der kompletten 182 getesteten Personen. Ergebnis
Datenanalyse Auswertung Der Kern unseres Projektes liegt ganz klar bei der Fragestellung, ob es möglich ist, Biere von und geschmacklich auseinander halten zu können. Anhand der folgenden Grafiken, sollte
Schnittstelle DIGI-Zeiterfassung
P.A.P.A. die kaufmännische Softwarelösung Schnittstelle DIGI-Zeiterfassung Inhalt Einleitung... 2 Eingeben der Daten... 2 Datenabgleich... 3 Zusammenfassung... 5 Es gelten ausschließlich unsere Allgemeinen
Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler
Downloadfehler in DEHSt-VPSMail Workaround zum Umgang mit einem Downloadfehler Downloadfehler bremen online services GmbH & Co. KG Seite 2 Inhaltsverzeichnis Vorwort...3 1 Fehlermeldung...4 2 Fehlerbeseitigung...5
GLEICH WEIT WEG. Aufgabe. Das ist ein Ausschnitt aus der Tausenderreihe:
GLEICH WEIT WEG Thema: Sich orientieren und operieren an der Tausenderreihe Klasse: 3. Klasse (Zahlenbuch nach S. 26-27) Dauer: 3-4 Lektionen Material: Tausenderreihe, Arbeitsblatt, evt. Plättchen Bearbeitung:
Was ist das Budget für Arbeit?
1 Was ist das Budget für Arbeit? Das Budget für Arbeit ist ein Persönliches Geld für Arbeit wenn Sie arbeiten möchten aber nicht mehr in einer Werkstatt. Das gibt es bisher nur in Nieder-Sachsen. Und in
Reporting Services und SharePoint 2010 Teil 1
Reporting Services und SharePoint 2010 Teil 1 Abstract Bei der Verwendung der Reporting Services in Zusammenhang mit SharePoint 2010 stellt sich immer wieder die Frage bei der Installation: Wo und Wie?
Was ich als Bürgermeister für Lübbecke tun möchte
Wahlprogramm in leichter Sprache Was ich als Bürgermeister für Lübbecke tun möchte Hallo, ich bin Dirk Raddy! Ich bin 47 Jahre alt. Ich wohne in Hüllhorst. Ich mache gerne Sport. Ich fahre gerne Ski. Ich
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
2 Terme 2.1 Einführung
2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.
Definition und Begriffe
Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist
