Übungszettel XI *gelöst*

Größe: px
Ab Seite anzeigen:

Download "Übungszettel XI *gelöst*"

Transkript

1 Übungszettel XI *gelöst* 1. Aufgabe Sei folgende Grammatik G = < A, N, S, R > gegeben, wobei: A = { der, die, das, Auto, Banane, fährt, schnell, schmeckt, gut } N = {<S>, <NP>, <VP>, <Adj>, <D>, <N>} S = <S> R = { <S> <NP> <VP>, <S> <NP> <VP> <Adj>, <NP> <D> <N>, <VP> fährt, <VP> schmeckt, <Adj> gut, <Adj> schnell, <D> der, <D> die, <D> das, <N> Auto, <N> Banane } i.) Kann man die Regelmenge R auch kompakter aufschreiben? Wenn ja, wie? In der Vorlesung wurde folgende Notation eingeführt: Wenn wir zwei Regeln der Form X Y und X Z, wobei X = X, dann können wir diese zwei Regeln wie folgt kompakter aufschreiben: X Y Z Für die Grammatik G können wir die Regelmenge wie folgt kompakter aufschreiben: R = {<S> <NP> <VP> <NP> <VP> <Adj>, <NP> <D> <N>, VP> fährt schmeckt, <Adj> gut schnell, <D> der die das, <N> Auto Banane } ii.) Gebt für ein und dieselbe Terminalkette zwei verschiedene Ableitungen an. /die Banane schmeckt / <S> <NP><VP> 1

2 <D><N><VP> die <N><VP> die Banane <VP> die Banane schmeckt /die Banane schmeckt / <S> <NP><VP> <D><N><VP> <D>Banane <VP> die Banane <VP> die Banane schmeckt iii.) Erstellt ausgehend von der Ableitung einen Strukturbaum für die Terminalkette. Gibt es für irgendeine Terminalkette, die von der Grammatik generiert werden kann, zwei verschiedene Strukturbäume? Es gibt keine Zeichenkette, die zwei verschiedene Strukturbäume erzeugt. 2

3 (Strenggenommen fehlen in der Darstellung noch die Knotenpunkte. Beachtet dies bei euren Zeichnungen!) iv.) Es werden die Namen der Nichtterminalsymbole der Grammatik G durch X,Y, Z, A, B,C ersetzt. Ebenso werden diese Nichtterminalsymbole eins zu eins in der Regelmenge ersetzt und nichts sonst. Die Grammatik heißt nun G'. Was bedeutet das für die von der Grammatik erzeugten Sprache L(G)? Ist L(G)=L(G')? Wenn ja, warum? Wenn die Namen der Nichtterminalsymbole geändert werden und sonst nichts, erzeugt die Grammatik G' immer noch dieselbe Sprache, die auch G erzeugt. Insofern spielen die Namen der Nichtterminalsymbole keine Rolle! Also gilt: L(G)=L(G'). v.) Bisher haben wir drei verschiedene Typen von Grammatiken kennengelernt: Reguläre Grammatiken, kontextfreie Grammatiken und kontextsensitive Grammatiken. Von welchem Typ Grammatik ist G? Von welchem Typ ist die von der Grammatik erzeugten Sprache L(G)? Die Grammatik G ist keine reguläre Grammatik, da nicht alle 3

4 Regeln, die in R sind, die folgende Form haben: X ay, X a, X ɛ Die Grammatik G ist keine kontextsensitive Grammatik, da keine Regeln eine Kontextbedingung enthält. Die Grammatik G ist somit eine kontextfreie Grammatik. Für alle Regeln gilt, dass der hintere(rechte) Teil ein Element von (A ist, wobei A das Alphabet ist und N für die Menge der Nichtterminalsymbole steht. N)* Die entscheidende Frage ist, ob L(G) nun auch eine kontextfreie Sprache oder nun doch eine reguläre Sprache erzeugt. In der Definition von regulären Sprachen heißt es, dass eine Sprache genau dann regulär ist, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist: 1. eine reguläre Grammatik G' gibt, sodass G' dieselbe Sprache erzeugt wie G (bzw., wenn L(G)=L(G') und G' regulär ist) 2., wenn L(G) von einem endlichen Automaten akzeptiert wird. 3., wenn L(G) von einem regulären Ausdruck dargestellt werden kann. ((der_ die_ das_)(auto_ Banane_)(fährt_ schmeckt_)) (der_ die_ das_)(auto_ Banane_)(fährt_ schmeckt)(gut_ schnell_) Somit haben wir einen regulären Ausdruck gefunden, der die dieselbe Sprache von G erzeugt. Laut Bedingung 3. folgt nun, dass L(G) eine reguläre Sprache erzeugt. vi.) Kann die Grammatik benutzt werden, um einen (sehr kleinen) Ausschnitt der 4

5 deutschen Sprache wiederzugeben? Wenn ja, warum? Wenn nein: Was muss verändert werden? Da wir mittels der Grammatik zum Beispiel den ungrammatischen /der_banane_schmeckt_schnell/ ableiten können, eignet sich diese Grammatik nicht wirklich, um einen sehr kleinen Ausschnitt der deutschen Sprache wiederzugeben. Damit die Grammatik grammatische Sätze erzeugt, müssen wir die Regeln so modifizieren, dass zum Beispiel: der_banane_schmeckt_ nicht abgleitet werden kann (Dass die Sätze, die erzeugt werden, semantisch keinen Sinn machen, spielt erst einmal keine Rolle!). Jedenfalls ist es notwendig neue Nichtterminale einzuführen und neue Regeln zu definieren. R''' = { <S> <NP> <VP> <NP> <VP> <Adj> <NP> <Dneut><Nneut> <Dfem><Nfem> <Nneut> Auto_ <Dneut> das_ <Dfem> die_ <Nfem> Banane_ <Adj> fährt_ schnell_ <VP> schmeckt_ fährt_ } 5

6 Unsere neue Grammatik, die nur grammatische Sätze des Deutschen erzeugen kann, ist nun: G''' = < {das_, die_, Banane_, Auto_, fährt_, schnell_, schmeckt_, gut_}, {<S>, <NP>, <VP>, <Adj>, <Nneut>, <Dneut>, <Dfem>, <Nfem>}, <S>, R'''> 2. Aufgabe Sei folgende Grammatik G'' = < A'', N'', S'', R'' > gegeben, wobei: A'' = {die, süße, Katze } N'' = {<Ö>, <Ä>, <Ü>} R''= {<Ä> die <Ä> Katze / die _, <Ü> die <Ä> Katze, <Ä> süße } S'' = <Ü> i.) Welche Sprache wird von G'' erzeugt? Was ist also L(G'')? Gebt einen regulären Ausdruck an, der L(G'') erfasst. L(G'') = {die_(die_) üße_m süße_ (Katze_ ) üße_m Katze_ a 0 } Wie wir sehen, lässt sich kein regulärer Ausdruck finden, der L(G'') erfassen kann. Dies liegt daran, weil die Operatoren von regulären Ausdrücken nicht der Tatsache gerecht werden können, dass wenn (die_) üße_m a-mal iteriert wird die (Katze) üße_m genauso auch a-mal vorkommen muss. ii.) Von welchem Typ Grammatik ist G''? Anhand welcher Bedingungen macht ihr das fest? Die Grammatik G'' ist eine kontextsensitive Grammatik, da sie die kontextsensitive Regel <Ä> die <Ä> Katze / die _ enthält. iii.) Ist die von G'' erzeugte Sprache L(G'') kontextfrei oder kontextsensitiv? Warum? Erzeugen kontextsensitive Grammatiken stets kontextsensitive Sprachen? 6

7 Dennoch ist die von G'' erzeugte Sprache kontextfrei. Wir können nämlich bei der Regel mit der Kontextbedingung einfach auf die Kontextbedingung verzichten und die Grammatik erzeugt immer noch dieselbe Sprache! R''''= {<Ä> die <Ä> Katze, <Ü> die <Ä> Katze, <Ä> süße } Aus diesem Grund ist die Allaussage, dass kontextsensitive Grammatiken immer kontextsensitive Sprachen erzeugen, falsch. Schließlich reicht es ein Gegenbeispiel zu finden (und das haben wir!), um die Allaussage zu widerlegen. iv.) Vergleicht nochmal reguläre, kontextfreie und kontextsensitive Sprachen. In welcher Beziehung könnten diese Typen von Sprachen zueinander stehen? Welcher Typ Sprache ist vom welchem Typ Sprache eine Teilmenge oder gibt es Typen von Sprachen, die sogar gleich sind? Überlegt! Die Menge der Regulären Sprachen ist eine echte Teilmenge von der Menge der kontextfreien Sprachen. Die Menge der kontextfreien Sprachen sind wiederum eine echte Teilmenge von kontextsensitiven Sprachen (Chomsky-Hierachie). Da die Echte-Teilmengen-Relation transitiv ist, gilt auch, dass die Menge der regulären Sprachen auch eine echte Teilmenge der Menge der kontextsensitiven Sprache ist. 3. Aufgabe Betrachtet folgende reguläre Ausdrücke. Welche Sprache wird von diesen Ausdrücken jeweils erfasst? (Betrachtet nur die Zeichenketten bis Länge 4.) i.) S(d as)* = (S(d) S(as))* = ({d} {as})* = {d,as}* = {ɛ, d, as, das, asas, dasd, dd, ddd, dddd, asdd, ddas} 7

8 ii.) S(d as*) = S(d) (s(a) s(s)*) = {d} ({a} {s}*)={d, a, as, ass, asss} iii.) S(d* as) = {ɛ, d, dd, ddd, dddd, as} iv.) S(d* as*) = {ɛ, d, dd, ddd, dddd, a, as, ass, asss} v.) S((d* as) (1 2)) = (S(d*) S(as)) (S(1) S(2))= ({d}* {as}) {1,2} = {as1, as2, d1, d2, 1, 2, dd1, dd2, ddd1, ddd2} vi.) S((d as)* (1 2) (3)*) = {d,as}* {1,2} {3}* = {1, 2, 13, 23, 133, 233, 1333, 2333, d1, d2, d13, d23, d133, d233, dd1, dd2, dd13, dd23, as1, as2, as13, as23, d133, d233, das1, das2, as13, as23, asd1, asd2} (Bestimmt ist euch aufgefallen, dass ich hier mehrere Schritte auf einmal erledige. Das solltet ihr in der Klausur nicht so handhaben!) 8

Alphabet, formale Sprache

Alphabet, formale Sprache n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l

Mehr

Abschnitt 5. Grammatiken

Abschnitt 5. Grammatiken Abschnitt 5 Sven Büchel Computerlinguistik I: Übung 148 / 163 Definition Formale Grammatik Eine formale Grammatik G ist eine 4-Tupel G =(N,T,P,S) mit einem Alphabet von Nicht-Terminalsymbolen N einem Alphabet

Mehr

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 1. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Christian Schwarz Markus Kaiser Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik . Übungsblatt 6. VU Theoretische Informatik und Logik 25. September 23 Aufgabe Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort. a) Für jede Sprache L gilt: L < L (wobei A die Anzahl

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

Informatik 3 Theoretische Informatik WS 2015/16

Informatik 3 Theoretische Informatik WS 2015/16 2. Probeklausur 22. Januar 2016 Informatik 3 Theoretische Informatik WS 2015/16 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Matrikel-Nr.: Schreiben Sie Ihren

Mehr

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht

Grammatik Prüfung möglich, ob eine Zeichenfolge zur Sprache gehört oder nicht Zusammenhang: Formale Sprache Grammatik Formale Sprache kann durch Grammatik beschrieben werden. Zur Sprache L = L(G) gehören nur diejenigen Kombinationen der Zeichen des Eingabealphabets, die durch die

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Tutoraufgabe 1 (ɛ-produktionen):

Tutoraufgabe 1 (ɛ-produktionen): Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium

Mehr

Die Lösungen, so wie ich sie in einer Klausur aufschreiben würde, sind blau. Anmerkungen, die nur zur Erklärung dienen, sind rot.

Die Lösungen, so wie ich sie in einer Klausur aufschreiben würde, sind blau. Anmerkungen, die nur zur Erklärung dienen, sind rot. Probeklausur Die Lösungen, so wie ich sie in einer Klausur aufschreiben würde, sind blau. Anmerkungen, die nur zur Erklärung dienen, sind rot. 1. Es seien L = {mh,ff,grr} und N = {br,pf}. Bestimmen Sie

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Definition der Greibach-Normalform

Definition der Greibach-Normalform Definition der Greibach-Normalform Ähnlich wie die CNF wollen wir noch eine zweite Normalform einführen, nämlich die Greibach-Normalform (GNF), benannt nach Sheila Greibach: Definition: Eine Typ-2 Grammatik

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

kontextfreie Sprachen: Normalformen

kontextfreie Sprachen: Normalformen 1 kontextfreie Sprachen: Normalformen Zur Erinnerung: Kontextfreie Sprachen sind diejenigen, die von Grammatiken erzeugt werden, die auf allen linken Regelseiten nur je ein Nichtterminalsymbol haben. Aufgrund

Mehr

Kapitel IV Formale Sprachen und Grammatiken

Kapitel IV Formale Sprachen und Grammatiken Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist

Mehr

Grundbegriffe. Grammatiken

Grundbegriffe. Grammatiken Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch

FORMALE SYSTEME. 3. Vorlesung: Endliche Automaten. TU Dresden, 17. Oktober Markus Krötzsch FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch TU Dresden, 17. Oktober 2016 Rückblick Markus Krötzsch, 17. Oktober 2016 Formale Systeme Folie 2 von 31 Wiederholung Mit Grammatiken können

Mehr

Sprachanalyse. Fachseminar WS 08/09 Dozent: Prof. Dr. Helmut Weber Referentin: Nadia Douiri

Sprachanalyse. Fachseminar WS 08/09 Dozent: Prof. Dr. Helmut Weber Referentin: Nadia Douiri Sprachanalyse WS 08/09 Dozent: Prof. Dr. Helmut Weber Referentin: Inhalt 1. Formale Sprachen 2. Chomsky-Hierarchie 2 FORMALE SPRACHE 1. WAS IST EINE SPRACHE? 2. WIE BESCHREIBT MAN EINE SPRACHE? 3. WAS

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Kontextfreie Sprachen und Pushdown-Automaten Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Formale Komplexität natürlicher Sprachen WS 03/04 Wiederholung c

Mehr

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie

Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen

Mehr

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften Formalismen für RE Formale rundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de Satz Zu jeder regulären Sprache L gibt es einen DFA A mit L(A) =

Mehr

3. Vorlesung: Endliche Automaten Markus Kr otzsch Lehrstuhl Wissensbasierte Systeme

3. Vorlesung: Endliche Automaten Markus Kr otzsch Lehrstuhl Wissensbasierte Systeme Wiederholung Mit Grammatiken können wir Sprachen beschreiben und sie grob in Typen unterteilen: FORMALE SYSTEME 3. Vorlesung: Endliche Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Formale

Mehr

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Wörter Wort Sei Σ ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann bezeichnet

Mehr

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN

Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden

Mehr

Mehrdeutige Grammatiken

Mehrdeutige Grammatiken Mehrdeutige Grammatiken Wir haben gesehen, dass es auch mehr als eine Linksableitung, d.h. mehr als einen Syntaxbaum geben kann, um das selbe Terminalwort zu erzeugen. Eine Grammatik, die für mindestens

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Einführung in die Computerlinguistik Kontextfreie Grammatiken und. Kellerautomaten. Dozentin: Wiebke Petersen

Einführung in die Computerlinguistik Kontextfreie Grammatiken und. Kellerautomaten. Dozentin: Wiebke Petersen Einführung in die Computerlinguistik en und Dozentin: Wiebke Petersen 7.1.2010 Wiebke Petersen Einführung CL (WiSe 09/10) 1 kontextfreie Grammatik Denition Eine Grammatik (N, T, S, P) heiÿt kontextfrei,

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Kontextfreie Grammatiken

Kontextfreie Grammatiken Kontextfreie Grammatiken Bisher haben wir verschiedene Automatenmodelle kennengelernt. Diesen Automaten können Wörter vorgelegt werden, die von den Automaten gelesen und dann akzeptiert oder abgelehnt

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Mehrdeutige Grammatiken

Mehrdeutige Grammatiken Mehrdeutige Grammatiken Wir haben gesehen, dass es auch mehr als eine Linksableitung, d.h. mehr als einen Syntaxbaum geben kann, um das selbe Terminalwort zu erzeugen. Eine Grammatik, die für mindestens

Mehr

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten

Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Einführung in die Computerlinguistik Formale Grammatiken rechtslineare und kontextfreie Grammatiken Kellerautomaten Dozentin: Wiebke Petersen 13. Foliensatz Wiebke Petersen Einführung CL 1 Formale Grammatik

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 08.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Eine

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 4.2.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.5 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibung des Aufbaus von Sprachen Mathematische Mengennotation Beschreibung durch Eigenschaften

Mehr

Automaten und formale Sprachen Klausurvorbereitung

Automaten und formale Sprachen Klausurvorbereitung Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen

Mehr

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Thies Pfeiffer Technische Fakultät tpfeiffe@techfak.uni-bielefeld.de Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 1 Exkurs: Formale

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -

Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Algorithmen und Datenstrukturen I - - Thies Pfeiffer Technische Fakultät tpfeiffe@techfak.uni-bielefeld.de Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 22 Exkurs: Formale Sprachen Im Kapitel

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 13.01.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutorium 23 Grundbegriffe der Informatik (10. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Übungsaufgaben zu Formalen Sprachen und Automaten

Übungsaufgaben zu Formalen Sprachen und Automaten Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel

Mehr

Musterlösung Informatik-III-Nachklausur

Musterlösung Informatik-III-Nachklausur Musterlösung Informatik-III-Nachklausur Aufgabe 1 (2+2+4+4 Punkte) (a) L = (0 1) 0(0 1) 11(0 1) 0(0 1) (b) Der Automat ist durch folgendes Übergangsdiagramm gegeben: 0, 1 0, 1 0, 1 0, 1 0 s q 1 1 0 0 q

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Grundbegriffe der Informatik Tutorium 12

Grundbegriffe der Informatik Tutorium 12 Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)

Mehr

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b}

Klausuraufgaben. 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} Klausuraufgaben 1. Wir betrachten die folgende Sprache über dem Alphabet {a, b} L = {a n b m n > 0, m > 0, n m} a) Ist L kontextfrei? Wenn ja, geben Sie eine kontextfreie Grammatik für L an. Wenn nein,

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Prof. Meer, Dr. Gengler Aufgabenblatt 7 Besprechung in KW 48 / Abgabe in KW 49 Heften Sie unbedingt alle Blätter Ihrer Lösung zusammen und geben Sie oben auf dem ersten Blatt Ihren

Mehr

Zentralübung zur Vorlesung Theoretische Informatik

Zentralübung zur Vorlesung Theoretische Informatik SS 2015 Zentralübung zur Vorlesung Theoretische Informatik Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/uebung/ 7. Mai 2015 ZÜ THEO ZÜ IV Übersicht: 1.

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Hier Aufkleber mit Name und Matrikelnr. anbringen

Mehr

F2 Zusammenfassung Letzte Tips zur Klausur

F2 Zusammenfassung Letzte Tips zur Klausur F2 Zusammenfassung Letzte Tips zur Klausur Berndt Farwer FB Informatik, Uni HH F2-ommersemester 2001-(10.6.) p.1/15 Funktionen vs. Relationen Funktionen sind eindeutig, Relationen brauchen nicht eindeutig

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV 1 Wir betrachten die folgende Signatur

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

THIA - Übungsblatt 2.

THIA - Übungsblatt 2. THIA - Übungsblatt 2. Aufgabe 12 (Eine einfache Sprache). Endliche Ziffernfolgen, die mit einer 0 beginnen, auf die mindestens eine weitere Ziffer folgt, wobei nur die Ziffern 0,..., 7 vorkommen, sollen

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Formale Sprachen und Automaten: Tutorium Nr. 8

Formale Sprachen und Automaten: Tutorium Nr. 8 Formale Sprachen und Automaten: Tutorium Nr. 8 15. Juni 2013 Übersicht 1 Nachtrag 2 Besprechung von Übungsblatt 7 Aufgabe 1 Aufgabe 2 Aufgabe 3 3 CFG PDA Definitionen Ein Beispiel! Aufgabe 4 Der PDA als

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung

Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Formale Grundlagen der Wirtschaftsinformatik

Formale Grundlagen der Wirtschaftsinformatik Formale Grundlagen der Wirtschaftsinformatik Nikolaj Popov Research Institute for Symbolic Computation popov@risc.uni-linz.ac.at Sprachen und Grammatiken Teil II Sprache Definition: Ein Alphabet Σ ist

Mehr

Einführung in die Computerlinguistik Chart-Parsing

Einführung in die Computerlinguistik Chart-Parsing Einführung in die Computerlinguistik Chart-Parsing Dozentin: Wiebke sen 21.12.2009 Wiebke sen Einführung CL (Wie 09/10) 1 P = calls calls Wiebke sen Einführung CL (Wie 09/10) 2 P = calls calls Wiebke sen

Mehr

6 Kontextfreie Grammatiken

6 Kontextfreie Grammatiken 6 Kontextfreie Grammatiken Reguläre Grammatiken und damit auch reguläre Ausdrücke bzw. endliche Automaten haben bezüglich ihres Sprachumfangs Grenzen. Diese Grenzen resultieren aus den inschränkungen,

Mehr

Übungsblatt 1 - Lösung

Übungsblatt 1 - Lösung Formale Sprachen und Automaten Übungsblatt 1 - Lösung 24. April 2013 1 Wiederholung: Relationen 1. Was ist eine Relation? Definiere (auf grundlegende Begriffe der Mengenlehre kannst du dabei zurückgreifen).

Mehr

Klausur zur Vorlesung Formale Sprachen und Automaten TIT03G2 mit Lösungsvorschlägen

Klausur zur Vorlesung Formale Sprachen und Automaten TIT03G2 mit Lösungsvorschlägen Klausur zur Vorlesung Formale Sprachen und Automaten TIT03G2 mit Lösungsvorschlägen Name: Matr.-Nr.: Vorname: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 7 10 6 8 7 9 err. Punkte Gesamtpunktzahl: Note: Aufgabe

Mehr

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven

WS06/07 Referentin: Katharina Blinova. Formale Sprachen. Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven WS06/07 Referentin: Katharina Blinova Formale Sprachen Hauptseminar Intelligente Systeme Dozent: Prof. Dr. J. Rolshoven 1. Allgemeines 2. Formale Sprachen 3. Formale Grammatiken 4. Chomsky-Hierarchie 5.

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 28. April 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/39

Mehr

Formale Methoden 1. Gerhard Jäger 28. November Uni Bielefeld, WS 2007/2008 1/15

Formale Methoden 1. Gerhard Jäger 28. November Uni Bielefeld, WS 2007/2008 1/15 1/15 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 28. November 2007 2/15 Formale Sprache: Menge von Symbolketten Theorie formaler Sprachen Formale Sprachen

Mehr

Schnitt- und Äquivalenzproblem

Schnitt- und Äquivalenzproblem Schnitt- und Äquivalenzproblem Das Schnittproblem besteht in der Frage, ob der Schnitt zweier gegebener regulärer Sprachen L 1 und L 2 leer ist. Dabei können die Sprachen durch DEAs oder Typ-3 Grammatiken,

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 12

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 12 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 20. Februar 2004 1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken 1 / 15 Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken Prof. Dr. Hans Kleine Büning FG Wissensbasierte Systeme WS 08/09 2 / 15 Deterministischer endlicher Automat (DEA) Definition 1:

Mehr

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welche der folgenden Aussagen zu Normalformen einer aussagenlogischen Formel A ist falsch? A. Für Formel A existiert eine KNF K, sodass

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automaten und formale prachen Notizen zu den Folien 10 Kontextfreie Grammatiken Beispiele für kontextfreien Grammatiken ei Σ = {a, b}. Beispiel 1 (Folie 233, oben) Geben ie eine kontextfreie Grammatik

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Grundbegriffe der Informatik Tutorium 33

Grundbegriffe der Informatik Tutorium 33 Tutorium 33 02.02.2017 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Gliederung 1 2 3 Ein ist ein Tupel A = (Z, z 0, X, f, Y, h)

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr